Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (167)

Search Parameters:
Keywords = Einstein relation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 556 KiB  
Review
Evolving Wormholes in a Cosmological Background
by Mahdi Kord Zangeneh and Francisco S. N. Lobo
Universe 2025, 11(7), 236; https://doi.org/10.3390/universe11070236 - 19 Jul 2025
Viewed by 119
Abstract
Wormholes are non-trivial topological structures that arise as exact solutions to Einstein’s field equations, theoretically connecting distinct regions of spacetime via a throat-like geometry. While static traversable wormholes necessarily require exotic matter that violates the classical energy conditions, subsequent studies have sought to [...] Read more.
Wormholes are non-trivial topological structures that arise as exact solutions to Einstein’s field equations, theoretically connecting distinct regions of spacetime via a throat-like geometry. While static traversable wormholes necessarily require exotic matter that violates the classical energy conditions, subsequent studies have sought to minimize such violations by introducing time-dependent geometries embedded within cosmological backgrounds. This review provides a comprehensive survey of evolving wormhole solutions, emphasizing their formulation within both general relativity and alternative theories of gravity. We explore key developments in the construction of non-static wormhole spacetimes, including those conformally related to static solutions, as well as dynamically evolving geometries influenced by scalar fields. Particular attention is given to the wormholes embedded into Friedmann–Lemaître–Robertson–Walker (FLRW) universes and de Sitter backgrounds, where the interplay between the cosmic expansion and wormhole dynamics is analyzed. We also examine the role of modified gravity theories, especially in hybrid metric–Palatini gravity, which enable the realization of traversable wormholes supported by effective stress–energy tensors that do not violate the null or weak energy conditions. By systematically analyzing a wide range of time-dependent wormhole solutions, this review identifies the specific geometric and physical conditions under which wormholes can evolve consistently with null and weak energy conditions. These findings clarify how such configurations can be naturally integrated into cosmological models governed by general relativity or modified gravity, thereby contributing to a deeper theoretical understanding of localized spacetime structures in an expanding universe. Full article
(This article belongs to the Special Issue Experimental and Observational Constraints on Wormhole Models)
Show Figures

Figure 1

26 pages, 491 KiB  
Article
Remarkable Scale Relation, Approximate SU(5), Fluctuating Lattice
by Holger B. Nielsen
Universe 2025, 11(7), 211; https://doi.org/10.3390/universe11070211 - 26 Jun 2025
Viewed by 156
Abstract
In this study, we discuss a series of eight energy scales, some of which are our own speculations, and fit the logarithms of these energies as a straight line versus a quantity related to the dimensionalities of action terms in a way to [...] Read more.
In this study, we discuss a series of eight energy scales, some of which are our own speculations, and fit the logarithms of these energies as a straight line versus a quantity related to the dimensionalities of action terms in a way to be defined in the article. These terms in the action are related to the energy scales in question. So, for example, the dimensionality of the Einstein–Hilbert action coefficient is one related to the Planck scale. In fact, we suppose that, in the cases described with quantum field theory, there is, for each of our energy scales, a pair of associated terms in the Lagrangian density, one “kinetic” and one “mass or current” term. To plot the energy scales, we use the ratio of the dimensionality of, say, the “non-kinetic” term to the dimensionality of the “kinetic” one. For an explanation of our phenomenological finding that the logarithm of the energies depends, as a straight line, on the dimensionality defined integer q, we give an ontological—i.e., it really exists in nature in our model—“fluctuating lattice” with a very broad distribution of, say, the link size a. We take the Gaussian in the logarithm, ln(a). A fluctuating lattice is very natural in a theory with general relativity, since it corresponds to fluctuations in the gauge depth of the field of general relativity. The lowest on our energy scales are intriguing, as they are not described by quantum field theory like the others but by actions for a single particle or single string, respectively. The string scale fits well with hadronic strings, and the particle scale is presumably the mass scale of Standard Model group monopoles, the bound state of a couple of which might be the dimuon resonance (or statistical fluctuation) found in LHC with a mass of 28 GeV. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

