Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (383)

Search Parameters:
Keywords = EfficientNetV2S

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2350 KB  
Article
Deep Ensembles and Multisensor Data for Global LCZ Mapping: Insights from So2Sat LCZ42
by Loris Nanni and Sheryl Brahnam
Algorithms 2025, 18(10), 657; https://doi.org/10.3390/a18100657 (registering DOI) - 17 Oct 2025
Abstract
Classifying multiband images acquired by advanced sensors, including those mounted on satellites, is a central task in remote sensing and environmental monitoring. These sensors generate high-dimensional outputs rich in spectral and spatial information, enabling detailed analyses of Earth’s surface. However, the complexity of [...] Read more.
Classifying multiband images acquired by advanced sensors, including those mounted on satellites, is a central task in remote sensing and environmental monitoring. These sensors generate high-dimensional outputs rich in spectral and spatial information, enabling detailed analyses of Earth’s surface. However, the complexity of such data presents substantial challenges to achieving both accuracy and efficiency. To address these challenges, we tested the ensemble learning framework based on ResNet50, MobileNetV2, and DenseNet201, each trained on distinct three-channel representations of the input to capture complementary features. Training is conducted on the LCZ42 dataset of 400,673 paired Sentinel-1 SAR and Sentinel-2 multispectral image patches annotated with Local Climate Zone (LCZ) labels. Experiments show that our best ensemble surpasses several recent state-of-the-art methods on the LCZ42 benchmark. Full article
Show Figures

Figure 1

25 pages, 2128 KB  
Article
A Low-Cost UAV System and Dataset for Real-Time Weed Detection in Salad Crops
by Alina L. Machidon, Andraž Krašovec, Veljko Pejović, Daniele Latini, Sarathchandrakumar T. Sasidharan, Fabio Del Frate and Octavian M. Machidon
Electronics 2025, 14(20), 4082; https://doi.org/10.3390/electronics14204082 (registering DOI) - 17 Oct 2025
Abstract
The global food crises and growing population necessitate efficient agricultural land use. Weeds cause up to 40% yield loss in major crops, resulting in over USD 100 billion in annual economic losses. Camera-equipped UAVs offer a solution for automatic weed detection, but the [...] Read more.
The global food crises and growing population necessitate efficient agricultural land use. Weeds cause up to 40% yield loss in major crops, resulting in over USD 100 billion in annual economic losses. Camera-equipped UAVs offer a solution for automatic weed detection, but the high computational and energy demands of deep learning models limit their use to expensive, high-end UAVs. In this paper, we present a low-cost UAV system built from off-the-shelf components, featuring a custom-designed on-board computing system based on the NVIDIA Jetson Nano. This system efficiently manages real-time image acquisition and inference using the energy-efficient Squeeze U-Net neural network for weed detection. Our approach ensures the pipeline operates in real time without affecting the drone’s flight autonomy. We also introduce the AgriAdapt dataset, a novel collection of 643 high-resolution aerial images of salad crops with weeds, which fills a key gap by providing realistic UAV data for benchmarking segmentation models under field conditions. Several deep learning models are trained and validated on the newly introduced AgriAdapt dataset, demonstrating its suitability for effective weed segmentation in UAV imagery. Quantitative results show that the dataset supports a range of architectures, from larger models such as DeepLabV3 to smaller, lightweight networks like Squeeze U-Net (with only 2.5 M parameters), achieving high accuracy (around 90%) across the board. These contributions distinguish our work from earlier UAV-based weed detection systems by combining a novel dataset with a comprehensive evaluation of accuracy, latency, and energy efficiency, thus directly targeting deep learning applications for real-time UAV deployment. Our results demonstrate the feasibility of deploying a low-cost, energy-efficient UAV system for real-time weed detection, making advanced agricultural technology more accessible and practical for widespread use. Full article
(This article belongs to the Special Issue Unmanned Aircraft Systems with Autonomous Navigation, 2nd Edition)
Show Figures

