Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (676)

Search Parameters:
Keywords = EOR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4663 KiB  
Article
Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR
by Dunqing Liu, Chengzhi Jia and Keji Chen
Energies 2025, 18(15), 4111; https://doi.org/10.3390/en18154111 - 2 Aug 2025
Viewed by 128
Abstract
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in [...] Read more.
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in light shale oil or tight oil. However, the representativeness of these simulated oils for low-maturity crude oils with higher viscosity and greater content of resins and asphaltenes requires further research. In this study, imbibition experiments were conducted and T2 and T1T2 nuclear magnetic resonance (NMR) spectra were adopted to investigate the oil recovery characteristics among resin–asphaltene-rich Jimusar shale oil and two WMOs. The overall imbibition recovery rates, pore scale recovery characteristics, mobility variations among oils with different occurrence states, as well as key factors influencing imbibition efficiency were analyzed. The results show the following: (1) WMO, kerosene, or alkanes with matched apparent viscosity may not comprehensively replicate the imbibition behavior of resin–asphaltene-rich crude oils. These simplified systems fail to capture the pore-scale occurrence characteristics of resins/asphaltenes, their influence on pore wettability alteration, and may consequently overestimate the intrinsic imbibition displacement efficiency in reservoir formations. (2) Surfactant optimization must holistically address the intrinsic coupling between interfacial tension reduction, wettability modification, and pore-scale crude oil mobilization mechanisms. The alteration of overall wettability exhibits higher priority over interfacial tension in governing displacement dynamics. (3) Imbibition displacement exhibits selective mobilization characteristics for oil phases in pores. Specifically, when the oil phase contains complex hydrocarbon components, lighter fractions in larger pores are preferentially mobilized; when the oil composition is homogeneous, oil in smaller pores is mobilized first. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

19 pages, 3532 KiB  
Article
Machine Learning Prediction of CO2 Diffusion in Brine: Model Development and Salinity Influence Under Reservoir Conditions
by Qaiser Khan, Peyman Pourafshary, Fahimeh Hadavimoghaddam and Reza Khoramian
Appl. Sci. 2025, 15(15), 8536; https://doi.org/10.3390/app15158536 (registering DOI) - 31 Jul 2025
Viewed by 115
Abstract
The diffusion coefficient (DC) of CO2 in brine is a key parameter in geological carbon sequestration and CO2-Enhanced Oil Recovery (EOR), as it governs mass transfer efficiency and storage capacity. This study employs three machine learning (ML) models—Random Forest (RF), [...] Read more.
The diffusion coefficient (DC) of CO2 in brine is a key parameter in geological carbon sequestration and CO2-Enhanced Oil Recovery (EOR), as it governs mass transfer efficiency and storage capacity. This study employs three machine learning (ML) models—Random Forest (RF), Gradient Boost Regressor (GBR), and Extreme Gradient Boosting (XGBoost)—to predict DC based on pressure, temperature, and salinity. The dataset, comprising 176 data points, spans pressures from 0.10 to 30.00 MPa, temperatures from 286.15 to 398.00 K, salinities from 0.00 to 6.76 mol/L, and DC values from 0.13 to 4.50 × 10−9 m2/s. The data was split into 80% for training and 20% for testing to ensure reliable model evaluation. Model performance was assessed using R2, RMSE, and MAE. The RF model demonstrated the best performance, with an R2 of 0.95, an RMSE of 0.03, and an MAE of 0.11 on the test set, indicating high predictive accuracy and generalization capability. In comparison, GBR achieved an R2 of 0.925, and XGBoost achieved an R2 of 0.91 on the test set. Feature importance analysis consistently identified temperature as the most influential factor, followed by salinity and pressure. This study highlights the potential of ML models for predicting CO2 diffusion in brine, providing a robust, data-driven framework for optimizing CO2-EOR processes and carbon storage strategies. The findings underscore the critical role of temperature in diffusion behavior, offering valuable insights for future modeling and operational applications. Full article
Show Figures

