Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = ETEC K88

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2242 KiB  
Article
Quercetin Can Alleviate ETECK88-Induced Oxidative Stress in Weaned Piglets by Inhibiting Quorum-Sensing Signal Molecule Autoinducer-2 Production in the Cecum
by Hailiang Wang, Min Yao, Dan Wang, Mingyang Geng, Shanshan Nan, Xiangjian Peng, Yuyang Xue, Wenju Zhang and Cunxi Nie
Antioxidants 2025, 14(7), 852; https://doi.org/10.3390/antiox14070852 - 11 Jul 2025
Viewed by 446
Abstract
This study evaluated the inhibitory activity of quercetin at sub-inhibitory concentrations on quorum-sensing (QS) molecules in vitro and the effects of dietary supplementation with quercetin (for 24 consecutive days) on enterotoxigenic Escherichia coli (ETEC)-induced inflammatory and oxidative stress responses in weaned piglets. The [...] Read more.
This study evaluated the inhibitory activity of quercetin at sub-inhibitory concentrations on quorum-sensing (QS) molecules in vitro and the effects of dietary supplementation with quercetin (for 24 consecutive days) on enterotoxigenic Escherichia coli (ETEC)-induced inflammatory and oxidative stress responses in weaned piglets. The piglets were fed one of three diets: the basal diet (Con), ETEC challenge (K88) after the basal diet, or ETEC challenge (quercetin + K88) after the basal diet supplemented with 0.2% quercetin. In vitro experiments revealed that 5 mg/mL quercetin exhibited the strongest QS inhibitory activity and reduced pigment production by Chromobacterium violaceum ATCC12472 by 67.70%. In vivo experiments revealed that quercetin + K88 significantly increased immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin G (IgG) levels in the serum, ileum mucosa, and colon mucosa; increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) levels in the serum, liver, and colon mucosa; and decreased cluster of differentiation 3 (CD3) and cluster of differentiation 8 (CD8)activity in the serum compared with K88 alone. Quercetin + K88 significantly alleviated pathological damage to the liver and spleen and upregulated antioxidant genes (nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1(HO-1), CAT, SOD, and glutathione s-transferase (GST)). Inducible nitric oxide synthase (iNOS) and kelch-like ech-associated protein 1 (Keap1), which cause oxidative damage to the liver and spleen, were significantly downregulated. The acetic acid content in the cecum was significantly increased, and the E. coli count and QS signal molecule autoinducer-2 (AI-2) yield were significantly reduced. In conclusion, 0.2% dietary quercetin can alleviate ETEC-induced inflammation and oxidative stress in weaned piglets. Full article
Show Figures