Figure 1

19 pages, 1951 KB  
Article
Enhancing Lemon Leaf Disease Detection: A Hybrid Approach Combining Deep Learning Feature Extraction and mRMR-Optimized SVM Classification
by Ahmet Saygılı
Appl. Sci. 2025, 15(20), 10988; https://doi.org/10.3390/app152010988 - 13 Oct 2025
Viewed by 147
Abstract
This study presents a robust and extensible hybrid classification framework for accurately detecting diseases in citrus leaves by integrating transfer learning-based deep learning models with classical machine learning techniques. Features were extracted using advanced pretrained architectures—DenseNet201, ResNet50, MobileNetV2, and EfficientNet-B0—and refined via the [...] Read more.
This study presents a robust and extensible hybrid classification framework for accurately detecting diseases in citrus leaves by integrating transfer learning-based deep learning models with classical machine learning techniques. Features were extracted using advanced pretrained architectures—DenseNet201, ResNet50, MobileNetV2, and EfficientNet-B0—and refined via the minimum redundancy maximum relevance (mRMR) method to reduce redundancy while maximizing discriminative power. These features were classified using support vector machines (SVMs), ensemble bagged trees, k-nearest neighbors (kNNs), and neural networks under stratified 10-fold cross-validation. On the lemon dataset, the best configuration (DenseNet201 + SVM) achieved 94.1 ± 4.9% accuracy, 93.2 ± 5.7% F1 score, and a balanced accuracy of 93.4 ± 6.0%, demonstrating strong and stable performance. To assess external generalization, the same pipeline was applied to mango and pomegranate leaves, achieving 100.0 ± 0.0% and 98.7 ± 1.5% accuracy, respectively—confirming the model’s robustness across citrus and non-citrus domains. Beyond accuracy, lightweight models such as EfficientNet-B0 and MobileNetV2 provided significantly higher throughput and lower latency, underscoring their suitability for real-time agricultural applications. These findings highlight the importance of combining deep representations with efficient classical classifiers for precision agriculture, offering both high diagnostic accuracy and practical deployability in field conditions. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

32 pages, 6508 KB  
Article
An Explainable Web-Based Diagnostic System for Alzheimer’s Disease Using XRAI and Deep Learning on Brain MRI
by Serra Aksoy and Arij Daou
Diagnostics 2025, 15(20), 2559; https://doi.org/10.3390/diagnostics15202559 - 10 Oct 2025
Viewed by 456
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative condition marked by cognitive decline and memory loss. Despite advancements in AI-driven neuroimaging analysis for AD detection, clinical deployment remains limited due to challenges in model interpretability and usability. Explainable AI (XAI) frameworks such as [...] Read more.
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative condition marked by cognitive decline and memory loss. Despite advancements in AI-driven neuroimaging analysis for AD detection, clinical deployment remains limited due to challenges in model interpretability and usability. Explainable AI (XAI) frameworks such as XRAI offer potential to bridge this gap by providing clinically meaningful visualizations of model decision-making. Methods: This study developed a comprehensive, clinically deployable AI system for AD severity classification using 2D brain MRI data. Three deep learning architectures MobileNet-V3 Large, EfficientNet-B4, and ResNet-50 were trained on an augmented Kaggle dataset (33,984 images across four AD severity classes). The models were evaluated on both augmented and original datasets, with integrated XRAI explainability providing region-based attribution maps. A web-based clinical interface was built using Gradio to deliver real-time predictions and visual explanations. Results: MobileNet-V3 achieved the highest accuracy (99.18% on the augmented test set; 99.47% on the original dataset), while using the fewest parameters (4.2 M), confirming its efficiency and suitability for clinical use. XRAI visualizations aligned with known neuroanatomical patterns of AD progression, enhancing clinical interpretability. The web interface delivered sub-20 s inference with high classification confidence across all AD severity levels, successfully supporting real-world diagnostic workflows. Conclusions: This research presents the first systematic integration of XRAI into AD severity classification using MRI and deep learning. The MobileNet-V3-based system offers high accuracy, computational efficiency, and interpretability through a user-friendly clinical interface. These contributions demonstrate a practical pathway toward real-world adoption of explainable AI for early and accurate Alzheimer’s disease detection. Full article
(This article belongs to the Special Issue Alzheimer's Disease Diagnosis Based on Deep Learning)
Show Figures