Figure 1

13 pages, 1486 KiB  
Article
Evaluation of Miscible Gas Injection Strategies for Enhanced Oil Recovery in High-Salinity Reservoirs
by Mohamed Metwally and Emmanuel Gyimah
Processes 2025, 13(8), 2429; https://doi.org/10.3390/pr13082429 - 31 Jul 2025
Viewed by 229
Abstract
This study presents a comprehensive evaluation of miscible gas injection (MGI) strategies for enhanced oil recovery (EOR) in high-salinity reservoirs, with a focus on the Raleigh Oil Field. Using a calibrated Equation of State (EOS) model in CMG WinProp™, eight gas injection scenarios [...] Read more.
This study presents a comprehensive evaluation of miscible gas injection (MGI) strategies for enhanced oil recovery (EOR) in high-salinity reservoirs, with a focus on the Raleigh Oil Field. Using a calibrated Equation of State (EOS) model in CMG WinProp™, eight gas injection scenarios were simulated to assess phase behavior, miscibility, and swelling factors. The results indicate that carbon dioxide (CO2) and enriched separator gas offer the most technically and economically viable options, with CO2 demonstrating superior swelling performance and lower miscibility pressure requirements. The findings underscore the potential of CO2-EOR as a sustainable and effective recovery method in pressure-depleted, high-salinity environments. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

17 pages, 5158 KiB  
Article
Enhancing Oil Recovery Through Vibration-Stimulated Waterflooding: Experimental Insights and Mechanisms
by Shixuan Lu, Zhengyuan Zhang, Liming Dai and Na Jia
Fuels 2025, 6(3), 56; https://doi.org/10.3390/fuels6030056 - 29 Jul 2025
Viewed by 204
Abstract
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both [...] Read more.
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both crude and emulsified oil samples. Vibration significantly improves recovery by inducing stick-slip flow, lowering the threshold pressure, and enhancing oil phase permeability while suppressing the water phase flow. Crude oil recovery increased by up to 24% under optimal vibration conditions, while emulsified oil showed smaller gains due to higher viscosity. Intermittent vibration achieved similar recovery rates to continuous vibration, but with reduced energy use. Statistical analysis revealed a strong correlation between pressure fluctuations and oil production in vibration-assisted tests, but no such relationship in non-vibration cases. These results provide insight into the mechanisms behind vibration-enhanced recovery, supported by analysis of pressure and flow rate responses during waterflooding. Full article
Show Figures