Figure 1

11 pages, 1028 KiB  
Article
Potential for Misinterpretation in the Laboratory Diagnosis of Clostridioides difficile Infections
by Alexandra Kalacheva, Metodi Popov, Valeri Velev, Rositsa Stoyanova, Yordanka Mitova-Mineva, Tsvetelina Velikova and Maria Pavlova
Diagnostics 2025, 15(9), 1166; https://doi.org/10.3390/diagnostics15091166 - 3 May 2025
Viewed by 607
Abstract
Background/Objective. Toxin-producing strains of Clostridioides difficile (C. diff) are the most commonly identified cause of healthcare-associated infection in the elderly. Risk factors include advanced age, hospitalization, prior or concomitant systemic antibacterial therapy, chemotherapy, and gastrointestinal surgery. Patients with unspecified and [...] Read more.
Background/Objective. Toxin-producing strains of Clostridioides difficile (C. diff) are the most commonly identified cause of healthcare-associated infection in the elderly. Risk factors include advanced age, hospitalization, prior or concomitant systemic antibacterial therapy, chemotherapy, and gastrointestinal surgery. Patients with unspecified and new-onset diarrhea with ≥3 unformed stools in 24 h are the target population for C. diff infection (CDI) testing. To present data on the risks of laboratory misdiagnosis in managing CDI. Materials. In two general hospitals, we examined 116 clinical stool specimens from hospitalized patients with acute diarrhea suspected of nosocomial or antibiotic-associated diarrhea (AAD) due to C. diff. Enzyme immunoassay (EIA) tests for the detection of C. diff toxins A (cdtA) and B (cdtB) in stool, automated CLIA assay for the detection of C. diff GDH antigen and qualitative determination of cdtA and B in human feces and anaerobic stool culture were applied for CDI laboratory diagnosis. MALDI-TOF (Bruker) was used to identify the presumptive anaerobic bacterial colonies. The following methods were used as confirmatory diagnostics: the LAMP method for the detection of Salmonella spp. and simultaneous detection of C. jejuni and C. coli, an E. coli Typing RT-PCR detection kit (ETEC, EHEC, STEC, EPEC, and EIEC), API 20E and aerobic stool culture methods. Results. A total of 40 toxigenic strains of C. diff were isolated from all 116 tested diarrheal stool samples, of which 38/40 produced toxin B and 2/40 strains were positive for both cdtA and cdtB. Of the stool samples positive for cdtA (6/50) and/or cdtB (44/50) by EIA, 33 were negative for C. diff culture but positive for the following diarrheal agents: Salmonella enterica subsp. arizonae (1/33, LAMP, culture, API 20E); C. jejuni (2/33, LAMP, culture, MALDI TOF); ETEC O142 (1/33), STEC O145 and O138 (2/33, E. coli RT-PCR detection kit, culture); C. perfringens (2/33, anaerobic culture, MALDI TOF); hypermycotic enterotoxigenic K. pneumonia (2/33) and enterotoxigenic P. mirabilis (2/33, culture; PCR encoding LT-toxin). Two of the sixty-six cdtB-positive samples (2/66) showed a similar misdiagnosis when analyzed using the CLIA method. However, the PCR analysis showed that they were cdtB-negative. In contrast, the LAMP method identified a positive result for C. jejuni in one sample, and another was STEC positive (stx1+/stx2+) by RT-PCR. We found an additional discrepancy in the CDI test results: EPEC O86 (RT-PCR eae+) was isolated from a fecal sample positive for GHA enzyme (CLIA) and negative for cdtA and cdtB (CLIA and PCR). However, the culture of C. diff was negative. These findings support the hypothesis that certain human bacterial pathogens that produce enterotoxins other than C. diff, as well as intestinal commensal microorganisms, including Klebsiella sp. and Proteus sp., contribute to false-positive EIA card tests for C. diff toxins A and B, which are the most widely used laboratory tests for CDI. Conclusions. CDI presents a significant challenge to clinical practice in terms of laboratory diagnostic management. It is recommended that toxin-only EIA tests should not be used as the sole diagnostic tool for CDI but should be limited to detecting toxins A and B. Accurate diagnosis of CDI requires a combination of laboratory diagnostic methods on which proper infection management depends. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

17 pages, 3560 KiB  
Article
Preparation and Evaluation of Novel Epitope-Based ETEC K88-K99 Bivalent Vaccine
by Shuangshuang Wang, Yuxin Yang, Xinru Yue, Zewen Liu, Fangyan Yuan, Keli Yang, Jiajia Zhu, Wei Liu, Yongxiang Tian, Qiong Wu, Ting Gao, Chang Li, Haofei Song, Danna Zhou and Weicheng Bei
Vet. Sci. 2025, 12(4), 381; https://doi.org/10.3390/vetsci12040381 - 18 Apr 2025
Viewed by 732
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the primary pathogens causing diarrhea in piglets, causing significant economic losses in the swine farming industry. Due to the numerous serotypes of ETEC, traditional vaccines fail to provide sufficient cross-protection, and subunit vaccines based on epitope [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) is one of the primary pathogens causing diarrhea in piglets, causing significant economic losses in the swine farming industry. Due to the numerous serotypes of ETEC, traditional vaccines fail to provide sufficient cross-protection, and subunit vaccines based on epitope design have emerged as a safer and more effective approach for prevention and control. Unlike vaccine development strategies that involve the tandem arrangement of multiple antigenic epitopes, this study used the K88-FaeG protein as a backbone and incorporated the antigenic epitopes of K99-FanC to achieve a better immunogenicity. By using bioinformatics software to predict B-cell linear epitopes (score of over 0.6), B-cell epitopes from three-dimensional structures (50% amino acid score of ≥0.2), and B-cell epitope IgG antibody subtypes, as well as docking analysis with Sus scrofa aminopeptidase N (APN) receptors, six antigenic epitopes of K99-FanC were selected. Through Western blotting and competitive ELISA, we confirmed that all six recombinant proteins exhibited binding capabilities to K88- and K99-positive serum. The ELISA results showed that the serum levels of specific IgG and IgA antibodies increased after immunization, with FaeG-Ep3 and FaeG-Ep5 inducing the highest antibody titers against FanC-IgG (Log2 = 14.96) and FaeG-IgG (Log2 = 17.96), respectively. Bacterial adhesion assays revealed that only FaeG-Ep3 effectively blocked the adhesion of both K99 and K88 to IPEC-J2 cells. Immunization challenge experiments showed that, in the unimmunized group, mice infected with K88 and K99 experienced weight loss (p < 0.05) with intestinal villus shedding and intestinal wall structural damage. However, in the FaeG-Ep3-immunized group, no significant weight loss occurred after infection, and the villus protection rate (83%) was the same as that in the FaeG and FanC immunized groups. Overall, the FaeG-Ep3 recombinant protein identified in this study shows potential vaccine application value and provides new insights for developing multivalent vaccines against ETEC. Full article
Show Figures