Figure 1

31 pages, 6076 KB  
Article
MSWindD-YOLO: A Lightweight Edge-Deployable Network for Real-Time Wind Turbine Blade Damage Detection in Sustainable Energy Operations
by Pan Li, Jitao Zhou, Jian Zeng, Qian Zhao and Qiqi Yang
Sustainability 2025, 17(19), 8925; https://doi.org/10.3390/su17198925 - 8 Oct 2025
Viewed by 277
Abstract
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate [...] Read more.
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate real-time inference capabilities. In response to these limitations, we put forward MSWindD-YOLO, a lightweight real-time detection model for wind turbine blade damage. Building upon YOLOv5s, our work introduces three key improvements: (1) the replacement of the Focus module with the Stem module to enhance computational efficiency and multi-scale feature fusion, integrating EfficientNetV2 structures for improved feature extraction and lightweight design, while retaining the SPPF module for multi-scale context awareness; (2) the substitution of the C3 module with the GBC3-FEA module to reduce computational redundancy, coupled with the incorporation of the CBAM attention mechanism at the neck network’s terminus to amplify critical features; and (3) the adoption of Shape-IoU loss function instead of CIoU loss function to facilitate faster model convergence and enhance localization accuracy. Evaluated on the Wind Turbine Blade Damage Visual Analysis Dataset (WTBDVA), MSWindD-YOLO achieves a precision of 95.9%, a recall of 96.3%, an mAP@0.5 of 93.7%, and an mAP@0.5:0.95 of 87.5%. With a compact size of 3.12 MB and 22.4 GFLOPs inference cost, it maintains high efficiency. After TensorRT acceleration on Jetson Orin NX, the model attains 43 FPS under FP16 quantization for real-time damage detection. Consequently, the proposed MSWindD-YOLO model not only elevates detection accuracy and inference efficiency but also achieves significant model compression. Its deployment-compatible performance in edge environments fulfills stringent industrial demands, ultimately advancing sustainable wind energy operations through lightweight lifecycle maintenance solutions for wind farms. Full article
Show Figures

Figure 1

24 pages, 6407 KB  
Article
Lightweight SCC-YOLO for Winter Jujube Detection and 3D Localization with Cross-Platform Deployment Evaluation
by Meng Zhou, Yaohua Hu, Anxiang Huang, Yiwen Chen, Xing Tong, Mengfei Liu and Yunxiao Pan
Agriculture 2025, 15(19), 2092; https://doi.org/10.3390/agriculture15192092 - 8 Oct 2025
Viewed by 243
Abstract
Harvesting winter jujubes is a key step in production, yet traditional manual approaches are labor-intensive and inefficient. To overcome these challenges, we propose SCC-YOLO, a lightweight method for winter jujube detection, 3D localization, and cross-platform deployment, aiming to support intelligent harvesting. In this [...] Read more.
Harvesting winter jujubes is a key step in production, yet traditional manual approaches are labor-intensive and inefficient. To overcome these challenges, we propose SCC-YOLO, a lightweight method for winter jujube detection, 3D localization, and cross-platform deployment, aiming to support intelligent harvesting. In this study, RGB-D cameras were integrated with an improved YOLOv11 network optimized by ShuffleNetV2, CBAM, and a redesigned C2f_WTConv module, which enables joint spatial–frequency feature modeling and enhances small-object detection in complex orchard conditions. The model was trained on a diversified dataset with extensive augmentation to ensure robustness. In addition, the original localization loss was replaced with DIoU to improve bounding box regression accuracy. A robotic harvesting system was developed, and an Eye-to-Hand calibration-based 3D localization pipeline was implemented to map fruit coordinates to the robot workspace for accurate picking. To validate engineering applicability, the SCC-YOLO model was deployed on both desktop (PyTorch and ONNX Runtime) and mobile (NCNN with Vulkan+FP16) platforms, and FPS, latency, and stability were comparatively analyzed. Experimental results showed that SCC-YOLO improved mAP by 5.6% over YOLOv11, significantly enhanced detection precision and robustness, and achieved real-time performance on mobile devices while maintaining peak throughput on high-performance desktops. Field and laboratory tests confirmed the system’s effectiveness for detection, localization, and harvesting efficiency, demonstrating its adaptability to diverse deployment environments and its potential for broader agricultural applications. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