Figure 1

20 pages, 3407 KiB  
Article
Impact of Adverse Mobility Ratio on Oil Mobilization by Polymer Flooding
by Abdulmajeed Murad, Arne Skauge, Behruz Shaker Shiran, Tormod Skauge, Alexandra Klimenko, Enric Santanach-Carreras and Stephane Jouenne
Polymers 2025, 17(15), 2033; https://doi.org/10.3390/polym17152033 - 25 Jul 2025
Viewed by 192
Abstract
Polymer flooding is a widely used enhanced oil recovery (EOR) method for improving energy efficiency and reducing the carbon footprint of oil production. Optimizing polymer concentration is critical for maximizing recovery while minimizing economic and environmental costs. Here, we present a systematic experimental [...] Read more.
Polymer flooding is a widely used enhanced oil recovery (EOR) method for improving energy efficiency and reducing the carbon footprint of oil production. Optimizing polymer concentration is critical for maximizing recovery while minimizing economic and environmental costs. Here, we present a systematic experimental study which shows that even very low concentrations of polymers yield relatively high recovery rates at adverse mobility ratios (230 cP oil). A series of core flood experiments were conducted on Bentheimer sandstone rock, with polymer concentrations ranging from 40 ppm (1.35 cP) to 600 ppm (10.0 cP). Beyond a mobility ratio threshold, increasing polymer concentration did not significantly enhance recovery. This plateau in performance was attributed to the persistence of viscous fingering and oil crossflow into pre-established water channels. The study suggests that low concentrations of polymer may mobilize oil at high mobility ratios by making use of the pre-established water channels as transport paths for the oil and that the rheology of the polymer enhances this effect. These findings enable reductions in the polymer concentration in fields with adverse mobility ratios, leading to substantial reductions in chemical usage, energy consumption, and environmental impact of the extraction process. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 3268 KiB  
Article
In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism
by Liangliang Wang, Minghua Shi, Jiaxin Li, Baiqiang Shi, Xiaoming Su, Yande Zhao, Qing Guo and Yuan Yuan
Energies 2025, 18(14), 3879; https://doi.org/10.3390/en18143879 - 21 Jul 2025
Viewed by 272
Abstract
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development [...] Read more.
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development of offshore oilfields. This study addresses the challenges hindering water flooding development in offshore oilfields by investigating the emulsification mechanism and key influencing factors based on oil–water emulsion characteristics, thereby proposing a novel in situ emulsification flooding method. Based on a fundamental analysis of oil–water properties, key factors affecting emulsion stability were examined. Core flooding experiments clarified the impact of spontaneous oil–water emulsification on water flooding recovery. Two-dimensional T1–T2 NMR spectroscopy was employed to detect pure fluid components, innovating the method for distinguishing oil–water distribution during flooding and revealing the characteristics of in situ emulsification interactions. The results indicate that emulsions formed between crude oil and formation water under varying rheometer rotational speeds (500–2500 r/min), water cuts (30–80%), and emulsification temperatures (40–85 °C) are all water-in-oil (W/O) type. Emulsion viscosity exhibits a positive correlation with shear rate, with droplet sizes primarily ranging between 2 and 7 μm and a viscosity amplification factor up to 25.8. Emulsion stability deteriorates with increasing water cut and temperature. Prolonged shearing initially increases viscosity until stabilization. In low-permeability cores, spontaneous oil–water emulsification occurs, yielding a recovery factor of only 30%. For medium- and high-permeability cores (water cuts of 80% and 50%, respectively), recovery factors increased by 9.7% and 12%. The in situ generation of micron-scale emulsions in porous media achieved a recovery factor of approximately 50%, demonstrating significantly enhanced oil recovery (EOR) potential. During emulsification flooding, the system emulsifies oil at pore walls, intensifying water–wall interactions and stripping wall-adhered oil, leading to increased T2 signal intensity and reduced relaxation time. Oil–wall interactions and collision frequencies are lower than those of water, which appears in high-relaxation regions (T1/T2 > 5). The two-dimensional NMR spectrum clearly distinguishes oil and water distributions. Full article
Show Figures

Figure 1

13 pages, 6157 KiB  
Article
Mechanistic Study of Oil Adsorption Behavior and CO2 Displacement Mechanism Under Different pH Conditions
by Xinwang Song, Yang Guo, Yanchang Chen and Shiling Yuan
Molecules 2025, 30(14), 2999; https://doi.org/10.3390/molecules30142999 - 17 Jul 2025
Viewed by 356
Abstract
Enhanced oil recovery (EOR) via CO2 flooding is a promising strategy for improving hydrocarbon recovery and carbon sequestration, yet the influence of pH on solid–liquid interfacial interactions in quartz-dominated reservoirs remains poorly understood. This study employs molecular dynamics (MD) simulations to investigate [...] Read more.
Enhanced oil recovery (EOR) via CO2 flooding is a promising strategy for improving hydrocarbon recovery and carbon sequestration, yet the influence of pH on solid–liquid interfacial interactions in quartz-dominated reservoirs remains poorly understood. This study employs molecular dynamics (MD) simulations to investigate the pH-dependent adsorption behavior of crude oil components on quartz surfaces and its impact on CO2 displacement mechanisms. Three quartz surface models with varying ionization degrees (0%, 9%, 18%, corresponding to pH 2–4, 5–7, and 7–9) were constructed to simulate different pH environments. The MD results reveal that aromatic hydrocarbons exhibit significantly stronger adsorption on quartz surfaces at high pH, with their maximum adsorption peak increasing from 398 kg/m3 (pH 2–4) to 778 kg/m3 (pH 7–9), while their alkane adsorption peaks decrease from 764 kg/m3 to 460 kg/m3. This pH-dependent behavior is attributed to enhanced cation–π interactions that are facilitated by Na+ ion aggregation on negatively charged quartz surfaces at high pH, which form stable tetrahedral configurations with aromatic molecules and surface oxygen ions. During CO2 displacement, an adsorption–stripping–displacement mechanism was observed: CO2 first forms an adsorption layer on the quartz surface, then penetrates the oil phase to induce the detachment of crude oil components, which are subsequently displaced by pressure. Although high pH enhances the Na+-mediated weakening of oil-surface interactions, which leads to a 37% higher diffusion coefficient (8.5 × 10−5 cm2/s vs. 6.2 × 10−5 cm2/s at low pH), the tighter packing of aromatic molecules at high pH slows down the displacement rate. This study provides molecular-level insights into pH-regulated adsorption and CO2 displacement processes, highlighting the critical role of the surface charge and cation–π interactions in optimizing CO2-EOR strategies for quartz-rich reservoirs. Full article
(This article belongs to the Special Issue Advances in Molecular Modeling in Chemistry, 2nd Edition)
Show Figures