Figure 1

17 pages, 3716 KiB  
Article
Zinc Oxide Administration Relieves the Diarrhea of ETEC K88-Infected Piglets by Reducing Ileal Apoptosis and Maintaining Gut Microbial Balance
by Yanyan Zhang, Jiale Liu, Muzi Li, Yi Dong, Zongyun Li, Dan Yi, Tao Wu, Lei Wang, Di Zhao and Yongqing Hou
Vet. Sci. 2025, 12(2), 115; https://doi.org/10.3390/vetsci12020115 - 2 Feb 2025
Viewed by 1178
Abstract
The impact of ZnO as a feed additive on growth-performance and intestinal function of Enterotoxigenic Escherichia coli (ETEC) K88-infected piglets remains unclear. Fecal scores of piglets in ETEC group were significantly increased compared to control group. ETEC K88 significantly damages the small intestine, [...] Read more.
The impact of ZnO as a feed additive on growth-performance and intestinal function of Enterotoxigenic Escherichia coli (ETEC) K88-infected piglets remains unclear. Fecal scores of piglets in ETEC group were significantly increased compared to control group. ETEC K88 significantly damages the small intestine, including a reduction in villus height in the jejunum, duodenum, and ileum, and a decrease in total superoxide dismutase activity in the jejunum and catalase activity in the ileum and jejunum. Compared to control group, ETEC K88 infection significantly elevated the mRNA level of gene IL-1β and the level of ileal epithelial cell apoptosis. ZnO administration significantly alleviated these negative effects and improved the antioxidative capability of the ileum. Moreover, ZnO supplementation alleviated the imbalance of gut microbiota by restoring the reduced amount of Enterococcus and Lactobacillus in the jejunum, Clostridium in the ileum, and Lactobacillus in the cecum, as well as the increased amount of total eubacteria in the ileum and Enterococcus in the cecum induced by the ETEC K88 infection. In conclusion, ZnO administration can reduce the diarrhea of piglets infected with ETEC K88 by reducing the structural damage of the intestine, attenuating intestinal oxidative stress and epithelial cell apoptosis, and modulating the gut microbiota. Full article
Show Figures

Graphical abstract

21 pages, 6446 KiB  
Article
Limosilactobacillus reuteri ZY15 Alleviates Intestinal Inflammation and Barrier Dysfunction via AKT/mTOR/HIF-1α/RORγt/IL-17 Signaling and the Gut Microbiota in ETEC K88-Challenged Mice
by Xin Xu, Hongwei Zhang, Kun Meng, Hongying Cai, Weiwei Liu, Liye Song, Zihan Zhang, Qijun Zhu, Xiling Han, Yunsheng Han and Peilong Yang
Antioxidants 2025, 14(1), 58; https://doi.org/10.3390/antiox14010058 - 6 Jan 2025
Viewed by 1415
Abstract
Limosilactobacillus reuteri, a recognized probiotic, improves intestinal health in animals, but the mechanism remains unclear. This study investigates the mechanisms by which L. reuteri ZY15, isolated from healthy pig feces, mitigates intestinal barrier damage and inflammation caused by oxidative stress in Enterotoxigenic [...] Read more.
Limosilactobacillus reuteri, a recognized probiotic, improves intestinal health in animals, but the mechanism remains unclear. This study investigates the mechanisms by which L. reuteri ZY15, isolated from healthy pig feces, mitigates intestinal barrier damage and inflammation caused by oxidative stress in Enterotoxigenic Escherichia coli (ETEC) K88-challenged mice. The results indicated that L. reuteri ZY15 increased antioxidant capacity by reducing serum reactive oxygen species (ROS) and superoxide dismutase (SOD) levels. L. reuteri ZY15 enhanced the intestinal barrier by upregulating mucin 1, mucin 2, occludin, zonula occludens-1 (ZO-1), and claudin-1 expressions in protein and mRNA levels. It significantly alleviated intestinal inflammation by reducing the proinflammatory cytokines interleukin-1β (IL-1β), interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17 (IL-17) mRNA and protein levels. Notably, L. reuteri ZY15 suppressed intestinal inflammation by inhibiting AKT/mTOR/HIF-1α/RORγt/IL-17 pathway activation. Additionally, it significantly altered the structure of gut microorganisms by enriching Akkermansia and Clostridia_UCG.014, and thereby re-establishing colonization resistance and alleviating ETEC K88-induced intestinal barrier damage and inflammation in mice. Taken together, our findings reveal the protective mechanism of L. reuteri ZY15 in mice challenged with ETEC K88 by regulating AKT/mTOR/HIF-1α/RORγt/IL-17 signaling and microbial imbalance. Leveraging these properties, live L. reuteri ZY15 offers a promising alternative treatment for Escherichia coli-induced diarrhea in weaned piglets. Full article
Show Figures

