Seasonal Activity of Fruit Bats in a Monoculture Rubber and Oil Palm Plantation in the Southern Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. Sampling Design and Environmental Variables
2.3. Data Analysis
3. Results
Model | Terms | AICc | dAICc | RL | wAICDc |
---|---|---|---|---|---|
1 | Mon + Temp + Hum + Prec + Guild + Plant + Plant × Gui | 660.71 | 38.47 | 0.00 | <0.001 |
2 | Temp + Hum + Prec + Guild + Plant + Plant × Gui | 623.59 | 1.35 | 0.51 | 0.335 |
3 | Temp + Prec + Guild + Plant + Plant × Gui | 622.24 | 0.00 | 1.00 | 0.658 |
4 | Prec + Guild + Plant + Plant × Gui | 630.19 | 7.95 | 0.02 | 0.012 |
5 | Temp + Hum + Prec + Plant | 712.33 | 90.09 | 0.00 | <0.001 |
6 | Temp + Hum + Prec + Gui | 651.64 | 29.40 | 0.00 | <0.001 |
4. Discussion
5. Conclusions: Implications to Conservation and Monoculture Expansion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardillo, M. Multiple Causes of High Extinction Risk in Large Mammal Species. Science 2005, 309, 1239–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated Modern Human–Induced Species Losses: Entering the Sixth Mass Extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, A.C. Understanding the Drivers of Southeast Asian Biodiversity Loss. Ecosphere 2017, 8, e01624. [Google Scholar] [CrossRef]
- Sodhi, N.S.; Koh, L.P.; Brook, B.W.; Ng, P.K.L. Southeast Asian Biodiversity: An Impending Disaster. Trends Ecol. Evol. 2004, 19, 654–660. [Google Scholar] [CrossRef]
- Meyer, C.F.J.; Struebig, M.J.; Willig, M.R. Responses of Tropical Bats to Habitat Fragmentation, Logging, and Deforestation. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 63–103. ISBN 978-3-319-25220-9. [Google Scholar]
- Hughes, A.C. Have Indo-Malaysian forests reached the end of the road? Biol. Conserv. 2018, 223, 129–137. [Google Scholar] [CrossRef]
- Veach, V.; Moilanen, A.; Minin, E.D. Threats from Urban Expansion, Agricultural Transformation and Forest Loss on Global Conservation Priority Areas. PLoS ONE 2017, 12, e0188397. [Google Scholar] [CrossRef]
- Koh, L.P.; Wilcove, D.S. Cashing in Palm Oil for Conservation. Nature 2007, 448, 993–994. [Google Scholar] [CrossRef]
- Payne, M. Satellite Remote Sensing of Deforestation for Oil Palm. Nat. Rev. Earth Environ. 2021, 2, 230. [Google Scholar] [CrossRef]
- Wilcove, D.S.; Koh, L.P. Addressing the Threats to Biodiversity from Oil-Palm Agriculture. Biodivers. Conserv. 2010, 19, 999–1007. [Google Scholar] [CrossRef]
- Fitzherbert, E.B.; Struebig, M.J.; Morel, A.; Danielsen, F.; Brühl, C.A.; Donald, P.F.; Phalan, B. How Will Oil Palm Expansion Affect Biodiversity? Trends Ecol. Evol. 2008, 23, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, W.J.; Broad, S.; Butchart, S.H.M.; Clarke, S.J.; Collins, A.M.; Dicks, L.V.; Doran, H.; Esmail, N.; Fleishman, E.; Frost, N.; et al. A Horizon Scan of Emerging Issues for Global Conservation in 2019. Trends Ecol. Evol. 2019, 34, 83–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren-Thomas, E.; Nelson, L.; Juthong, W.; Bumrungsri, S.; Brattström, O.; Stroesser, L.; Chambon, B.; Penot, É.; Tongkaemkaew, U.; Edwards, D.P.; et al. Rubber Agroforestry in Thailand Provides Some Biodiversity Benefits without Reducing Yields. J. Appl. Ecol. 2020, 57, 17–30. [Google Scholar] [CrossRef]
- Tanalgo, K.C.; Hughes, A.C. Priority-Setting for Philippine Bats Using Practical Approach to Guide Effective Species Conservation and Policy-Making in the Anthropocene. Hystrix Ital. J. Mammal. 2019, 30, 74–83. [Google Scholar] [CrossRef]
- Azhar, B.; Puan, C.L.; Aziz, N.; Sainuddin, M.; Adila, N.; Samsuddin, S.; Asmah, S.; Syafiq, M.; Razak, S.A.; Hafizuddin, A.; et al. Effects of in Situ Habitat Quality and Landscape Characteristics in the Oil Palm Agricultural Matrix on Tropical Understory Birds, Fruit Bats and Butterflies. Biodivers. Conserv. 2015, 24, 3125–3144. [Google Scholar] [CrossRef]