15 pages, 2103 KB  
Article
Patient Diagnosis Alzheimer’s Disease with Multi-Stage Features Fusion Network and Structural MRI
by Thi My Tien Nguyen and Ngoc Thang Bui
J. Dement. Alzheimer's Dis. 2025, 2(4), 35; https://doi.org/10.3390/jdad2040035 - 1 Oct 2025
Viewed by 282
Abstract
Background: Timely intervention and effective control of Alzheimer’s disease (AD) have been shown to limit memory loss and preserve cognitive function and the ability to perform simple activities in older adults. In addition, magnetic resonance imaging (MRI) scans are one of the most [...] Read more.
Background: Timely intervention and effective control of Alzheimer’s disease (AD) have been shown to limit memory loss and preserve cognitive function and the ability to perform simple activities in older adults. In addition, magnetic resonance imaging (MRI) scans are one of the most common and effective methods for early detection of AD. With the rapid development of deep learning (DL) algorithms, AD detection based on deep learning has wide applications. Methods: In this research, we have developed an AD detection method based on three-dimensional (3D) convolutional neural networks (CNNs) for 3D MRI images, which can achieve strong accuracy when compared with traditional 3D CNN models. The proposed model has four main blocks, and the multi-layer fusion functionality of each block was used to improve the efficiency of the proposed model. The performance of the proposed model was compared with three different pre-trained 3D CNN architectures (i.e., 3D ResNet-18, 3D InceptionResNet-v2, and 3D Efficientnet-b2) in both tasks of multi-/binary-class classification of AD. Results: Our model achieved impressive classification results of 91.4% for binary-class as well as 80.6% for multi-class classification on the Open Access Series of Imaging Studies (OASIS) database. Conclusions: Such results serve to demonstrate that multi-stage feature fusion of 3D CNN is an effective solution to improve the accuracy of diagnosis of AD with 3D MRI, thus enabling earlier and more accurate diagnosis. Full article
Show Figures

Figure 1

17 pages, 930 KB  
Article
Investigation of the MobileNetV2 Optimal Feature Extraction Layer for EEG-Based Dementia Severity Classification: A Comparative Study
by Noor Kamal Al-Qazzaz, Sawal Hamid Bin Mohd Ali and Siti Anom Ahmad
Algorithms 2025, 18(10), 620; https://doi.org/10.3390/a18100620 - 1 Oct 2025
Viewed by 197
Abstract
Diagnosing dementia and recognizing substantial cognitive decline are challenging tasks. Thus, the objective of this study was to classify electroencephalograms (EEGs) recorded during a working memory task in 15 patients with mild cognitive impairment (MCogImp), 5 patients with vascular dementia (VasD), and 15 [...] Read more.
Diagnosing dementia and recognizing substantial cognitive decline are challenging tasks. Thus, the objective of this study was to classify electroencephalograms (EEGs) recorded during a working memory task in 15 patients with mild cognitive impairment (MCogImp), 5 patients with vascular dementia (VasD), and 15 healthy controls (NC). Before creating spectrogram pictures from the EEG dataset, the data were subjected to preprocessing, which included preprocessing using conventional filters and the discrete wavelet transformation. The convolutional neural network (CNN) MobileNetV2 was employed in our investigation to identify features and assess the severity of dementia. The features were extracted from five layers of the MobileNetV2 CNN architecture—convolutional layers (‘Conv-1’), batch normalization (‘Conv-1-bn’), clipped ReLU (‘out-relu’), 2D Global Average Pooling (‘global-average-pooling2d1’), and fully connected (‘Logits’) layers. This was carried out to find the efficient features layer for dementia severity from EEGs. Feature extraction from MobileNetV2’s five layers was carried out using a decision tree (DT) and k-nearest neighbor (KNN) machine learning (ML) classifier, in conjunction with a MobileNetV2 deep learning (DL) network. The study’s findings show that the DT classifier performed best using features derived from MobileNetV2 with the 2D Global Average Pooling (global-average-pooling2d-1) layer, achieving an accuracy score of 95.9%. Second place went to the characteristics of the fully connected (Logits) layer, which achieved a score of 95.3%. The findings of this study endorse the utilization of deep processing algorithms, offering a viable approach for improving early dementia identification with high precision, hence facilitating the differentiation among NC individuals, VasD patients, and MCogImp patients. Full article
(This article belongs to the Special Issue Machine Learning in Medical Signal and Image Processing (3rd Edition))
Show Figures