Figure 1

14 pages, 8008 KiB  
Article
Screening of Neutralizing Antibodies against FaeG Protein of Enterotoxigenic Escherichia coli
by Yang Tian, Sijia Lu, Saisai Zhou, Zhen Li, Shuaiyin Guan, Huanchun Chen and Yunfeng Song
Vet. Sci. 2024, 11(9), 419; https://doi.org/10.3390/vetsci11090419 - 9 Sep 2024
Cited by 1 | Viewed by 1368
Abstract
The misuse of antibiotics in veterinary medicine presents significant challenges, highlighting the need for alternative therapeutic approaches such as antibody drugs. Therefore, it is necessary to explore the application of antibody drugs in veterinary settings to reduce economic losses and health risks. This [...] Read more.
The misuse of antibiotics in veterinary medicine presents significant challenges, highlighting the need for alternative therapeutic approaches such as antibody drugs. Therefore, it is necessary to explore the application of antibody drugs in veterinary settings to reduce economic losses and health risks. This study focused on targeting the F4ac subtype of the FaeG protein, a key adhesion factor in enterotoxigenic Escherichia coli (ETEC) infections in piglets. By utilizing formaldehyde-inactivated ETEC and a soluble recombinant FaeG (rFaeG) protein, an antibody library against the FaeG protein was established. The integration of fluorescence-activated cell sorting (FACS) and a eukaryotic expression vector containing murine IgG Fc fragments facilitated the screening of anti-rFaeG IgG monoclonal antibodies (mAbs). The results demonstrate that the variable regions of the screened antibodies could inhibit K88-type ETEC adhesion to IPEC-J2 cells. Furthermore, in vivo neutralization assays in mice showed a significant increase in survival rates and a reduction in intestinal inflammation. This research underscores the potential of antibody-based interventions in veterinary medicine, emphasizing the importance of further exploration in this field to address antibiotic resistance and improve animal health outcomes. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

13 pages, 1298 KiB  
Communication
Comparative Genomics of Three Hybrid-Pathogen Multidrug-Resistant Escherichia coli Strains Isolated from Healthy Donors’ Feces
by Judith Z. Ortega-Enríquez, Claudia Martínez-de la Peña, Cristina Lara-Ochoa, Rosa del Carmen Rocha-Gracia, Edwin Barrios-Villa and Margarita M. P. Arenas-Hernández
Microbiol. Res. 2024, 15(3), 1412-1424; https://doi.org/10.3390/microbiolres15030095 - 2 Aug 2024
Cited by 1 | Viewed by 2489
Abstract
The present study shows the genomic characterization of three pathogenic Escherichia coli hybrid strains. All strains were previously characterized as diarrheagenic pathotypes (DEC), obtained from feces. The three sequenced strains have genes that encode adhesins (fimH and iha) and iron uptake [...] Read more.
The present study shows the genomic characterization of three pathogenic Escherichia coli hybrid strains. All strains were previously characterized as diarrheagenic pathotypes (DEC), obtained from feces. The three sequenced strains have genes that encode adhesins (fimH and iha) and iron uptake systems (iucC and iutA). Antibiotic resistance genes were also found for fluoroquinolone and aminoglycoside families in the three strains. The presence of genomic islands (GIs) in the sequenced study strains presented 100% identity (Ec-25.2) and 99% identity (Ec-36.1) with previously reported Extraintestinal Pathogenic E. coli (ExPEC) strains. The Ec-36.4 strain shared a 99% identity with GI from the Enterotoxigenic E. coli (ETEC) pathotype of the diarrheagenic E. coli strain. Ec-25.2 belongs to ST69 and harbors a FimH27 variant, while Ec-36.1 and Ec-36.4 belong to ST4238 and share a FimH54 variant. Four incompatibility groups associated with conjugative plasmids were identified (IncFIB, IncF11, IncI1, and IncB/O/K/Z), as well as Insertion Sequences and MITEs elements. Full article
Show Figures

