Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (218)

Search Parameters:
Keywords = ER-dependent apoptosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7055 KiB  
Article
Cardiopulmonary Bypass-Induced IL-17A Aggravates Caspase-12-Dependent Neuronal Apoptosis Through the Act1-IRE1-JNK1 Pathway
by Ruixue Zhao, Yajun Ma, Shujuan Li and Junfa Li
Biomolecules 2025, 15(8), 1134; https://doi.org/10.3390/biom15081134 - 6 Aug 2025
Abstract
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose [...] Read more.
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose deprivation/reoxygenation (OGD/R) cellular model, we demonstrated that IL-17A levels were markedly elevated in the hippocampus post-CPB, correlating with endoplasmic reticulum stress (ERS)-mediated apoptosis. Transcriptomic analysis revealed the enrichment of IL-17 signaling and apoptosis-related pathways. IL-17A-Neutralizing monoclonal antibody (mAb) and the ERS inhibitor 4-phenylbutyric acid (4-PBA) significantly attenuated neurological deficits and hippocampal neuronal damage. Mechanistically, IL-17A activated the Act1-IRE1-JNK1 axis, wherein heat shock protein 90 (Hsp90) competitively regulated Act1-IRE1 interactions. Co-immunoprecipitation confirmed the enhanced Hsp90-Act1 binding post-CPB, promoting IRE1 phosphorylation and downstream caspase-12 activation. In vitro, IL-17A exacerbated OGD/R-induced apoptosis via IRE1-JNK1 signaling, reversible by IRE1 inhibition. These findings identify the hippocampus as a key vulnerable region and delineate a novel IL-17A/Act1-IRE1-JNK1 pathway driving ERS-dependent apoptosis. Targeting IL-17A or Hsp90-mediated chaperone switching represents a promising therapeutic strategy for CPB-associated neuroprotection. This study provides critical insights into the molecular crosstalk between systemic inflammation and neuronal stress responses during cardiac surgery. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

23 pages, 2161 KiB  
Review
Recent Advances in Engineering the Unfolded Protein Response in Recombinant Chinese Hamster Ovary Cell Lines
by Dyllan Rives, Tara Richbourg, Sierra Gurtler, Julia Martone and Mark A. Blenner
Int. J. Mol. Sci. 2025, 26(15), 7189; https://doi.org/10.3390/ijms26157189 - 25 Jul 2025
Viewed by 333
Abstract
Chinese hamster ovary (CHO) cells are the most common protein production platform for glycosylated biopharmaceuticals due to their relatively efficient secretion systems, post-translational modification (PTM) machinery, and quality control mechanisms. However, high productivity and titer demands can overburden these processes. In particular, the [...] Read more.
Chinese hamster ovary (CHO) cells are the most common protein production platform for glycosylated biopharmaceuticals due to their relatively efficient secretion systems, post-translational modification (PTM) machinery, and quality control mechanisms. However, high productivity and titer demands can overburden these processes. In particular, the endoplasmic reticulum (ER) can become overwhelmed with misfolded proteins, triggering the unfolded protein response (UPR) as evidence of ER stress. The UPR increases the expression of multiple genes/proteins, which are beneficial to protein folding and secretion. However, if the stressed ER cannot return to a state of homeostasis, a prolonged UPR results in apoptosis. Because ER stress poses a substantial bottleneck for secreting protein therapeutics, CHO cells are both selected for and engineered to improve high-quality protein production through optimized UPR and ER stress management. This is vital for optimizing industrial CHO cell fermentation. This review begins with an overview of common ER-stress related markers. Next, the optimal UPR profile of high-producing CHO cells is discussed followed by the context-dependency of a UPR profile for any given recombinant CHO cell line. Recent efforts to control and engineer ER stress-related responses in CHO cell lines through the use of various bioprocess operations and activation/inhibition strategies are elucidated. Finally, this review concludes with a discussion on future directions for engineering the CHO cell UPR. Full article
(This article belongs to the Special Issue New Insights into the Molecular Mechanisms of the UPR and Cell Stress)
Show Figures