Figure 1

15 pages, 2713 KB  
Article
Deep Learning-Based Segmentation for Digital Epidermal Microscopic Images: A Comparative Study of Overall Performance
by Yeshun Yue, Qihang He and Yaobin Zou
Electronics 2025, 14(19), 3871; https://doi.org/10.3390/electronics14193871 - 29 Sep 2025
Viewed by 190
Abstract
Digital epidermal microscopic (DEM) images offer the potential to quantitatively analyze skin aging at the microscopic level. However, stochastic complexity, local highlights, and low contrast in DEM images pose significant challenges to accurate segmentation. This study evaluated eight deep learning models to identify [...] Read more.
Digital epidermal microscopic (DEM) images offer the potential to quantitatively analyze skin aging at the microscopic level. However, stochastic complexity, local highlights, and low contrast in DEM images pose significant challenges to accurate segmentation. This study evaluated eight deep learning models to identify methods capable of accurately segmenting complex DEM images while meeting diverse performance requirements. To this end, this study first constructed a manually labeled DEM image dataset. Then, eight deep learning models (FCN-8s, SegNet, UNet, ResUNet, NestedUNet, DeepLabV3+, TransUNet, and AttentionUNet) were systematically evaluated for their performance in DEM image segmentation. Our experimental findings show that AttentionUNet achieves the highest segmentation accuracy, with a DSC of 0.8696 and an IoU of 0.7703. In contrast, FCN-8s is a better choice for efficient segmentation due to its lower parameter count (18.64 M) and efficient inference speed (GPU time 37.36 ms). FCN-8s and NestedUNet show a better balance between accuracy and efficiency when assessed across metrics like segmentation accuracy, model size, and inference time. Through a systematic comparison of eight deep learning models, this study identifies superior methods for segmenting skin furrows and ridges in DEM images. This work lays the foundation for subsequent applications, such as analyzing skin aging through furrow and ridge features. Full article
(This article belongs to the Special Issue AI-Driven Medical Image/Video Processing)
Show Figures

Figure 1

37 pages, 3163 KB  
Article
TurkerNeXtV2: An Innovative CNN Model for Knee Osteoarthritis Pressure Image Classification
by Omer Esmez, Gulnihal Deniz, Furkan Bilek, Murat Gurger, Prabal Datta Barua, Sengul Dogan, Mehmet Baygin and Turker Tuncer
Diagnostics 2025, 15(19), 2478; https://doi.org/10.3390/diagnostics15192478 - 27 Sep 2025
Viewed by 362
Abstract
Background/Objectives: Lightweight CNNs for medical imaging remain limited. We propose TurkerNeXtV2, a compact CNN that introduces two new blocks: a pooling-based attention with an inverted bottleneck (TNV2) and a hybrid downsampling module. These blocks improve stability and efficiency. The aim is to achieve [...] Read more.
Background/Objectives: Lightweight CNNs for medical imaging remain limited. We propose TurkerNeXtV2, a compact CNN that introduces two new blocks: a pooling-based attention with an inverted bottleneck (TNV2) and a hybrid downsampling module. These blocks improve stability and efficiency. The aim is to achieve transformer-level effectiveness while keeping the simplicity, low computational cost, and deployability of CNNs. Methods: The model was first pretrained on the Stable ImageNet-1k benchmark and then fine-tuned on a collected plantar-pressure OA dataset. We also evaluated the model on a public blood-cell image dataset. Performance was measured by accuracy, precision, recall, and F1-score. Inference time (images per second) was recorded on an RTX 5080 GPU. Grad-CAM was used for qualitative explainability. Results: During pretraining on Stable ImageNet-1k, the model reached a validation accuracy of 87.77%. On the OA test set, the model achieved 93.40% accuracy (95% CI: 91.3–95.2%) with balanced precision and recall above 90%. On the blood-cell dataset, the test accuracy was 98.52%. The average inference time was 0.0078 s per image (≈128.8 images/s), which is comparable to strong CNN baselines and faster than the transformer baselines tested under the same settings. Conclusions: TurkerNeXtV2 delivers high accuracy with low computational cost. The pooling-based attention (TNV2) and the hybrid downsampling enable a lightweight yet effective design. The model is suitable for real-time and clinical use. Future work will include multi-center validation and broader tests across imaging modalities. Full article
Show Figures