17 pages, 1029 KiB  
Article
Hot Holographic 2-Flavor Quark Star
by Le-Feng Chen, Jing-Yi Wu, Hao Feng, Tian-Shun Chen and Kilar Zhang
Universe 2025, 11(7), 199; https://doi.org/10.3390/universe11070199 - 20 Jun 2025
Viewed by 220
Abstract
Applying the holographic 2-flavor Einstein–Maxwell-dilaton model, the parameters of which are fixed by lattice QCD, we extract the equations of state for hot quark–gluon plasma around the critical point at T=182 MeV, and have corresponding quark star cores constructed. By further [...] Read more.
Applying the holographic 2-flavor Einstein–Maxwell-dilaton model, the parameters of which are fixed by lattice QCD, we extract the equations of state for hot quark–gluon plasma around the critical point at T=182 MeV, and have corresponding quark star cores constructed. By further adding hadron shells, the mass range of the whole stars spans from 2 to 17 solar masses, with the maximum compactness around 0.22. This result allows them to be black hole mimickers and candidates for gap events. The I–Love–Q–C relations are also analyzed, which show consistency with the neutron star cases when the discontinuity at the quark–hadron interface is not large. Furthermore, we illustrate the full parameter maps of the energy density and pressure as functions of the temperature and chemical potential and discuss the constant thermal conductivity case supposing a heat source inside. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

16 pages, 345 KiB  
Article
Use of Redshifts as Evidence of Dark Energy
by Jan Stenflo
Physics 2025, 7(2), 23; https://doi.org/10.3390/physics7020023 - 13 Jun 2025
Viewed by 565
Abstract
The large-scale dynamics of the universe is generally described in terms of the time-dependent scale factor a(t). To make contact with observational data, the a(t) function needs to be related to the observable [...] Read more.
The large-scale dynamics of the universe is generally described in terms of the time-dependent scale factor a(t). To make contact with observational data, the a(t) function needs to be related to the observable z(r) function, redshift versus distance. Model fitting of data has shown that the equation that governs z(r) needs to contain a constant term, which has been identified as Einstein’s cosmological constant. Here, it is shown that the required constant term is not a cosmological constant but is due to an overlooked geometric difference between proper time t and look-back time tlb along lines of sight, which fan out isotropically in all directions of the 3D (3-dimensional) space that constitutes the observable universe. The constant term is needed to satisfy the requirement of spatial isotropy in the local limit. Its magnitude is independent of the epoch in which the observer lives and agrees with the value found by model fitting of observational data. Two of the observational consequences of this explanation are examined: an increase in the age of the universe from 13.8 Gyr to 15.4 Gyr, and a resolution of the H0 tension, which restores consistency to cosmological theory. Full article
(This article belongs to the Special Issue Beyond the Standard Models of Physics and Cosmology: 2nd Edition)
Show Figures