Figure 1

22 pages, 9839 KiB  
Article
Dynamic Simulation of Nano-Gel Microspheres for Plugging Preferential Flow Channels and Enhancing Oil Recovery in Waterflooded Reservoirs
by Long Ren, Cong Zhao, Jian Sun, Cheng Jing, Haitao Bai, Qingqing Li and Xin Ma
Gels 2025, 11(7), 536; https://doi.org/10.3390/gels11070536 - 10 Jul 2025
Viewed by 234
Abstract
This study addresses the unclear mechanisms by which preferential flow channels (PFCs), formed during long-term waterflooding, affect nano-gel microsphere (NGM) flooding efficiency, utilizing CMG reservoir numerical simulation software. A dynamic evolution model of PFCs was established by coupling CROCKTAB (stress–porosity hysteresis) and CROCKTABW [...] Read more.
This study addresses the unclear mechanisms by which preferential flow channels (PFCs), formed during long-term waterflooding, affect nano-gel microsphere (NGM) flooding efficiency, utilizing CMG reservoir numerical simulation software. A dynamic evolution model of PFCs was established by coupling CROCKTAB (stress–porosity hysteresis) and CROCKTABW (water saturation-driven permeability evolution), and the deep flooding mechanism of NGMs (based on their gel properties such as swelling, elastic deformation, and adsorption, and characterized by a “plugging-migration-replugging” process) was integrated. The results demonstrate that neglecting PFCs overestimates recovery by 8.7%, while NGMs reduce permeability by 33% (from 12 to 8 mD) in high-conductivity zones via “bridge-plug-filter cake” structures, diverting flow to low-permeability layers (+33% permeability, from 4.5 to 6 mD). Field application in a Chang 6 tight reservoir (permeability variation coefficient 0.82) confirms a >10-year effective period with 0.84% incremental recovery (from 7.31% to 8.15%) and favorable economics (ROI ≈ 10:1), providing a theoretical and engineering framework for gel-based conformance control in analogous reservoirs. Full article
(This article belongs to the Special Issue Applications of Gels for Enhanced Oil Recovery)
Show Figures