Figure 1

11 pages, 4001 KiB  
Article
Preparation of Bispecific IgY-scFvs Inhibition Adherences of Enterotoxigenic Escherichia coli (K88 and F18) to Porcine IPEC-J2 Cell
by Luqing Yang, Yuanhe Yang, Anguo Liu, Siqi Lei and Pingli He
Int. J. Mol. Sci. 2024, 25(7), 3638; https://doi.org/10.3390/ijms25073638 - 25 Mar 2024
Cited by 2 | Viewed by 1870
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are significant contributors to postweaning diarrhea in piglets. Of the ETEC causing diarrhea, K88 and F18 accounted for 92.7%. Despite the prevalence of ETEC K88 and F18, there is currently no effective vaccine available due to the diversity [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) strains are significant contributors to postweaning diarrhea in piglets. Of the ETEC causing diarrhea, K88 and F18 accounted for 92.7%. Despite the prevalence of ETEC K88 and F18, there is currently no effective vaccine available due to the diversity of these strains. This study presents an innovative approach by isolating chicken-derived single-chain variable fragment antibodies (scFvs) specific to K88 and F18 fimbrial antigens from chickens immunized against these ETEC virulence factors. These scFvs effectively inhibited adhesion of K88 and F18 to porcine intestinal epithelial cells (IPEC-J2), with the inhibitory effect demonstrating a dose-dependent increase. Furthermore, a bispecific scFv was designed and expressed in Pichia pastoris. This engineered construct displayed remarkable potency; at a concentration of 25.08 μg, it significantly reduced the adhesion rate of ETEC strains to IPEC-J2 cells by 72.10% and 69.11% when challenged with either K88 or F18 alone. Even in the presence of both antigens, the adhesion rate was notably decreased by 57.92%. By targeting and impeding the initial adhesion step of ETEC pathogenesis, this antibody-based intervention holds promise as a potential alternative to antibiotics, thereby mitigating the risks associated with antibiotic resistance and residual drug contamination in livestock production. Overall, this study lays the groundwork for the development of innovative treatments against ETEC infections in piglets. Full article
Show Figures

Figure 1

9 pages, 264 KiB  
Communication
Screening Traditional Foods for the Prevention of Enterotoxigenic Escherichia coli K88ac (F4ac) Attachment to IPEC-J2 Cells
by Yanan Zhu, Changyan Shao and Susana María Martín-Orúe
Foods 2024, 13(6), 952; https://doi.org/10.3390/foods13060952 - 21 Mar 2024
Cited by 1 | Viewed by 1424
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the major diarrhoea-causing pathogen world-wide. Fimbria–receptor recognition is the primary step when attachment of ETEC to the intestine occurs. This study aims to evaluate the potential of some traditional foods, particularly those rich in β-glucans, as analogues for [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) is the major diarrhoea-causing pathogen world-wide. Fimbria–receptor recognition is the primary step when attachment of ETEC to the intestine occurs. This study aims to evaluate the potential of some traditional foods, particularly those rich in β-glucans, as analogues for fimbriae or receptors in reducing ETEC colonisation. The adhesion test (AT) demonstrated that aqueous extracts of highland barley (EHB), black rice (EBR) and little millet (ELT) at concentrations of 2% and 1% could attach to more ETEC K88ac (p < 0.001), as well as aqueous extracts of shiitake (EST) (p < 0.01). The competition test (CT) revealed that EHB and EST significantly prevented ETEC K88ac from adhering to intestinal epithelial cells (IPEC-J2) at 2% (p < 0.01) and 1% (p < 0.05). In the Exclusion Test (ET) and the displacement test (DT), the food samples were unable to impair ETEC colonisation in terms of blocking receptors or removing attached pathogens. These results demonstrate how some traditional foods such as highland barley and shiitake contain bioactive compounds that interfere with the attachment of ETEC to the intestinal epithelium, and their potential in the prevention and treatment of ETEC diarrhoea. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

17 pages, 3474 KiB  
Article
Dietary Supplementation with Lysozyme–Cinnamaldehyde Conjugates Enhances Feed Conversion Efficiency by Improving Intestinal Health and Modulating the Gut Microbiota in Weaned Piglets Infected with Enterotoxigenic Escherichia coli
by Zhezhe Tian, Jiaming Chen, Tongbin Lin, Junhua Zhu, Haoyang Gan, Fang Chen, Shihai Zhang and Wutai Guan
Animals 2023, 13(22), 3497; https://doi.org/10.3390/ani13223497 - 13 Nov 2023
Cited by 3 | Viewed by 2016
Abstract
This study aims to evaluate the efficacy of lysozyme–cinnamaldehyde conjugates (LC) as a potential alternative to antibiotics in treating piglets infected with enterotoxigenic Escherichia coli (ETEC). The results demonstrated that piglets fed with the LC diet exhibited lower rectal temperature and fecal scores [...] Read more.
This study aims to evaluate the efficacy of lysozyme–cinnamaldehyde conjugates (LC) as a potential alternative to antibiotics in treating piglets infected with enterotoxigenic Escherichia coli (ETEC). The results demonstrated that piglets fed with the LC diet exhibited lower rectal temperature and fecal scores at 9 h, 24 h, and 48 h post-ETEC challenge. Furthermore, LC supplementation led to significant improvements in the mechanical and immune barriers of the jejunum and ileum, as indicated by an increased villi-height-to-crypt-depth ratio (VCR) and the expression of tight junction proteins, mucin, and β-defensins. Furthermore, the LC diet lowered the levels of pro-inflammatory cytokines TNF-α and IL-1β in the plasma. Further analyses showed that the LC diet downregulated genes (specifically TLR4 and MyD88) linked to the TLRs/MyD88/NF-κB signaling pathway in the small intestine. Additionally, 16SrDNA sequencing data revealed that LC supplementation increased the α diversity of intestinal microorganisms and the relative abundance of Lactobacillus. In summary, the LC-supplemented diet effectively mitigated the adverse effects of E. coli K88, including intestinal barrier damage and inflammation. Furthermore, it improved the structure of the intestinal flora, ultimately contributing to better growth performance in piglets. Full article
Show Figures