Figure 1

17 pages, 286 KiB  
Article
Einstein-like Poisson Warped Product Manifolds and Applications
by Foued Aloui
Symmetry 2025, 17(5), 645; https://doi.org/10.3390/sym17050645 - 25 Apr 2025
Cited by 1 | Viewed by 304
Abstract
In this paper, we introduce the concept of contravariant Einstein-like Poisson manifolds of classes A, B, and P. We then prove that the fiber space of a Poisson warped product manifold inherits the contravariant Einstein-like classes of the total space, [...] Read more.
In this paper, we introduce the concept of contravariant Einstein-like Poisson manifolds of classes A, B, and P. We then prove that the fiber space of a Poisson warped product manifold inherits the contravariant Einstein-like classes of the total space, while the base space inherits these classes under certain conditions related to the warping function. We also explore applications of contravariant Einstein-like Poisson structures in various spacetime models, including generalized Robertson–Walker, Reissner–Nordström, and standard static spacetimes. Full article
(This article belongs to the Special Issue Recent Advance in Mathematical Physics II)
16 pages, 890 KiB  
Article
Baryonic Matter, Ising Anyons and Strong Quantum Gravity
by Michel Planat
Int. J. Topol. 2025, 2(2), 4; https://doi.org/10.3390/ijt2020004 - 4 Apr 2025
Viewed by 654
Abstract
We find that the whole set of known baryons of spin parity JP=12+ (the ground state) and JP=32+ (the first excited state) is organized in multiplets which may efficiently be encoded by the [...] Read more.
We find that the whole set of known baryons of spin parity JP=12+ (the ground state) and JP=32+ (the first excited state) is organized in multiplets which may efficiently be encoded by the multiplets of conjugacy classes in the small finite group G=(192, 187). A subset of the theory is the small group (48, 29)GL(2, 3) whose conjugacy classes are in correspondence with the baryon families of Gell-Mann’s octet and decuplet. G has many of its irreducible characters that are minimal and informationally complete quantum measurements that we assign to the baryon families. Since G is isomorphic to the group of braiding matrices of SU(2)2 Ising anyons, we explore the view that baryonic matter has a topological origin. We are interested in the holographic gravity dual AdS3/QFT2 of the Ising model. This dual corresponds to a strongly coupled pure Einstein gravity with central charge c=1/2 and AdS radius of the order of the Planck scale. Some physical issues related to our approach are discussed. Full article
(This article belongs to the Special Issue Feature Papers in Topology and Its Applications)
Show Figures

Figure 1

10 pages, 586 KiB  
Article
The Quantum Relative Entropy of the Schwarzschild Black Hole and the Area Law
by Ginestra Bianconi
Entropy 2025, 27(3), 266; https://doi.org/10.3390/e27030266 - 4 Mar 2025
Cited by 1 | Viewed by 1500 | Correction
Abstract
The area law obeyed by the thermodynamic entropy of black holes is one of the fundamental results relating gravity to statistical mechanics. In this work, we provide a derivation of the area law for the quantum relative entropy of the Schwarzschild black hole [...] Read more.
The area law obeyed by the thermodynamic entropy of black holes is one of the fundamental results relating gravity to statistical mechanics. In this work, we provide a derivation of the area law for the quantum relative entropy of the Schwarzschild black hole for an arbitrary Schwarzschild radius. The quantum relative entropy between the metric of the manifold and the metric induced by the geometry and the matter field has been proposed in G. Bianconi as the action for entropic quantum gravity leading to modified Einstein equations. The quantum relative entropy generalizes Araki’s entropy and treats the metrics between zero-forms, one-forms, and two-forms as quantum operators. Although the Schwarzschild metric is not an exact solution of the modified Einstein equations of the entropic quantum gravity, it is an approximate solution valid in the low-coupling, small-curvature limit. Here, we show that the quantum relative entropy associated to the Schwarzschild metric obeys the area law for a large Schwarzschild radius. We provide a full statistical mechanics interpretation of the results. Full article
Show Figures