Figure 1

29 pages, 1506 KiB  
Review
The Link Between Endoplasmic Reticulum Stress and Lysosomal Dysfunction Under Oxidative Stress in Cancer Cells
by Mariapia Vietri, Maria Rosaria Miranda, Giuseppina Amodio, Tania Ciaglia, Alessia Bertamino, Pietro Campiglia, Paolo Remondelli, Vincenzo Vestuto and Ornella Moltedo
Biomolecules 2025, 15(7), 930; https://doi.org/10.3390/biom15070930 - 25 Jun 2025
Viewed by 613
Abstract
Lysosomal dysfunction and endoplasmic reticulum (ER) stress play essential roles in cancer cell survival, growth, and stress adaptation. Among the various stressors in the tumor microenvironment, oxidative stress (OS) is a central driver that exacerbates both lysosomal and ER dysfunction. In healthy cells, [...] Read more.
Lysosomal dysfunction and endoplasmic reticulum (ER) stress play essential roles in cancer cell survival, growth, and stress adaptation. Among the various stressors in the tumor microenvironment, oxidative stress (OS) is a central driver that exacerbates both lysosomal and ER dysfunction. In healthy cells, the ER manages protein folding and redox balance, while lysosomes regulate autophagy and degradation. Cancer cells, however, are frequently exposed to elevated levels of reactive oxygen species (ROS), which disrupt protein folding in the ER and damage lysosomal membranes and enzymes, promoting dysfunction. Persistent OS activates the unfolded protein response (UPR) and contributes to lysosomal membrane permeabilization (LMP), leading to pro-survival autophagy or cell death depending on the context and on the modulation of pathways like PERK, IRE1, and ATF6. Cancer cells exploit these pathways by enhancing their tolerance to OS and shifting UPR signaling toward survival. Moreover, lysosomal impairment due to ROS accumulation compromises autophagy, resulting in the buildup of damaged organelles and further amplifying oxidative damage. This vicious cycle of ROS-induced ER stress and lysosomal dysfunction contributes to tumor progression, therapy resistance, and metabolic adaptation. Thus, targeting lysosomal and ER stress responses offers potential as cancer therapy, particularly in increasing oxidative stress and promoting apoptosis. This review explores the interconnected roles of lysosomal dysfunction, ER stress, and OS in cancer, focusing on the mechanisms driving their crosstalk and its implications for tumor progression and therapeutic resistance. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

15 pages, 9305 KiB  
Article
Attenuation of Ventilation-Induced Endoplasmic Reticulum Stress Associated with Lung Injury Through Phosphoinositide 3-Kinase-Gamma in a Murine Endotoxemia Model
by Li-Fu Li, Chung-Chieh Yu, Chih-Yu Huang, Huang-Pin Wu, Chien-Ming Chu, Ping-Chi Liu and Yung-Yang Liu
Int. J. Mol. Sci. 2025, 26(12), 5761; https://doi.org/10.3390/ijms26125761 - 16 Jun 2025
Viewed by 429
Abstract
Patients with sepsis often receive mechanical ventilation (MV). Continued use of MV may increase overdistention in the lungs, inflammatory mediator production, and inflammatory cell recruitment, eventually causing ventilator-induced lung injury (VILI). Endoplasmic reticulum (ER) stress caused by MV, oxidative stress, and sepsis results [...] Read more.
Patients with sepsis often receive mechanical ventilation (MV). Continued use of MV may increase overdistention in the lungs, inflammatory mediator production, and inflammatory cell recruitment, eventually causing ventilator-induced lung injury (VILI). Endoplasmic reticulum (ER) stress caused by MV, oxidative stress, and sepsis results in dissociation of GRP78 from transmembrane proteins (PERK, IRE1α, and ATF6) and generates abundant incorrect protein structures. Phosphoinositide 3-kinase-γ (PI3K-γ) has been demonstrated to modulate ER stress associated with sepsis and acute lung injury (ALI). However, the regulatory mechanisms by which ER stress is involved in VILI remain unclear. In this study, MV was hypothesized to augment lung injury and induce ER stress through the PI3K-γ pathway, regardless of endotoxemia. Wild-type or PI3K-γ-deficient C57BL/6 mice were exposed to 30 mL/kg tidal volume of MV with or without endotoxemia for 5 h. The control group comprised nonventilated mice. MV with endotoxemia increased microvascular permeability, lung edema, interleukin-6 and metalloproteinase-9 production, oxidative loads, ER stress biomarkers (GRP78, IRE-1α, PERK), morphological rearrangement, PI3K-γ expression, and bronchial epithelial apoptosis in rodent lungs. The increase in lung injury was substantially reduced in PI3K-γ-deficient mice and in mice administered 4-phenylbutyric acid. In conclusion, MV-augmented ALI after endotoxemia partially depends on the PI3K-γ pathway. Full article
(This article belongs to the Special Issue Molecular Biology of Hypoxia)
Show Figures