Figure 1

17 pages, 2123 KiB  
Article
Challenges and Prospects of Enhanced Oil Recovery Using Acid Gas Injection Technology: Lessons from Case Studies
by Abbas Hashemizadeh, Amirreza Aliasgharzadeh Olyaei, Mehdi Sedighi and Ali Hashemizadeh
Processes 2025, 13(7), 2203; https://doi.org/10.3390/pr13072203 - 10 Jul 2025
Viewed by 522
Abstract
Acid gas injection (AGI), which primarily involves injecting hydrogen sulfide (H2S) and carbon dioxide (CO2), is recognized as a cost-efficient and environmentally sustainable method for controlling sour gas emissions in oil and gas operations. This review examines case studies [...] Read more.
Acid gas injection (AGI), which primarily involves injecting hydrogen sulfide (H2S) and carbon dioxide (CO2), is recognized as a cost-efficient and environmentally sustainable method for controlling sour gas emissions in oil and gas operations. This review examines case studies of twelve AGI projects conducted in Canada, Oman, and Kazakhstan, focusing on reservoir selection, leakage potential assessment, and geological suitability evaluation. Globally, several million tonnes of acid gases have already been sequestered, with Canada being a key contributor. The study provides a critical analysis of geochemical modeling data, monitoring activities, and injection performance to assess long-term gas containment potential. It also explores AGI’s role in Enhanced Oil Recovery (EOR), noting that oil production can increase by up to 20% in carbonate rock formations. By integrating technical and regulatory insights, this review offers valuable guidance for implementing AGI in geologically similar regions worldwide. The findings presented here support global efforts to reduce CO2 emissions, and provide practical direction for scaling-up acid gas storage in deep subsurface environments. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

24 pages, 13675 KiB  
Article
Microscopic Investigation of the Effect of Different Wormhole Configurations on CO2-Based Cyclic Solvent Injection in Post-CHOPS Reservoirs
by Sepideh Palizdan, Farshid Torabi and Afsar Jaffar Ali
Processes 2025, 13(7), 2194; https://doi.org/10.3390/pr13072194 - 9 Jul 2025
Viewed by 230
Abstract
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one [...] Read more.
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one of the main mechanisms of the CSI process. However, due to the presence of complex high-permeable channels known as wormholes in Post-Cold Heavy Oil Production with Sands (Post-CHOPS) reservoirs, understanding the effect of each operational parameter on the performance of the CSI process in these reservoirs requires a pore-scale investigation of different wormhole configurations. Therefore, in this project, a comprehensive microfluidic experimental investigation into the effect of symmetrical and asymmetrical wormholes during the CSI process has been conducted. A total of 11 tests were designed, considering four different microfluidic systems with various wormhole configurations. Various operational parameters, including solvent type, pressure depletion rate, and the number of cycles, were considered to assess their effects on foamy oil behavior in post-CHOPS reservoirs in the presence of wormholes. The finding revealed that the wormhole configuration plays a crucial role in controlling the oil production behavior. While the presence of the wormhole in a symmetrical design could positively improve oil production, it would restrict oil production in an asymmetrical design. To address this challenge, we used the solvent mixture containing 30% propane that outperformed CO2, overcame the impact of the asymmetrical wormhole, and increased the total recovery factor by 14% under a 12 kPa/min pressure depletion rate compared to utilizing pure CO2. Moreover, the results showed that applying a lower pressure depletion rate at 4 kPa/min could recover a slightly higher amount of oil, approximately 2%, during the first cycle compared to tests conducted under higher pressure depletion rates. However, in later cycles, a higher pressure depletion rate at 12 kPa/min significantly improved foamy oil flow quality and, subsequently, heavy oil recovery. The interesting finding, as observed, is the gap difference between the total recovery factor at the end of the cycle and the recovery factor after the first cycle, which increases noticeably with higher pressure depletion rate, increasing from 9.5% under 4 kPa/min to 16% under 12 kPa/min. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