Figure 1

24 pages, 10833 KiB  
Article
Dynamic Behavior of the Glassy and Supercooled Liquid States of Aceclofenac Assessed by Dielectric and Calorimetric Techniques
by M. Teresa Viciosa, Joaquim J. Moura Ramos, Ana Rosa Garcia and Hermínio P. Diogo
Molecules 2025, 30(3), 681; https://doi.org/10.3390/molecules30030681 - 4 Feb 2025
Viewed by 697
Abstract
Aceclofenac (ACF), a non-steroidal anti-inflammatory drug, was obtained in its amorphous state by cooling from melt. The glass transition was investigated using dielectric and calorimetric techniques, namely, dielectric relaxation spectroscopy (DRS), thermally stimulated depolarization currents (TSDC), and conventional and temperature-modulated differential scanning calorimetry [...] Read more.
Aceclofenac (ACF), a non-steroidal anti-inflammatory drug, was obtained in its amorphous state by cooling from melt. The glass transition was investigated using dielectric and calorimetric techniques, namely, dielectric relaxation spectroscopy (DRS), thermally stimulated depolarization currents (TSDC), and conventional and temperature-modulated differential scanning calorimetry (DSC and TM-DSC). The dynamic behavior in both the glassy and supercooled liquid states revealed multiple relaxation processes. Well below the glass transition, DRS was able to resolve two secondary relaxations, γ and β, the latter of which was also detectable by TSDC. The kinetic parameters indicated that both processes are associated with localized motions within the molecule. The main (α) relaxation was clearly observed by DRS and TSDC, and results from both techniques confirmed a non-Arrhenian temperature dependence of the relaxation times. However, the glass transition temperature (Tg) extrapolated from DRS data significantly differed from that obtained via TSDC, which in turn showed reasonable agreement with the calorimetric Tg (Tg-DSC = 9.2 °C). The values of the fragility index calculated by the three experimental techniques converged in attributing the character of a moderately fragile glass former to ACF. Above the α relaxation, TSDC showed a well-defined peak. In DRS, after “removing” the high-conductivity contribution using ε’ derivative analysis, a peak with shape parameters αHN = βHN = 1 was also detected. The origin of these peaks, found in the full supercooled liquid state, has been discussed in the context of structural and dynamic heterogeneity. This is supported by significant differences observed between the FTIR spectra of the amorphous and crystalline samples, which are likely related to aggregation differences resulting from variations in the hydrogen bonds between the two phases. Additionally, the pronounced decoupling between translational and relaxational motions, as deduced from the low value of the fractional exponent x = 0.72, derived from the fractional Debye–Stokes–Einstein (FDSE) relationship, further supports this interpretation. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

12 pages, 296 KiB  
Article
Elucidating the Dark Energy and Dark Matter Phenomena Within the Scale-Invariant Vacuum (SIV) Paradigm
by Vesselin G. Gueorguiev and Andre Maeder
Universe 2025, 11(2), 48; https://doi.org/10.3390/universe11020048 - 2 Feb 2025
Cited by 2 | Viewed by 1404
Abstract
The enigmatic phenomenon of dark energy (DE) is the elusive entity driving the accelerated expansion of our Universe. A plausible candidate for DE is the non-zero Einstein Cosmological Constant ΛE manifested as a constant energy density of the vacuum, yet it seemingly [...] Read more.
The enigmatic phenomenon of dark energy (DE) is the elusive entity driving the accelerated expansion of our Universe. A plausible candidate for DE is the non-zero Einstein Cosmological Constant ΛE manifested as a constant energy density of the vacuum, yet it seemingly defies gravitational effects. In this work, we interpret the non-zero ΛE through the lens of scale-invariant cosmology. We revisit the conformal scale factor λ and its defining equations within the Scale-Invariant Vacuum (SIV) paradigm. Furthermore, we address the profound problem of the missing mass across galactic and extragalactic scales by deriving an MOND-like relation, ga0gN, within the SIV context. Remarkably, the values obtained for ΛE and the MOND fundamental acceleration, a0, align with observed magnitudes, specifically, a01010ms2 and ΛE1.8×1052m2. Moreover, we propose a novel early dark energy term, T˜μνκH, within the SIV paradigm, which holds potential relevance for addressing the Hubble tension. Full article
(This article belongs to the Special Issue Dark Energy and Dark Matter)
13 pages, 730 KiB  
Article
Newton’s First Law and the Grand Unification
by Martin Tamm
Symmetry 2024, 16(12), 1694; https://doi.org/10.3390/sym16121694 - 20 Dec 2024
Viewed by 755
Abstract
This paper is devoted to the study of stationary trajectories of free particles. From a classical point of view, this appears to be an almost trivial problem: Free particles should follow straight lines as predicted by Newton’s first law, and straight lines are [...] Read more.
This paper is devoted to the study of stationary trajectories of free particles. From a classical point of view, this appears to be an almost trivial problem: Free particles should follow straight lines as predicted by Newton’s first law, and straight lines are indeed the stationary trajectories of the standard action integrals in the classical theory. In the following, however, a general relativistic approach is studied, and in this situation it is much less evident what action integral should be used. As it turns out, using the traditional Einstein–Hilbert principle gives us stationary states very much in line with the classical theory. But it is suggested that a different action principle, and in fact one which is closer to quantum mechanics, gives stationary states with a much richer structure: Even if these states in a sense can represent particles which obey the first law, they are also inherently rotating. Although we may still be far from understanding how general relativity and quantum mechanics should be united, this may give an interesting clue to why rotation (or rather spin, which is a different but related concept) seems to be the natural state of motion for elementary particles. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