Graphical abstract

20 pages, 1329 KiB  
Review
Mitochondrial Dysfunction: The Silent Catalyst of Kidney Disease Progression
by Nikola Pavlović, Marinela Križanac, Marko Kumrić, Katarina Vukojević and Joško Božić
Cells 2025, 14(11), 794; https://doi.org/10.3390/cells14110794 - 28 May 2025
Cited by 2 | Viewed by 2516
Abstract
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to [...] Read more.
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to meet the high ATP demands of solute reabsorption and filtration. Disrupted mitochondrial dynamics, such as excessive fission mediated by Drp1, exacerbate tubular apoptosis and inflammation in AKI models like ischemia–reperfusion injury. In CKD, persistent mitochondrial dysfunction drives oxidative stress, fibrosis, and metabolic reprogramming, with epigenetic mechanisms (DNA methylation, histone modifications, non-coding RNAs) regulating genes critical for mitochondrial homeostasis, such as PMPCB and TFAM. Epigenetic dysregulation also impacts mitochondrial–ER crosstalk, influencing calcium signaling and autophagy in renal pathology. Mitophagy, the selective clearance of damaged mitochondria, plays a dual role in kidney disease. While PINK1/Parkin-mediated mitophagy protects against cisplatin-induced AKI by preventing mitochondrial fragmentation and apoptosis, its dysregulation contributes to fibrosis and CKD progression. For instance, macrophage-specific loss of mitophagy regulators like MFN2 amplifies ROS production and fibrotic responses. Conversely, BNIP3/NIX-dependent mitophagy attenuates contrast-induced AKI by suppressing NLRP3 inflammasome activation. In diabetic nephropathy, impaired mitophagy correlates with declining eGFR and interstitial fibrosis, highlighting its diagnostic and therapeutic potential. Emerging therapeutic strategies target mitochondrial dysfunction through antioxidants (e.g., MitoQ, SS-31), mitophagy inducers (e.g., COPT nanoparticles), and mitochondrial transplantation, which mitigates AKI by restoring bioenergetics and modulating inflammatory pathways. Nanotechnology-enhanced drug delivery systems, such as curcumin-loaded nanoparticles, improve renal targeting and reduce oxidative stress. Epigenetic interventions, including PPAR-α agonists and KLF4 modulators, show promise in reversing metabolic reprogramming and fibrosis. These advances underscore mitochondria as central hubs in renal pathophysiology. Tailored interventions—ranging from Drp1 inhibition to mitochondrial transplantation—hold transformative potential to mitigate kidney injury and improve clinical outcomes. Additionally, dietary interventions and novel regulators such as adenogens are emerging as promising strategies to modulate mitochondrial function and attenuate kidney disease progression. Future research should address the gaps in understanding the role of mitophagy in CAKUT and optimize targeted delivery systems for precision therapies. Full article
Show Figures

Figure 1

27 pages, 1593 KiB  
Article
TPP-Based Nanovesicles Kill MDR Neuroblastoma Cells and Induce Moderate ROS Increase, While Exerting Low Toxicity Towards Primary Cell Cultures: An In Vitro Study
by Silvana Alfei, Carola Torazza, Francesca Bacchetti, Marco Milanese, Mario Passalacqua, Elaheh Khaledizadeh, Stefania Vernazza, Cinzia Domenicotti and Barbara Marengo
Int. J. Mol. Sci. 2025, 26(11), 4991; https://doi.org/10.3390/ijms26114991 - 22 May 2025
Viewed by 643
Abstract
Neuroblastoma (NB) is a malignant childhood tumour, which originates from neuroblasts with an incidence of approximately 15,000 new cases per year worldwide. Therapy-induced secondary tumorigenesis and the emergency of drug resistance in its high-risk (HR-NB) forms drive to a survival rate of <50%, [...] Read more.
Neuroblastoma (NB) is a malignant childhood tumour, which originates from neuroblasts with an incidence of approximately 15,000 new cases per year worldwide. Therapy-induced secondary tumorigenesis and the emergency of drug resistance in its high-risk (HR-NB) forms drive to a survival rate of <50%, despite aggressive treatments. Our recent research is focused on testing in vitro the effects of synthetized triphenyl phosphonium (TPP)-based bola amphiphilic nanovesicles (BPPBs) against both drug-sensitive and multi-drug-resistant (MDR) cancer cell lines. In the present study, BPPB demonstrated sub-micromolar IC50 values (0.4–0.9 µM) towards drug-sensitive HTLA 230, while 1.20–1.35 µM IC50 were determined on MDR HTLA ER. Noteworthily, we have demonstrated that BPPB triggers apoptosis of both NB cell populations. Additionally, since MDR NB cells (HTLA ER) are equipped with higher levels of antioxidants than sensitive ones (HTLA 230), the potential involvement of reactive oxygen species (ROS) in the cytotoxic action of BPPB was also investigated. Then, a novel analytical approach was applied to the results of cell viability and ROS monitoring for their better interpretation. Proper dispersion graphs and their best fitting nonlinear regression models were used to verify if the cytotoxic effects of BPPB could depend on BPPB concentrations, exposure times, and/or ROS generation, and if ROS increase could depend on BPPB concentrations and/or exposure times. A ROS-dependent mechanism was found in 24 h and 24/48 h treatments of HTLA ER and HTLA 230, respectively. Furthermore, the potential clinical development of BPPB as a new curative option for children affected by HR-NB was assessed by testing BPPB on astrocyte and neuron primary cell cultures, and analytical correlation studies were used to interpret the results. Notably, BPPB administration was sufficiently and well tolerated by neurons and astrocytes, respectively, allowing selectivity index values of up to 23.7. These in vitro results, associated with the low haemolytic activity of BPPB, pave the way for future in vivo investigations and, upon confirmation, for the possible development of BPPB as a novel therapeutic strategy to treat MDR HR-NB. Full article
(This article belongs to the Special Issue New Molecular Mechanisms and Advanced Therapies for Solid Tumors)
Show Figures