Figure 1

19 pages, 4031 KiB  
Article
Dietary Supplementation with Puerarin Improves Intestinal Function in Piglets Challenged with Escherichia coli K88
by Yitong Zeng, Rui Li, Yi Dong, Dan Yi, Tao Wu, Lei Wang, Di Zhao, Yanyan Zhang and Yongqing Hou
Animals 2023, 13(12), 1908; https://doi.org/10.3390/ani13121908 - 7 Jun 2023
Cited by 7 | Viewed by 1998
Abstract
The objective of this study was to investigate the effect of puerarin supplementation on the growth performance and intestinal function of piglets challenged with enterotoxigenic Escherichia coli (ETEC) K88. Twenty-four ternary crossbred piglets were randomly assigned to three treatment groups: control group, ETEC [...] Read more.
The objective of this study was to investigate the effect of puerarin supplementation on the growth performance and intestinal function of piglets challenged with enterotoxigenic Escherichia coli (ETEC) K88. Twenty-four ternary crossbred piglets were randomly assigned to three treatment groups: control group, ETEC group (challenged with ETEC K88 on day 8), and ETEC + Puerarin group (supplemented with 5 mg/kg puerarin and challenged with ETEC K88 on day 8). All piglets were orally administered D-xylose (0.1 g/kg body weight) on day 10, and blood samples were collected after 1 h. Subsequently, piglets were killed and intestinal samples were collected for further analysis. The results showed that puerarin supplementation significantly decreased the adverse effects of ETEC K88-challenged piglets; significantly improved growth performance; increased the number of Bifidobacterium in the colon and Lactobacillus in the jejunum, cecum and colon; decreased the number of Escherichia coli in the jejunum and cecum; reduced the hydrogen peroxide content in the jejunum and myeloperoxidase activity in the jejunum and ileum; and increased the activities of catalase and superoxide dismutase in the jejunum and ileum. In addition, puerarin supplementation alleviated ETEC K88-induced intestinal injury in piglets, significantly downregulated the mRNA level of Interleukin-1β and upregulated the mRNA levels of intercellular cell adhesion molecule-1, myxovirus resistance protein 1, myxovirus resistance protein 2, and guanylate-binding protein-1 in the small intestine of piglets. In conclusion, dietary supplementation with puerarin could attenuate ETEC K88-induced intestinal injury by increasing the antioxidant and anti-inflammatory capacity and the number of beneficial intestinal bacteria in piglets. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

25 pages, 5668 KiB  
Article
Evaluation of Potential Probiotic Properties of Limosilactobacillus fermentum Derived from Piglet Feces and Influence on the Healthy and E. coli-Challenged Porcine Intestine
by Mengqi Qian, Xinchen Zhou, Tingting Xu, Meng Li, Zhiren Yang and Xinyan Han
Microorganisms 2023, 11(4), 1055; https://doi.org/10.3390/microorganisms11041055 - 18 Apr 2023
Cited by 3 | Viewed by 2730
Abstract
In this work, we evaluated the probiotic properties of Limosilactobacillus fermentum strains (FL1, FL2, FL3, FL4) isolated from feces of healthy piglets. The in vitro auto-aggregation, hydrophobicity, biofilm-forming capacity, survival in the gastrointestinal tract, antimicrobial activity and anti-oxidation capacity were evaluated. Four strains [...] Read more.
In this work, we evaluated the probiotic properties of Limosilactobacillus fermentum strains (FL1, FL2, FL3, FL4) isolated from feces of healthy piglets. The in vitro auto-aggregation, hydrophobicity, biofilm-forming capacity, survival in the gastrointestinal tract, antimicrobial activity and anti-oxidation capacity were evaluated. Four strains were resistant to simulated gastrointestinal conditions, including low pH, pepsin, trypsin and bile salts. They also maintained strong self-aggregation and cell surface hydrophobicity. Limosilactobacillus fermentum FL4, which had the strongest adhesion ability and antimicrobial effect on Enterotoxigenic Escherichia coli K88 (ETEC K88), was then tested in porcine intestinal organoid models. The in vitro experiments in basal-out and apical-out organoids demonstrated that L. fermentum FL4 adhered to the apical surfaces more efficiently than basolateral surfaces, had the ability to activate the Wnt/β-catenin pathway to protect the mucosal barrier integrity, stimulated the proliferation and differentiation of the intestinal epithelium, and repaired ETEC K88-induced damage. Moreover, L. fermentum FL4 inhibited inflammatory responses induced by ETEC K88 through the reduced expression of pro-inflammatory cytokines (TNF-α, IL-1β and IFN-γ) and higher levels of anti-inflammatory cytokines (TGF-β and IL-10). These results show that L. fermentum FL4 isolated from feces of healthy Tunchang piglets has the potential to be used as an anti-inflammatory probiotic and for mitigation of intestinal damage in piglets. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