- Bohada-Murillo, M.; Castaño-Villa, G.J.; Fontúrbel, F.E. The Effects of Forestry and Agroforestry Plantations on Bird Diversity: A Global Synthesis. Land Degrad. Dev. 2020, 31, 646–654. [Google Scholar] [CrossRef]
- Syafiq, M.; Nur Atiqah, A.R.; Ghazali, A.; Asmah, S.; Yahya, M.S.; Aziz, N.; Puan, C.L.; Azhar, B. Responses of Tropical Fruit Bats to Monoculture and Polyculture Farming in Oil Palm Smallholdings. Acta Oecologica 2016, 74, 11–18. [Google Scholar] [CrossRef]
- Tanalgo, K.C.; Hughes, A.C. Bats of the Philippine Islands—A Review of Research Directions and Relevance to National-Level Priorities and Targets. Mamm. Biol. 2018, 91, 46–56. [Google Scholar] [CrossRef]
- Tanalgo, K.C.; Achondo, M.J.M.M.; Hughes, A.C. Small Things Matter: The Value of Rapid Biodiversity Surveys to Understanding Local Bird Diversity Patterns in Southcentral Mindanao, Philippines. Trop. Conserv. Sci. 2019, 12, 1940082919869482. [Google Scholar] [CrossRef]
- Sedlock, J.L.; Stuart, A.M.; Horgan, F.G.; Hadi, B.; Como Jacobson, A.; Alviola, P.A.; Alvarez, J.D. Local-scale bat guild activity differs with rice growth stage at ground level in the Philippines. Biodivers. Diversity 2019, 11, 148. [Google Scholar] [CrossRef] [Green Version]
- Shafie, N.J.; Sah, S.A.M.; Latip, N.S.A.; Azman, N.M.; Khairuddin, N.L. Diversity Pattern of Bats at Two Contrasting Habitat Types along Kerian River, Perak, Malaysia. Trop. Life Sci. Res. 2011, 22, 13–22. [Google Scholar] [PubMed]
- Dalhoumi, R.; Morellet, N.; Aissa, P.; Aulagnier, S. Seasonal Activity Pattern and Habitat Use by the Kuhl’s Pipistrelle (Pipistrellus kuhlii) in an Arid Environment. Eur. J. Wildl. Res. 2018, 64, 36. [Google Scholar] [CrossRef]
- Amberong, A.G.T.; Fidelino, J.S.; Duco, R.A.J.; Ledesma, M.M.; Duya, M.V.; Ong, P.S.; Duya, M.R.M. Toward a Philippine Bat Call Library: Acoustic Characterization of Insectivorous Bats in Bulacan, Luzon Island, Philippines. Philipp. J. Sci. 2021, 150, 13. [Google Scholar]
- UN OCHA Philippines: El Niño Snapshot (as of 29 February 2016)—Philippines. Available online: https://reliefweb.int/report/philippines/philippines-el-ni-o-snapshot-29-february-2016 (accessed on 5 July 2021).
- Zhai, P.; Yu, R.; Guo, Y.; Li, Q.; Ren, X.; Wang, Y.; Xu, W.; Liu, Y.; Ding, Y. The Strong El Niño of 2015/16 and Its Dominant Impacts on Global and China’s Climate. J. Meteorol. Res. 2016, 30, 283–297. [Google Scholar] [CrossRef]
- Agduma, A.R.; Achondo, M.J.M.M.; Bretana, B.L.P.; Bello, V.P.; Remollo, L.L.; Mancao, L.S.; Supremo, J.P.; Salem, J.G.C.; Salvaña, F.R.P. Diversity of Vascular Plant Species in an Agroforest: The Case of a Rubber (Hevea brasiliensis) Plantation in Makilala, North Cotabato. Philipp. J. Crop Sci. 2011, 36, 57–64. [Google Scholar]
- Ralph, C.J. Standardization of Mist Net Captures for Quantification of Avian Migration. Bird-Banding 1976, 47, 44–47. [Google Scholar] [CrossRef]
- Weller, T.J.; Lee, D.C. Mist Net Effort Required to Inventory a Forest Bat Species Assemblage. J. Wildl. Manag. 2007, 71, 251–257. [Google Scholar] [CrossRef]
- Ingle, N.; Heaney, L. A Key to the Bats of the Philippine Islands; FAO: Rome, Italy, 1992. [Google Scholar]
- Stewart, A.B.; Makowsky, R.; Dudash, M.R. Differences in Foraging Times between Two Feeding Guilds within Old World Fruit Bats (Pteropodidae) in Southern Thailand. J. Trop. Ecol. 2014, 30, 249–257. [Google Scholar] [CrossRef]
- Erickson, J.L.; West, S.D. The Influence of Regional Climate and Nightly Weather Conditions on Activity Patterns of Insectivorous Bats. Acta Chiropterologica 2002, 4, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Ram, N. “weatherData” Package. Available online: http://ram-n.github.io/weatherData/ (accessed on 6 July 2021).