Graphical abstract

18 pages, 9773 KiB  
Article
Cucurbitacin B Exhibits Antitumor Effects on Chordoma Cells via Disruption of Brachyury
by Carolin Seeling, Johannes Neumahr, Fabian Häberle, André Lechel, Peter Möller, Nadine T. Gaisa, Thomas F. E. Barth and Kevin Mellert
Int. J. Mol. Sci. 2025, 26(8), 3864; https://doi.org/10.3390/ijms26083864 - 18 Apr 2025
Viewed by 608
Abstract
Chordomas are rare malignant tumors of the bone, originating from remnants of notochordal cells. The transcription factor brachyury, encoded by TBXT, serves as a critical diagnostic marker and is essential for tumor growth. While brachyury’s role in regulating the cytoskeleton during embryogenesis [...] Read more.
Chordomas are rare malignant tumors of the bone, originating from remnants of notochordal cells. The transcription factor brachyury, encoded by TBXT, serves as a critical diagnostic marker and is essential for tumor growth. While brachyury’s role in regulating the cytoskeleton during embryogenesis and tumorigenesis is well understood, the reverse—whether cytoskeletal alterations can influence brachyury levels—remains unclear. Despite advances in understanding chordoma biology, there are currently no approved targeted therapies, underscoring the need for novel therapeutic approaches. Three chordoma cell lines were treated with cytoskeletal inhibitors, including the actin-targeting compounds Cucurbitacin B (CuB) and Latrunculin B (LatB). Morphological changes, TBXT expression, and cell viability were analyzed. The effects of CuB were examined over time and across concentrations, with cell viability assessed via apoptosis and cytotoxicity assays. Microarray gene expression profiling of ten chordoma cell lines was performed to explore CuB-mediated transcriptional changes. Rescue experiments using a TBXT open reading frame vector and co-treatments with autophagy and proteasome inhibitors were conducted to elucidate the mechanisms of brachyury depletion. Both CuB and LatB induced significant morphological changes, but only CuB caused near-complete depletion of brachyury. This effect was time- and concentration-dependent, correlating with reduced cell viability driven primarily by apoptosis. Microarray analysis revealed that CuB treatment upregulated protein refolding pathways and downregulated protein glycosylation. Notably, TBXT transcription was only slightly suppressed, indicating that brachyury depletion was largely post-transcriptional. Rescue experiments and co-treatments implicated dysregulated protein refolding and endoplasmic reticulum (ER) stress as key mechanisms underlying CuB-mediated brachyury loss. This study demonstrates that actin cytoskeleton disruption by CuB depletes brachyury in chordoma cells, primarily through dysregulated protein refolding and ER stress rather than transcriptional repression. These findings suggest that targeting actin cytoskeleton dynamics or protein unfolding pathways may provide novel therapeutic approaches for chordoma treatment. Full article
(This article belongs to the Special Issue Molecular Research in Bone and Soft Tissue Tumors)
Show Figures