18 pages, 6599 KiB  
Article
Lactobacillus salivarius WZ1 Inhibits the Inflammatory Injury of Mouse Jejunum Caused by Enterotoxigenic Escherichia coli K88 by Regulating the TLR4/NF-κB/MyD88 Inflammatory Pathway and Gut Microbiota
by Zhen Wei, Ziqi He, Tongyao Wang, Xiaoxuan Wang, Tiancheng Wang and Miao Long
Microorganisms 2023, 11(3), 657; https://doi.org/10.3390/microorganisms11030657 - 3 Mar 2023
Cited by 9 | Viewed by 2892
Abstract
Replacing antibiotics with probiotics has become an important way to safely and effectively prevent and treat some gastrointestinal diseases. This study was conducted to investigate whether Lactobacillus salivarius WZ1 (L.S) could reduce the inflammatory injury to the mouse jejunum induced by Escherichia coli [...] Read more.
Replacing antibiotics with probiotics has become an important way to safely and effectively prevent and treat some gastrointestinal diseases. This study was conducted to investigate whether Lactobacillus salivarius WZ1 (L.S) could reduce the inflammatory injury to the mouse jejunum induced by Escherichia coli (ETEC) K88. Forty Kunming mice were randomly divided into four groups with 10 mice in each group. From day 1 to day 14, the control group and the E. coli group were administered with normal saline each day, while the L.S group and the L.S + E. coli group were gavaged with Lactobacillus salivarius WZ1 1 × 108 CFU/mL each day. On the 15th day, the E. coli group and the L.S + E. coli group were intragastrically administered ETEC K88 1 × 109 CFU/mL and sacrificed 24 h later. Our results show that pretreatment with Lactobacillus salivarius WZ1 can dramatically protect the jejunum morphological structure from the changes caused by ETEC K88 and relieve the morphological lesions of the jejunum, inhibiting changes in the mRNA expressions of TNF-α, IL-1β and IL-6 and the protein expressions of TLR4, NF-κB and MyD88 in the intestinal tissue of mice caused by ETEC K88. Moreover, pretreatment with Lactobacillus salivarius WZ1 also increased the relative abundance of beneficial genera such as Lactobacillus and Bifidobacterium and decreased the abundance of harmful genera such as Ralstonia and Helicobacter in the gut. These results demonstrate that Lactobacillus salivarius WZ1 can inhibit the inflammatory damage caused by ETEC K88 in mouse jejunum by regulating the TLR4/NF-κB/MyD88 inflammatory pathway and gut microbiota. Full article
(This article belongs to the Special Issue Gut Microbiome and Disorders of the Gastrointestinal Tract)
Show Figures