- Gallucci, M. GAMLj: General Analyses for Linear Models. [Jamovi Module]; Version; 2019. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- The Jamovi Project Jamovi (Version 1.2) [Computer Software]. 2020.
- GraphPad Version 8 GraphPad Software, Inc., San Diego, CA. Available online: https://www.graphpad.com/ (accessed on 31 July 2021).
- Saldaña-Vázquez, R.A.; Sosa, V.J.; Hernández-Montero, J.R.; López-Barrera, F. Abundance Responses of Frugivorous Bats (Stenodermatinae) to Coffee Cultivation and Selective Logging Practices in Mountainous Central Veracruz, Mexico. Biodivers. Conserv. 2010, 19, 2111–2124. [Google Scholar] [CrossRef]
- Harich, F.K.; Treydte, A.C. Mammalian Wildlife Diversity in Rubber and Oil Palm Plantations. CAB Rev. 2016, 11, 1–11. [Google Scholar] [CrossRef]
- Phommexay, P.; Satasook, C.; Bates, P.; Pearch, M.; Bumrungsri, S. The Impact of Rubber Plantations on the Diversity and Activity of Understorey Insectivorous Bats in Southern Thailand. Biodivers. Conserv. 2011, 20, 1441–1456. [Google Scholar] [CrossRef]
- Flores, A.B.; Tanalgo, K. Observation of Lesser Dog-Faced Fruit Bat (Cynopterus brachyotis) Feeding on Piper Aduncum in Makilala, North Cotabato, Philippines. Southeast Asia Vertebr. Rec. 2020, 2020, 32–33. [Google Scholar] [CrossRef]
- Sritongchuay, T.; Hughes, A.C.; Bumrungsri, S. The Role of Bats in Pollination Networks Is Influenced by Landscape Structure. Glob. Ecol. Conserv. 2019, 20, e00702. [Google Scholar] [CrossRef]
- Cely-Gómez, M.A.; Castillo-Figueroa, D.; Pérez-Torres, J. Bat Assemblage in an Oil Palm Plantation from the Colombian Llanos Foothills. Trop. Life Sci. Res. 2021, 32, 47–61. [Google Scholar] [CrossRef]
- Pardo, L.E.; de Oliveira Roque, F.; Campbell, M.J.; Younes, N.; Edwards, W.; Laurance, W.F. Identifying Critical Limits in Oil Palm Cover for the Conservation of Terrestrial Mammals in Colombia. Biol. Conserv. 2018, 227, 65–73. [Google Scholar] [CrossRef]
- Sánchez, M.S.; Carrizo, L.V.; Giannini, N.P.; Barquez, R.M. Seasonal Patterns in the Diet of Frugivorous Bats in the Subtropical Rainforests of Argentina. Mammalia 2012, 76, 269–275. [Google Scholar] [CrossRef]
- Katunzi, T.; Soisook, P.; Webala, P.W.; Armstrong, K.N.; Bumrungsri, S. Bat Activity and Species Richness in Different Land-Use Types in and around Chome Nature Forest Reserve, Tanzania. Afr. J. Ecol. 2021, 59, 117–131. [Google Scholar] [CrossRef]
- Appel, G.; López-Baucells, A.; Magnusson, W.E.; Bobrowiec, P.E.D. Temperature, Rainfall, and Moonlight Intensity Effects on Activity of Tropical Insectivorous Bats. J. Mammal. 2019, 100, 1889–1900. [Google Scholar] [CrossRef]
- Achondo, M.J.M.; Tanalgo, K.; Agduma, A.; Bretaña, B.L.; Supremo, J.; Salem, J.; Bello, V. Occurrence and Abundance of Fruit Bats in Selected Conservation Areas of North Cotabato, Philippines. Asian J. Conserv. Biol. 2014, 3, 3–7. [Google Scholar]
- Tanalgo, K.C.; Tabora, J.A.G. Cave-Dwelling Bats (Mammalia: Chiroptera) and Conservation Concerns in South Central Mindanao, Philippines. J. Threat. Taxa 2015, 7, 8185–8194. [Google Scholar] [CrossRef] [Green Version]
- Hughes, A.C.; Satasook, C.; Bates, P.J.J.; Bumrungsri, S.; Jones, G. The Projected Effects of Climatic and Vegetation Changes on the Distribution and Diversity of Southeast Asian Bats. Glob. Chang. Biol. 2012, 18, 1854–1865. [Google Scholar] [CrossRef]
- Butler, R. 2014: The Year in Rainforests. Available online: https://news.mongabay.com/2014/12/2014-the-year-in-rainforests/ (accessed on 23 July 2021).