Figure 1

18 pages, 5370 KiB  
Article
Labisia pumila var. alata Extract Induces Apoptosis Cell Death by Inhibiting the Activity of Oestrogen Receptors in MCF-7 Breast Cancer Cells
by Muhammad Faiz Zulkifli, Zolkapli Eshak, Mohd Helmy Mokhtar and Wan Iryani Wan Ismail
Int. J. Mol. Sci. 2025, 26(8), 3748; https://doi.org/10.3390/ijms26083748 - 16 Apr 2025
Viewed by 747
Abstract
Labisia pumila var. alata (LP) is an herbaceous shrub commonly used by women to promote health and vitality, alleviate postmenopausal symptoms, and enhance libido. Research indicates that LP possesses significant oestrogenic and antiproliferative properties towards breast cancer; however, the specific mechanisms involved remain [...] Read more.
Labisia pumila var. alata (LP) is an herbaceous shrub commonly used by women to promote health and vitality, alleviate postmenopausal symptoms, and enhance libido. Research indicates that LP possesses significant oestrogenic and antiproliferative properties towards breast cancer; however, the specific mechanisms involved remain unclear. We investigate the oestrogenic effects of LP in inducing apoptosis in human breast adenocarcinoma (MCF-7) cells and the mechanisms underlying this process. Docking analysis reveals that the phytoestrogens in LP can bind to oestrogen receptors (ER), specifically ERα and ERβ. MTT assays demonstrate that LP has a dose- and time-dependent antiproliferative effect on MCF-7 cells. Furthermore, the antiproliferative activity of LP on MCF-7 cells is inhibited by Fulvestrant, indicating that its effects are mediated through oestrogen receptors. Flow cytometry analysis shows that the antiproliferative effect of LP results from the induction of apoptosis in MCF-7 cells. The activation of caspase 3, along with caspase 8 and caspase 9, suggests that LP triggers apoptosis through both intrinsic and extrinsic pathways. The findings regarding the aqueous extract of LP and its impact on the proliferative activity of MCF-7 cells may have significant therapeutic and preventive implications for future drug development, particularly in the context of breast cancer. Full article
(This article belongs to the Special Issue Medicinal Plants and Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

21 pages, 11189 KiB  
Article
Novel Compounds Target Aberrant Calcium Signaling in the Treatment of Relapsed High-Risk Neuroblastoma
by Dana-Lynn T. Koomoa, Nathan Sunada, Italo Espinoza-Fuenzalida, Dustin Tacdol, Madeleine Shackleford, Li Feng, Dianqing Sun and Ingo Lange
Int. J. Mol. Sci. 2025, 26(7), 3180; https://doi.org/10.3390/ijms26073180 - 29 Mar 2025
Viewed by 649
Abstract
High-risk neuroblastoma (HRNB) is an extracranial solid pediatric cancer. Despite the plethora of treatments available for HRNB, up to 65% of patients are refractory or exhibit an initial response to treatment that transitions to therapy-resistant relapse, which is invariably fatal. A key feature [...] Read more.
High-risk neuroblastoma (HRNB) is an extracranial solid pediatric cancer. Despite the plethora of treatments available for HRNB, up to 65% of patients are refractory or exhibit an initial response to treatment that transitions to therapy-resistant relapse, which is invariably fatal. A key feature that promotes HRNB progression is aberrant calcium (Ca2+) signaling. Ca2+ signaling is regulated by several druggable channel proteins, offering tremendous therapeutic potential. Unfortunately, many of the Ca2+ channels in HRNB also perform fundamental functions in normal healthy cells, hence targeting them increases the potential for adverse effects. To overcome this challenge, we sought to identify novel Ca2+ signaling pathways that are observed in HRNB but not normal non-cancerous cells with the hypothesis that these novel pathways may serve as potential therapeutic targets. One Ca2+ signaling pathway that is deregulated in HRNB is store-operated Ca2+ entry (SOCE). SOCE relays the release of Ca2+ from the endoplasmic reticulum (ER) and Ca2+ influx via the plasma membrane and promotes cancer drug resistance by regulating transcriptional programming and the induction of mitochondrial Ca2+ (mtCa2+)-dependent signaling. mtCa2+ signaling is critical for cellular metabolism, reactive oxygen production, cell cycle, and proliferation and has a key role in the regulation of cell death. Therefore, a dynamic interplay between ER, SOCE, and mitochondria tightly regulates cell survival and apoptosis. From a library of synthesized novel molecules, we identified two structurally related compounds that uniquely disrupt the dynamic interplay between SOCE, ER, and mitochondrial signaling pathways and induce cell death in HRNB. Our results revealed that compounds 248 and 249 activate distinct aberrant Ca2+ signals that are unique to relapsed HRNB and could be exploited to induce mtCa+ overload, a novel calcium influx current, and subsequent cell death. These findings establish a potential new pathway of calcium-mediated cell death; targeting this pathway could be critical for the treatment of refractory and relapsed HRNB. Full article
(This article belongs to the Special Issue Natural Products: Potential New Anti-Inflammatory Drugs)
Show Figures