Figure 1

18 pages, 11608 KB  
Article
YOLO-MSPM: A Precise and Lightweight Cotton Verticillium Wilt Detection Network
by Xinbo Zhao, Jianan Chi, Fei Wang, Xuan Li, Xingcan Yuwen, Tong Li, Yi Shi and Liujun Xiao
Agriculture 2025, 15(19), 2013; https://doi.org/10.3390/agriculture15192013 - 26 Sep 2025
Viewed by 290
Abstract
Cotton is one of the world’s most important economic crops, and its yield and quality have a significant impact on the agricultural economy. However, Verticillium wilt of cotton, as a widely spread disease, severely affects the growth and yield of cotton. Due to [...] Read more.
Cotton is one of the world’s most important economic crops, and its yield and quality have a significant impact on the agricultural economy. However, Verticillium wilt of cotton, as a widely spread disease, severely affects the growth and yield of cotton. Due to the typically small and densely distributed characteristics of this disease, its identification poses considerable challenges. In this study, we introduce YOLO-MSPM, a lightweight and accurate detection framework, designed on the YOLOv11 architecture to efficiently identify cotton Verticillium wilt. In order to achieve a lightweight model, MobileNetV4 is introduced into the backbone network. Moreover, a single-head self-attention (SHSA) mechanism is integrated into the C2PSA block, allowing the network to emphasize critical areas of the feature maps and thus enhance its ability to represent features effectively. Furthermore, the PC3k2 module combines pinwheel-shaped convolution (PConv) with C3k2, and the mobile inverted bottleneck convolution (MBConv) module is incorporated into the detection head of YOLOv11. Such adjustments improve multi-scale information integration, enhance small-target recognition, and effectively reduce computation costs. According to the evaluation, YOLO-MSPM achieves precision (0.933), recall (0.920), mAP50 (0.970), and mAP50-95 (0.797), each exceeding the corresponding performance of YOLOv11n. In terms of model lightweighting, the YOLO-MSPM model has 1.773 M parameters, which is a 31.332% reduction compared to YOLOv11n. Its GFLOPs and model size are 5.4 and 4.0 MB, respectively, representing reductions of 14.286% and 27.273%. The study delivers a lightweight yet accurate solution to support the identification and monitoring of cotton Verticillium wilt in environments with limited resources. Full article
Show Figures

Figure 1

29 pages, 9358 KB  
Article
Deep Ensemble Learning and Explainable AI for Multi-Class Classification of Earthstar Fungal Species
by Eda Kumru, Aras Fahrettin Korkmaz, Fatih Ekinci, Abdullah Aydoğan, Mehmet Serdar Güzel and Ilgaz Akata
Biology 2025, 14(10), 1313; https://doi.org/10.3390/biology14101313 - 23 Sep 2025
Viewed by 456
Abstract
The current study presents a multi-class, image-based classification of eight morphologically similar macroscopic Earthstar fungal species (Astraeus hygrometricus, Geastrum coronatum, G. elegans, G. fimbriatum, G. quadrifidum, G. rufescens, G. triplex, and Myriostoma coliforme) using [...] Read more.
The current study presents a multi-class, image-based classification of eight morphologically similar macroscopic Earthstar fungal species (Astraeus hygrometricus, Geastrum coronatum, G. elegans, G. fimbriatum, G. quadrifidum, G. rufescens, G. triplex, and Myriostoma coliforme) using deep learning and explainable artificial intelligence (XAI) techniques. For the first time in the literature, these species are evaluated together, providing a highly challenging dataset due to significant visual overlap. Eight different convolutional neural network (CNN) and transformer-based architectures were employed, including EfficientNetV2-M, DenseNet121, MaxViT-S, DeiT, RegNetY-8GF, MobileNetV3, EfficientNet-B3, and MnasNet. The accuracy scores of these models ranged from 86.16% to 96.23%, with EfficientNet-B3 achieving the best individual performance. To enhance interpretability, Grad-CAM and Score-CAM methods were utilised to visualise the rationale behind each classification decision. A key novelty of this study is the design of two hybrid ensemble models: EfficientNet-B3 + DeiT and DenseNet121 + MaxViT-S. These ensembles further improved classification stability, reaching 93.71% and 93.08% accuracy, respectively. Based on metric-based evaluation, the EfficientNet-B3 + DeiT model delivered the most balanced performance, with 93.83% precision, 93.72% recall, 93.73% F1-score, 99.10% specificity, a log loss of 0.2292, and an MCC of 0.9282. Moreover, this modeling approach holds potential for monitoring symbiotic fungal species in agricultural ecosystems and supporting sustainable production strategies. This research contributes to the literature by introducing a novel framework that simultaneously emphasises classification accuracy and model interpretability in fungal taxonomy. The proposed method successfully classified morphologically similar puffball species with high accuracy, while explainable AI techniques revealed biologically meaningful insights. All evaluation metrics were computed exclusively on a 10% independent test set that was entirely separate from the training and validation phases. Future work will focus on expanding the dataset with samples from diverse ecological regions and testing the method under field conditions. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