15 pages, 331 KiB  
Article
Lorentz Invariance in Relativistic Particle Mechanics
by James M. Hill
Symmetry 2024, 16(12), 1691; https://doi.org/10.3390/sym16121691 - 20 Dec 2024
Viewed by 872
Abstract
The notion of invariance under the Lorentz transformation is fundamental to special relativity and its continuation beyond the speed of light. Theories and solutions with this characteristic are stronger and more powerful than conventional theories or conventional solutions because the Lorentz-invariant approach automatically [...] Read more.
The notion of invariance under the Lorentz transformation is fundamental to special relativity and its continuation beyond the speed of light. Theories and solutions with this characteristic are stronger and more powerful than conventional theories or conventional solutions because the Lorentz-invariant approach automatically embodies the conventional approach. We propose a Lorentz-invariant extension of Newton’s second law, which includes both special relativistic mechanics and Schrödinger’s quantum wave theory. Here, we determine new general expressions for energy–momentum, which are Lorentz-invariant. We also examine the Lorentz-invariant power-law energy–momentum expressions, which include Einstein’s energy relation as a particular case. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Relativity: Theories and Applications)
Show Figures

Figure 1

21 pages, 751 KiB  
Article
Operational Calculus of the Quantum Statistical Fermi–Dirac and Bose–Einstein Functions Leading to the Novel Fractional Kinetic Equations
by Asifa Tassaddiq, Carlo Cattani, Rabab Alharbi, Ruhaila Md Kasmani and Sania Qureshi
Fractal Fract. 2024, 8(12), 749; https://doi.org/10.3390/fractalfract8120749 - 19 Dec 2024
Cited by 6 | Viewed by 922
Abstract
The sun is a fundamental element of the natural environment, and kinetic equations are crucial mathematical models for determining how quickly the chemical composition of a star like the sun is changing. Taking motivation from these facts, we develop and solve a novel [...] Read more.
The sun is a fundamental element of the natural environment, and kinetic equations are crucial mathematical models for determining how quickly the chemical composition of a star like the sun is changing. Taking motivation from these facts, we develop and solve a novel fractional kinetic equation containing Fermi–Dirac (FD) and Bose–Einstein (BE) functions. Several distributional properties of these functions and their proposed new generalizations are investigated in this article. In fact, it is proved that these functions belong to distribution space D while their Fourier transforms belong to Z. Fourier and Laplace transforms of these functions are computed by using their distributional representation. Thanks to them, we can compute various new fractional calculus formulae and a new relation involving the Fox–Wright function. Some fractional kinetic equations containing the FD and BE functions are also formulated and solved. Full article
10 pages, 2799 KiB  
Article
The Temperature Dependence of Divergence Pressure
by Scott Bair
Lubricants 2024, 12(12), 434; https://doi.org/10.3390/lubricants12120434 - 6 Dec 2024
Cited by 3 | Viewed by 890
Abstract
The so-called controversy in elastohydrodynamic lubrication (EHL) regarding the nature of the shear dependence of viscosity, Eyring versus Carreau, is truly a controversy regarding the pressure and temperature dependence of low-shear viscosity. Roelands removed data that contradicted his claims of accuracy for his [...] Read more.
The so-called controversy in elastohydrodynamic lubrication (EHL) regarding the nature of the shear dependence of viscosity, Eyring versus Carreau, is truly a controversy regarding the pressure and temperature dependence of low-shear viscosity. Roelands removed data that contradicted his claims of accuracy for his correlation. The Roelands hoax became acceptable in EHL because ignoring the universal previtreous piezoviscous response made the traction calculated with the Eyring assumption appear to be reasonable. Traction and minimum film thickness calculations sometimes require the description of viscosity at pressures up to the glass transition pressure. There have been few measurements of viscosity at pressures up to glass pressure. Therefore, a need exists for a piezoviscous model that extrapolates accurately, and the Hybrid model fills that need. Here, an improved relation for the temperature dependence of divergence pressure is offered and extrapolation is demonstrated for a polyalphaolefin and propylene carbonate. A linear dependence of divergence pressure with temperature is more useful than previous versions. An improvement in the capability of high-pressure viscometry is suggested based upon the fractional Stokes Einstein Debye relation and the relatively simple measurements of DC conductivity. Full article
(This article belongs to the Special Issue Recent Advances in Lubricated Tribological Contacts)
Show Figures