Figure 1

25 pages, 5063 KiB  
Article
Cell Homeostasis or Cell Death—The Balancing Act Between Autophagy and Apoptosis Caused by Steatosis-Induced Endoplasmic Reticulum (ER) Stress
by Anna Stilkerich, Gerda Schicht, Lena Seidemann, René Hänsel, Adrian Friebel, Stefan Hoehme, Daniel Seehofer and Georg Damm
Cells 2025, 14(6), 449; https://doi.org/10.3390/cells14060449 - 18 Mar 2025
Viewed by 956
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver condition with potential progression to cirrhosis and impaired regeneration post-resection. A key mechanism underlying lipotoxicity is endoplasmic reticulum (ER) stress, particularly the activation of the unfolded protein response (UPR). This study investigates the interplay [...] Read more.
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver condition with potential progression to cirrhosis and impaired regeneration post-resection. A key mechanism underlying lipotoxicity is endoplasmic reticulum (ER) stress, particularly the activation of the unfolded protein response (UPR). This study investigates the interplay between lipid accumulation, endoplasmic reticulum (ER) stress, and cellular outcomes, focusing on the balance between autophagy and apoptosis. We cultured primary human hepatocytes (PHH) in a free fatty acid (FFA)-enriched medium for 120 h, assessing lipid accumulation, metabolism, and the expression of selected UPR markers. Additionally, we investigated the effects of lipid load on cell activity and growth in proliferating HepG2 cells. We observed that FFA uptake consistently induced ER stress, shifting cellular responses toward apoptosis under high lipid loads. Donor-specific differences were evident, particularly in lipid storage, excretion, and sensitivity to lipotoxicity. Some donors exhibited limited triglyceride (TAG) storage and excretion, leading to an excess of FFA whose metabolic fate remains unclear. Proliferation was more sensitive to lipid accumulation than overall cell activity, with even low FFA concentrations impairing growth, highlighting the vulnerability of regenerative processes to steatosis. The study elucidates how ER stress pathways, such as PERK-CHOP and IRE1α-JNK, are differentially activated in response to lipid overload, tipping the balance toward apoptosis in severe cases. The limited activation of repair mechanisms, such as autophagy, further emphasizes the critical role of ER stress in determining hepatocyte fate. The donor-dependent variability highlights the need for personalized strategies to mitigate lipotoxic effects and enhance liver regeneration in steatosis-related conditions. Full article
Show Figures

Figure 1

14 pages, 2063 KiB  
Article
Triclosan Caused Oocyte Meiotic Arrest by Modulating Oxidative Stress, Organelle Dysfunctions, Autophagy, and Apoptosis in Pigs
by Ning Zhao, Anli Xu, Jingxian Yang, Jianan Zhao, Junhao Xie, Bugao Li, Jiaxin Duan and Guoqing Cao
Animals 2025, 15(6), 802; https://doi.org/10.3390/ani15060802 - 12 Mar 2025
Cited by 2 | Viewed by 754
Abstract
Triclosan (TCS) is a highly effective broad-spectrum antibacterial agent; however, the specific roles of TCS in oocyte maturation remain poorly understood. This research investigated the influence of TCS on biologically active processes during the in vitro maturation of porcine oocytes. Our results demonstrated [...] Read more.
Triclosan (TCS) is a highly effective broad-spectrum antibacterial agent; however, the specific roles of TCS in oocyte maturation remain poorly understood. This research investigated the influence of TCS on biologically active processes during the in vitro maturation of porcine oocytes. Our results demonstrated that TCS significantly decreased the maturation rate of porcine oocytes in a concentration-dependent manner and impaired cumulus expansion. These detrimental effects were mediated by the disruption of mitochondrial function and distribution, leading to oxidative stress characterized by an accumulation of reactive oxygen species (ROS), a decrease in the expression of the antioxidant enzymes SOD2 and GSH, reduced ATP production, and a loss of mitochondrial membrane potential (ΔΨm). We also observed interference with endoplasmic reticulum (ER) distribution, disturbances in Ca2+ homeostasis, and fluctuations in ER stress, as evidenced by reduced expression of ER stress-related proteins. Furthermore, TCS exposure induced autophagy, as indicated by the levels of SQSTM1 (P62) and LC3-II. Additionally, TCS increased apoptosis rates, corresponding with a downregulation of Bcl-2 expression. Collectively, our findings suggest that exposure to TCS can impair cytoplasmic function, thereby affecting oocyte quality. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