18 pages, 1694 KB  
Article
FAIR-Net: A Fuzzy Autoencoder and Interpretable Rule-Based Network for Ancient Chinese Character Recognition
by Yanling Ge, Yunmeng Zhang and Seok-Beom Roh
Sensors 2025, 25(18), 5928; https://doi.org/10.3390/s25185928 - 22 Sep 2025
Viewed by 352
Abstract
Ancient Chinese scripts—including oracle bone carvings, bronze inscriptions, stone steles, Dunhuang scrolls, and bamboo slips—are rich in historical value but often degraded due to centuries of erosion, damage, and stylistic variability. These issues severely hinder manual transcription and render conventional OCR techniques inadequate, [...] Read more.
Ancient Chinese scripts—including oracle bone carvings, bronze inscriptions, stone steles, Dunhuang scrolls, and bamboo slips—are rich in historical value but often degraded due to centuries of erosion, damage, and stylistic variability. These issues severely hinder manual transcription and render conventional OCR techniques inadequate, as they are typically trained on modern printed or handwritten text and lack interpretability. To tackle these challenges, we propose FAIR-Net, a hybrid architecture that combines the unsupervised feature learning capacity of a deep autoencoder with the semantic transparency of a fuzzy rule-based classifier. In FAIR-Net, the deep autoencoder first compresses high-resolution character images into low-dimensional, noise-robust embeddings. These embeddings are then passed into a Fuzzy Neural Network (FNN), whose hidden layer leverages Fuzzy C-Means (FCM) clustering to model soft membership degrees and generate human-readable fuzzy rules. The output layer uses Iteratively Reweighted Least Squares Estimation (IRLSE) combined with a Softmax function to produce probabilistic predictions, with all weights constrained as linear mappings to maintain model transparency. We evaluate FAIR-Net on CASIA-HWDB1.0, HWDB1.1, and ICDAR 2013 CompetitionDB, where it achieves a recognition accuracy of 97.91%, significantly outperforming baseline CNNs (p < 0.01, Cohen’s d > 0.8) while maintaining the tightest confidence interval (96.88–98.94%) and lowest standard deviation (±1.03%). Additionally, FAIR-Net reduces inference time to 25 s, improving processing efficiency by 41.9% over AlexNet and up to 98.9% over CNN-Fujitsu, while preserving >97.5% accuracy across evaluations. To further assess generalization to historical scripts, FAIR-Net was tested on the Ancient Chinese Character Dataset (9233 classes; 979,907 images), achieving 83.25% accuracy—slightly higher than ResNet101 but 2.49% lower than SwinT-v2-small—while reducing training time by over 5.5× compared to transformer-based baselines. Fuzzy rule visualization confirms enhanced robustness to glyph ambiguities and erosion. Overall, FAIR-Net provides a practical, interpretable, and highly efficient solution for the digitization and preservation of ancient Chinese character corpora. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 7800 KB  
Article
Performance Evaluation and Misclassification Distribution Analysis of Pre-Trained Lightweight CNN Models for Hot-Rolled Steel Strip Surface Defect Classification Under Degraded Imaging Conditions
by Murat Alparslan Gungor
Appl. Sci. 2025, 15(18), 10176; https://doi.org/10.3390/app151810176 - 18 Sep 2025
Viewed by 301
Abstract
Surface defects in hot-rolled steel strip alter the material’s properties and degrade its overall quality. Especially in real production environments, due to time sensitivity, lightweight Convolutional Neural Network models are suitable for inspecting these defects. However, in real-time applications, the acquired images are [...] Read more.
Surface defects in hot-rolled steel strip alter the material’s properties and degrade its overall quality. Especially in real production environments, due to time sensitivity, lightweight Convolutional Neural Network models are suitable for inspecting these defects. However, in real-time applications, the acquired images are subjected to various degradations, including noise, motion blur, and non-uniform illumination. The performance of lightweight CNN models on degraded images is crucial, as improved performance on such images reduces the reliance on preprocessing techniques for image enhancement. Thus, this study focuses on analyzing pre-trained lightweight CNN models for surface defect classification in hot-rolled steel strips under degradation conditions. Six state-of-the-art lightweight CNN architectures—MobileNet-V1, MobileNet-V2, MobileNet-V3, NasNetMobile, ShuffleNet V2 and EfficientNet-B0—are evaluated. Performance is assessed using standard classification metrics. The results indicate that MobileNet-V1 is the most effective model among those used in this study. Additionally, a new performance metric is proposed in this study. Using this metric, the misclassification distribution is evaluated for concentration versus homogeneity, thereby facilitating the identification of areas for model improvement. The proposed metric demonstrates that the MobileNet-V1 exhibits good performance under both low and high degradation conditions in terms of misclassification robustness. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