Figure 1

7 pages, 266 KiB  
Article
Stokes–Einstein Relation in Different Models of Water
by Sergey Khrapak and Alexey Khrapak
Molecules 2024, 29(23), 5587; https://doi.org/10.3390/molecules29235587 - 26 Nov 2024
Cited by 3 | Viewed by 1234
Abstract
The purpose of this paper is to discuss to which extent a microscopic version of the Stokes–Einstein (SE) relation without the hydrodynamic radius applies to liquid water. We demonstrate that the self-diffusion and shear viscosity data for five popular water models, recently reported [...] Read more.
The purpose of this paper is to discuss to which extent a microscopic version of the Stokes–Einstein (SE) relation without the hydrodynamic radius applies to liquid water. We demonstrate that the self-diffusion and shear viscosity data for five popular water models, recently reported by Ando [J. Chem. Phys. 159, 101102 (2023)], are in excellent agreement with the SE relation. The agreement with experimental results is also quite impressive. The limitations on the applicability of the SE relation are briefly discussed. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 2nd Edition)
Show Figures

Figure 1

42 pages, 6695 KiB  
Article
A Tensor Space for Multi-View and Multitask Learning Based on Einstein and Hadamard Products: A Case Study on Vehicle Traffic Surveillance Systems
by Fernando Hermosillo-Reynoso and Deni Torres-Roman
Sensors 2024, 24(23), 7463; https://doi.org/10.3390/s24237463 - 22 Nov 2024
Cited by 1 | Viewed by 690
Abstract
Since multi-view learning leverages complementary information from multiple feature sets to improve model performance, a tensor-based data fusion layer for neural networks, called Multi-View Data Tensor Fusion (MV-DTF), is used. It fuses M feature spaces X1,,XM, [...] Read more.
Since multi-view learning leverages complementary information from multiple feature sets to improve model performance, a tensor-based data fusion layer for neural networks, called Multi-View Data Tensor Fusion (MV-DTF), is used. It fuses M feature spaces X1,,XM, referred to as views, in a new latent tensor space, S, of order P and dimension J1××JP, defined in the space of affine mappings composed of a multilinear map T:X1××XMS—represented as the Einstein product between a (P+M)-order tensor A anda rank-one tensor, X=x(1)x(M), where x(m)Xm is the m-th view—and a translation. Unfortunately, as the number of views increases, the number of parameters that determine the MV-DTF layer grows exponentially, and consequently, so does its computational complexity. To address this issue, we enforce low-rank constraints on certain subtensors of tensor A using canonical polyadic decomposition, from which M other tensors U(1),,U(M), called here Hadamard factor tensors, are obtained. We found that the Einstein product AMX can be approximated using a sum of R Hadamard products of M Einstein products encoded as U(m)1x(m), where R is related to the decomposition rank of subtensors of A. For this relationship, the lower the rank values, the more computationally efficient the approximation. To the best of our knowledge, this relationship has not previously been reported in the literature. As a case study, we present a multitask model of vehicle traffic surveillance for occlusion detection and vehicle-size classification tasks, with a low-rank MV-DTF layer, achieving up to 92.81% and 95.10% in the normalized weighted Matthews correlation coefficient metric in individual tasks, representing a significant 6% and 7% improvement compared to the single-task single-view models. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

Back to TopTop