15 pages, 1733 KiB  
Article
Endoplasmic Reticulum-Dependent Apoptotic Response to Cellular Stress in Patients with Rheumatoid Arthritis
by Aleksandra Kucharska-Lusina, Maciej Skrzypek, Agnieszka Tokarczyk, Grzegorz Dragan and Ireneusz Majsterek
Int. J. Mol. Sci. 2025, 26(6), 2489; https://doi.org/10.3390/ijms26062489 - 11 Mar 2025
Viewed by 928
Abstract
Rheumatoid arthritis (RA) is a chronic, common autoimmune disease. It is characterized by inflammatory polyarthritis, which can lead to permanent disability in patients. Current treatment is mainly symptom-related, aiming to reduce pain and inflammation, but does not lead to a full recovery. This [...] Read more.
Rheumatoid arthritis (RA) is a chronic, common autoimmune disease. It is characterized by inflammatory polyarthritis, which can lead to permanent disability in patients. Current treatment is mainly symptom-related, aiming to reduce pain and inflammation, but does not lead to a full recovery. This treatment includes non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs). It has been shown that, due to chronic inflammation, reduced glucose levels and hypoxia, endoplasmic reticulum (ER) stress is induced in RA patients, leading to the activation of multiple signaling pathways, including the ER-dependent adaptation of the unfolded protein response (UPR) pathway. The aim of this study was to assess the level of apoptosis in patients diagnosed with RA. The study sought to investigate whether UPR response correlated with apoptosis induction could serve as a potential diagnostic marker or therapeutic target. In vitro studies have shown that UPR pathway activity can be observed in patients diagnosed with RA. The study group consisted of PBMC cells from 61 individuals, including a total of 31 rheumatoid arthritis patients and 30 healthy controls. In order to validate UPR activation, we estimated molecular markers of ER stress via RT-qPCR expression analysis. GAPDH expression was used as a standard control. Elevated levels of mRNA for the eIF2α (p-value = 0.001903), the BBC3 (PUMA) (p-value = 0.007457 × 10−7) and the TP53 (p-value = 0.002212) were confirmed in a group of RA patients. Further analysis showed that after the induction of apoptosis the percentage of DNA contained in the tail was 37.78% higher in RA patients than in the control group (p-value = 0.0003) measured by comet assay. The exogenous damage caused by hydrogen peroxide was found to be statistically elevated in RA patients and the caspase-3 level was calculated of 40.17% higher than in controls (p-value = 0.0028). It was also found that PBMC cells from RA patients were more sensitive to apoptotic induction. Our results were confirmed by flow cytometry. The most important finding from our data was the confirmation of elevated sensitivity to apoptosis induction in RA patients; the results showed a 40.23% higher percentage of cells in early apoptosis than in the control group (p-value = 0.0105). Our results may help to assess the feasibility of the application of early diagnosis and targeted therapy in the treatment of RA patients, including the ER signaling pathway via selected UPR-dependent molecular inhibitors. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 11999 KiB  
Article
Cannabinoids Activate Endoplasmic Reticulum Stress Response and Promote the Death of Avian Retinal Müller Cells in Culture
by Ana Lúcia Marques Ventura, Thayane Martins Silva and Guilherme Rapozeiro França
Brain Sci. 2025, 15(3), 291; https://doi.org/10.3390/brainsci15030291 - 10 Mar 2025
Cited by 1 | Viewed by 966
Abstract
Background/Objectives: Activation of cannabinoid CB1 or CB2 receptors induces the death of glial progenitors from the chick retina in culture. Here, by using an enriched retinal glial cell culture, we characterized some mechanisms underlying glial death promoted by cannabinoids. Methods and Results: Retinal [...] Read more.
Background/Objectives: Activation of cannabinoid CB1 or CB2 receptors induces the death of glial progenitors from the chick retina in culture. Here, by using an enriched retinal glial cell culture, we characterized some mechanisms underlying glial death promoted by cannabinoids. Methods and Results: Retinal cultures obtained from 8-day-old (E8) chick embryos and maintained for 12–15 days (C12–15) were used. MTT assays revealed that the CB1/CB2 agonist WIN 55,212-2 (WIN) decreased cell viability in the cultures in a time-dependent manner, with a concomitant increase in extracellular LDH activity, suggesting membrane integrity loss. Cell death was also dose-dependently induced by cannabidiol (CBD), Δ9-tetrahydrocannabinol (THC), and CP55940, another CB1/CB2 agonist. In contrast to WIN-induced cell death that was not blocked by either antagonist, the deleterious effect of CBD was blocked by the CB2 receptor antagonist SR144528, but not by PF514273, a CB1 receptor antagonist. WIN-treated cultures showed glial cells with large vacuoles in cytoplasm that were absent in cultures incubated with WIN plus 4-phenyl-butyrate (PBA), a chemical chaperone. Since cannabinoids induced the phosphorylation of eukaryotic initiation factor 2-alfa (eIF2α), these results suggest a process of endoplasmic reticulum (ER) swelling and stress. Incubation of the cultures with WIN for 4 h induced a ~five-fold increase in the number of cells labeled with the ROS indicator CM-H2DCFDA. WIN induced the phosphorylation of JNK but not of p38 in the cultures, and also induced an increase in the number of glial cells expressing cleaved-caspase 3 (c-CASP3). The decrease in cell viability and the expression of c-CASP3 was blocked by salubrinal, an inhibitor of eIF2α dephosphorylation. Conclusions: These data suggest that cannabinoids induce the apoptosis of glial cells in culture by promoting ROS production, ER stress, JNK phosphorylation, and caspase-3 processing. The graphical abstract was created at Biorender.com. Full article
(This article belongs to the Special Issue Retinal Neurochemistry and Development)
Show Figures