- Colchester, M.; Chao, S.; Dallinger, J.; Sokhannaro, H.; Dan, V.T.; Villanueva, J. Oil Palm Expansion in South East Asia; Forest Peoples Programme: Moreton-in-Marsh, UK, 2011; p. 264. [Google Scholar]
- Coca, N. Palm Oil Muscles in on Coconut Farmers in Southeast Asia. Available online: https://india.mongabay.com/2020/11/palm-oil-muscles-in-on-coconut-farmers-in-southeast-asia/ (accessed on 23 July 2021).
- Batugal, P. Philippine Palm Oil Industry Road Map 2013–2023; Philippine Coconut Authority: Quezon City, Philippines, 2014. [Google Scholar]
- Ritchie, H.; Roser, M. Forests and Deforestation; Our World Data: Oxford, UK, 2021. [Google Scholar]
- Sheil, D.; Casson, A.; Meijaard, E.; Van Noordwijk, M.; Gaskell, J.; Sunderland-Groves, J.; Wertz, K.; Kanninen, M. The Impacts and Opportunities of Oil Palm in Southeast Asia: What Do We Know and What Do We Need to Know; Center for International Forestry Reaserch: Bogor, Indonesia, 2009. [Google Scholar]
- Statista Natural Rubber Leading Producers Worldwide. 2019. Available online: https://www.statista.com/statistics/275397/caoutchouc-production-in-leading-countries/ (accessed on 7 July 2021).
- Aziz, S.A.; McConkey, K.; Tanalgo, K.; Sritongchuay, T.; Low, M.-R.; Yong, J.Y.; Mildenstein, T.L.; Nuevo-Diego, C.E.; Lim, V.-C.; Racey, P.A. The Critical Importance of Old World Fruit Bats for Healthy Ecosystems and Economies. Front. Ecol. Evol. 2021, 9. [Google Scholar] [CrossRef]
- Harvard Growth Lab The Atlas of Economic Complexity by @HarvardGrwthLab. Available online: https://atlas.cid.harvard.edu/explore/stack?country=174&year=2019&startYear=1995&productClass=SITC&product=undefined&target=Product&partner=undefined (accessed on 15 August 2021).
Effects | β | SE | z | p |
---|---|---|---|---|
(Intercept) | 1.75 | 0.04 | 41.23 | <0.001 |
Precipitation (mm) | −0.03 | 0.02 | −1.44 | 0.151 |
Temperature (°C) | −0.18 | 0.06 | −3.14 | 0.002 |
Guild (nectarivorous) | −0.76 | 0.08 | −9.02 | <0.001 |
Plantation (rubber) | 0.46 | 0.08 | 5.48 | <0.001 |
Guild × Plantation | 0.37 | 0.17 | 2.18 | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanalgo, K.C.; Sritongchuay, T.; Hughes, A.C. Seasonal Activity of Fruit Bats in a Monoculture Rubber and Oil Palm Plantation in the Southern Philippines. Conservation 2021, 1, 258-269. https://doi.org/10.3390/conservation1030020
Tanalgo KC, Sritongchuay T, Hughes AC. Seasonal Activity of Fruit Bats in a Monoculture Rubber and Oil Palm Plantation in the Southern Philippines. Conservation. 2021; 1(3):258-269. https://doi.org/10.3390/conservation1030020
Chicago/Turabian StyleTanalgo, Krizler C., Tuanjit Sritongchuay, and Alice C. Hughes. 2021. "Seasonal Activity of Fruit Bats in a Monoculture Rubber and Oil Palm Plantation in the Southern Philippines" Conservation 1, no. 3: 258-269. https://doi.org/10.3390/conservation1030020
APA StyleTanalgo, K. C., Sritongchuay, T., & Hughes, A. C. (2021). Seasonal Activity of Fruit Bats in a Monoculture Rubber and Oil Palm Plantation in the Southern Philippines. Conservation, 1(3), 258-269. https://doi.org/10.3390/conservation1030020