Figure 1

16 pages, 3311 KiB  
Article
Bifidobacterium longum, Lactobacillus plantarum and Pediococcus acidilactici Reversed ETEC-Inducing Intestinal Inflammation in Mice
by Wentao Li, Lixia Kai, Zipeng Jiang, Huan He, Mingzhi Yang, Weifa Su, Yizhen Wang, Mingliang Jin and Zeqing Lu
Microorganisms 2022, 10(12), 2350; https://doi.org/10.3390/microorganisms10122350 - 28 Nov 2022
Cited by 15 | Viewed by 3677
Abstract
Microecological preparation could relieve Enterotoxigenic Escherichia coli (ETEC) K88-induced diarrhea in piglets, but which bacteria play a key role and the mitigation mechanism have not been fully clarified. In this study, 36 male mice were randomly divided into six groups (CON, K88, BK [...] Read more.
Microecological preparation could relieve Enterotoxigenic Escherichia coli (ETEC) K88-induced diarrhea in piglets, but which bacteria play a key role and the mitigation mechanism have not been fully clarified. In this study, 36 male mice were randomly divided into six groups (CON, K88, BK (Bifidobacterium longum + K88), LK (Lactobacillus plantarum + K88), PK (Pediococcus acidilactici + K88), and MK (mixed strains + K88)) to explore the prevention mechanisms. Three probiotic strains and their mixtures (TPSM) significantly relieved the weight loss and restored the ratio of villus height to crypt depth in the jejunum. Except for Bifidobacterium longum, other strains significantly decreased interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in mice serum. The TPSM treatment significantly downregulated the mRNA expression of the inflammatory cytokines and the Toll-like receptor and downstream gene (TLR4, MyD88, NF-κB) in jejunum induced by ETEC. Furthermore, the TPSM could restore dysbiosis of the intestinal microbiota caused by ETEC. The intestinal microbiota analysis demonstrated that Bifidobacterium longum enriched the Bifidobacterium genus (p < 0.05), Lactobacillus plantarum enriched the Lactobacillus genus (p < 0.05), Pediococcus acidilactici enriched the Coriobacteriaceae_UCG-002 and Christensenellaceae_R-7_group genus (p < 0.05), mixed bacteria enriched the Akkermansia genus (p < 0.05), but ETEC enriched the Desulfovibrio genus (p < 0.05). Meanwhile, the starch and sucrose metabolism, galactose and fructose metabolism, mannose metabolism and ABC transporters were increased with probiotics pre-treatment (p < 0.05). To sum up, the microecological preparation alleviated ETEC-induced diarrhea by regulating the immune response, rebalancing intestinal microbiota and improving carbohydrate metabolism. Full article
Show Figures

Figure 1

11 pages, 462 KiB  
Article
Escherichia coli Isolated from Vegans, Vegetarians and Omnivores: Antibiotic Resistance, Virulence Factors, Pathogenicity Islands and Phylogenetic Classification
by Ariane Tiemy Tizura, João Gabriel Material Soncini, Vanessa Lumi Koga, Renata Katsuko Takayama Kobayashi, Zuleica Naomi Tano and Eliana Carolina Vespero
Microbiol. Res. 2022, 13(4), 825-835; https://doi.org/10.3390/microbiolres13040058 - 14 Oct 2022
Cited by 1 | Viewed by 2981
Abstract
Pathogenic strains of Escherichia coli have acquired virulence factors, which confer an increased ability to cause a broad spectrum of enteric diseases and extraintestinal infections. The aim of this study was to analyze the antimicrobial resistance profile of and the presence of virulence-associated [...] Read more.
Pathogenic strains of Escherichia coli have acquired virulence factors, which confer an increased ability to cause a broad spectrum of enteric diseases and extraintestinal infections. The aim of this study was to analyze the antimicrobial resistance profile of and the presence of virulence-associated genes (VAGs) in E. coli fecal isolates from omnivores, vegetarians and vegans. A control group of 60 isolates from omnivores, as well as a study group with 41 isolates from vegetarians and 17 from vegans, were analyzed. Isolates from both groups showed a high rate of resistance to ampicillin, amoxicillin-clavulanic acid and nalidixic acid, and some of them were positive for the ESBL test (12% of isolates from vegetarians/vegans and 5% of isolates from omnivores). The most predominant VAGs detected in isolates from omnivores were fimH (70%), iutA (32%), fyuA (32%) and traT (32%), while among isolates from vegetarians or vegans, the most predominant were traT (62%), kpsMT k1 (28%) and iutA (22%). Most isolates from omnivores (55%) were positive for PAI I536, while most of those from vegetarians/vegans (59%) were positive for PAI IV536. Phylogenetic group A, composed of commensal non-pathogenic isolates that survive in the intestinal tract, was the most prevalent in both control and study groups. Some VAGs were found in only one of the groups, such as the pathogenicity island PAI III536, found in 12% of the isolates from omnivores, while the kpsMT III gene (15%) was detected only among isolates from vegetarians/vegans. Interestingly, this gene codes for a polysaccharide capsule found mainly in E. coli isolates causing intestinal infections, including EPEC, ETEC and EHEC. Finally, our results show that there were no advantages in vegetarian or vegan diets compared to the omnivorous diet, as in both groups we detected isolates harboring VAGs and displaying resistance to antibiotics, especially those most commonly used to treat urinary tract infections. Full article
(This article belongs to the Special Issue Zoonotic Bacteria: Infection, Pathogenesis and Drugs)
Show Figures

Figure 1

Back to TopTop