26 pages, 3973 KB  
Article
ViT-DCNN: Vision Transformer with Deformable CNN Model for Lung and Colon Cancer Detection
by Aditya Pal, Hari Mohan Rai, Joon Yoo, Sang-Ryong Lee and Yooheon Park
Cancers 2025, 17(18), 3005; https://doi.org/10.3390/cancers17183005 - 15 Sep 2025
Viewed by 566
Abstract
Background/Objectives: Lung and colon cancers remain among the most prevalent and fatal diseases worldwide, and their early detection is a serious challenge. The data used in this study was obtained from the Lung and Colon Cancer Histopathological Images Dataset, which comprises five different [...] Read more.
Background/Objectives: Lung and colon cancers remain among the most prevalent and fatal diseases worldwide, and their early detection is a serious challenge. The data used in this study was obtained from the Lung and Colon Cancer Histopathological Images Dataset, which comprises five different classes of image data, namely colon adenocarcinoma, colon normal, lung adenocarcinoma, lung normal, and lung squamous cell carcinoma, split into training (80%), validation (10%), and test (10%) subsets. In this study, we propose the ViT-DCNN (Vision Transformer with Deformable CNN) model, with the aim of improving cancer detection and classification using medical images. Methods: The combination of the ViT’s self-attention capabilities with deformable convolutions allows for improved feature extraction, while also enabling the model to learn both holistic contextual information as well as fine-grained localized spatial details. Results: On the test set, the model performed remarkably well, with an accuracy of 94.24%, an F1 score of 94.23%, recall of 94.24%, and precision of 94.37%, confirming its robustness in detecting cancerous tissues. Furthermore, our proposed ViT-DCNN model outperforms several state-of-the-art models, including ResNet-152, EfficientNet-B7, SwinTransformer, DenseNet-201, ConvNext, TransUNet, CNN-LSTM, MobileNetV3, and NASNet-A, across all major performance metrics. Conclusions: By using deep learning and advanced image analysis, this model enhances the efficiency of cancer detection, thus representing a valuable tool for radiologists and clinicians. This study demonstrates that the proposed ViT-DCNN model can reduce diagnostic inaccuracies and improve detection efficiency. Future work will focus on dataset enrichment and enhancing the model’s interpretability to evaluate its clinical applicability. This paper demonstrates the promise of artificial-intelligence-driven diagnostic models in transforming lung and colon cancer detection and improving patient diagnosis. Full article
(This article belongs to the Special Issue Image Analysis and Machine Learning in Cancers: 2nd Edition)
Show Figures

Figure 1

Back to TopTop