Graphical abstract

19 pages, 2334 KiB  
Article
Glycosylation Regulation by TMEM230 in Aging and Autoimmunity
by Eleonora Piscitelli, Edoardo Abeni, Cristiana Balbino, Elena Angeli, Cinzia Cocola, Paride Pelucchi, Mira Palizban, Alberto Diaspro, Martin Götte, Ileana Zucchi and Rolland A. Reinbold
Int. J. Mol. Sci. 2025, 26(6), 2412; https://doi.org/10.3390/ijms26062412 - 7 Mar 2025
Cited by 1 | Viewed by 1263
Abstract
Aging is often a choice between developing cancer or autoimmune disorders, often due in part to loss of self-tolerance or loss of immunological recognition of rogue-acting tumor cells. Self-tolerance and cell recognition by the immune system are processes very much dependent on the [...] Read more.
Aging is often a choice between developing cancer or autoimmune disorders, often due in part to loss of self-tolerance or loss of immunological recognition of rogue-acting tumor cells. Self-tolerance and cell recognition by the immune system are processes very much dependent on the specific signatures of glycans and glycosylated factors present on the cell plasma membrane or in the stromal components of tissue. Glycosylated factors are generated in nearly innumerable variations in nature, allowing for the immensely diverse role of these factors in aging and flexibility necessary for cellular interactions in tissue functionality. In previous studies, we showed that differential expression of TMEM230, an endoplasmic reticulum (ER) protein was associated with specific signatures of enzymes regulating glycan synthesis and processing and glycosylation in rheumatoid arthritis synovial tissue using single-cell transcript sequencing. In this current study, we characterize the genes and pathways co-modulated in all cell types of the synovial tissue with the enzymes regulating glycan synthesis and processing, as well as glycosylation. Genes and biological and molecular pathways associated with hallmarks of aging were in mitochondria-dependent oxidative phosphorylation and reactive oxygen species synthesis, ER-dependent stress and unfolded protein response, DNA repair (UV response and P53 signaling pathways), and senescence, glycolysis and apoptosis regulation through PI3K-AKT-mTOR signaling have been shown to play important roles in aging or neurodegeneration (such as Parkinson’s and Alzheimer’s disease). We propose that the downregulation of TMEM230 and RNASET2 may represent a paradigm for the study of age-dependent autoimmune disorders due to their role in regulating glycosylation, unfolded protein response, and PI3K-AKT-mTOR signaling. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Autoimmune Disorders)
Show Figures

Figure 1

34 pages, 1309 KiB  
Review
Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections
by Zbigniew Wyżewski, Karolina Paulina Gregorczyk-Zboroch, Matylda Barbara Mielcarska, Weronika Świtlik and Adrianna Niedzielska
Int. J. Mol. Sci. 2025, 26(6), 2385; https://doi.org/10.3390/ijms26062385 - 7 Mar 2025
Viewed by 1313
Abstract
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling [...] Read more.
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling to the mitochondria-dependent cascade and can also be activated by endoplasmic reticulum (ER) stress. In its active forms, cleaved Bid (cBid) and truncated Bid (tBid), it disrupts MOM integrity via Bax/Bak-dependent and independent mechanisms. Apoptosis plays a dual role in viral infections, either promoting or counteracting viral propagation. Consequently, viruses modulate Bid signaling to favor their replication. The deregulation of Bid activity contributes to oncogenic transformation, inflammation, immunosuppression, neurotoxicity, and pathogen propagation during various viral infections. In this work, we explore Bid’s structure, function, activation processes, and mitochondrial targeting. We describe its role in apoptosis induction and its involvement in infections with multiple viruses. Additionally, we discuss the therapeutic potential of Bid in antiviral strategies. Understanding Bid’s signaling pathways offers valuable insights into host–virus interactions and the pathogenesis of infections. This knowledge may facilitate the development of novel therapeutic approaches to combat virus-associated diseases effectively. Full article
(This article belongs to the Special Issue Molecular Advances in Cell Proliferation, Senescence and Apoptosis)
Show Figures

Figure 1

Back to TopTop