10 pages, 2480 KiB  
Article
Interface Design in Bimetallic PdNi Nanowires for Boosting Alcohol Oxidation Performances
by Zhen He, Huangxu Li and Lingwen Liao
Nanomaterials 2025, 15(13), 1047; https://doi.org/10.3390/nano15131047 - 5 Jul 2025
Viewed by 311
Abstract
The rational design of a bimetallic nanostructure with a phase separation and interface is of great importance to enhance electrocatalytic performance. Herein, PdNi heterostructures with controlled elemental distributions were constructed via a seeded growth strategy. Partially coated Ni islands in the Pd-Ni nanowire [...] Read more.
The rational design of a bimetallic nanostructure with a phase separation and interface is of great importance to enhance electrocatalytic performance. Herein, PdNi heterostructures with controlled elemental distributions were constructed via a seeded growth strategy. Partially coated Ni islands in the Pd-Ni nanowire and strained Pd branches in the Pd-NiPd nanowires are revealed, respectively. Impressively, Pd-NiPd nanowires with abundant branches exhibit a superior mass current density and cycling stability toward an ethanol oxidation reaction (EOR) and ethylene glycol oxidation reaction (EGOR). The highest mass activities of 8.63 A mgPd−1 and 12.53 A mgPd−1 for EOR and EGOR, respectively, are realized on the Pd-NiPd nanowires. Theoretical calculations indicate that the Pd (100)-PdNi (111) interface stands out as an active site for enhancing OH adsorption and the decreasing CO bonding interaction. This study not only puts forward a simple method to construct bimetallic nanostructures with desired elemental distributions and interfaces but also demonstrates the significance of interface engineering in regulating the catalytic activity of metallic nanomaterials. Full article
Show Figures

Figure 1

22 pages, 2066 KiB  
Article
Evaluation of Oil Displacement by Polysaccharide Fermentation Broth of Athelia rolfsii Under Extreme Reservoir Conditions
by Haowei Fu, Jianlong Xiu, Lixin Huang, Lina Yi, Yuandong Ma and Sicai Wang
Molecules 2025, 30(13), 2861; https://doi.org/10.3390/molecules30132861 - 4 Jul 2025
Viewed by 251
Abstract
In the development of high-temperature and high-salinity oil fields, biopolymer scleroglucan flooding technology faces significant challenges. Traditional scleroglucan products exhibit poor injectability and high extraction costs. This study investigated the application potential of the original fermentation broth of exopolysaccharides (EPS) produced by microorganisms [...] Read more.
In the development of high-temperature and high-salinity oil fields, biopolymer scleroglucan flooding technology faces significant challenges. Traditional scleroglucan products exhibit poor injectability and high extraction costs. This study investigated the application potential of the original fermentation broth of exopolysaccharides (EPS) produced by microorganisms in a simulated high-temperature and high-salinity oil reservoir environment. The polysaccharide was identified as scleroglucan through IR and NMR analysis. Its stability and rheological properties were comprehensively evaluated under extreme conditions, including temperatures up to 150 °C, pH levels ranging from 1 to 13, and salinities up to 22 × 104 mg/L. The results demonstrated that EPS maintained excellent viscosity and stability, particularly at 76.6 °C and 22 × 104 mg/L salinity, where its viscosity remained above 80% for 35 days. This highlights its significant viscoelasticity and stability in high-temperature and high-salinity oil reservoirs. Additionally, this study, for the first time, examined the rheological properties of the original fermentation broth of scleroglucan, specifically assessing its injectability and enhanced oil recovery (EOR) performance in a simulated Middle Eastern high-temperature, high-salinity, medium-low permeability reservoir environment. The findings revealed an effective EOR exceeding 15%, confirming the feasibility of using the original fermentation broth as a biopolymer for enhancing oil recovery in extreme reservoir conditions. Based on these experimental results, it is concluded that the original fermentation broth of Athelia rolfsii exhibits superior performance under high-temperature and high-salinity conditions in medium–low permeability reservoirs, offering a promising strategy for future biopolymer flooding in oil field development. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

20 pages, 9096 KiB  
Article
Microscopic Mechanism Study on Gas–Crude-Oil Interactions During the CO2 Flooding Process in Water-Bearing Reservoirs
by Wei Xia, Yu-Bo Wang, Jiang-Tao Wu, Tao Zhang, Liang Gong and Chuan-Yong Zhu
Int. J. Mol. Sci. 2025, 26(13), 6402; https://doi.org/10.3390/ijms26136402 - 3 Jul 2025
Viewed by 230
Abstract
The impact of water on CO2 sequestration and enhanced oil recovery processes is significant. In this study, a CO2–water-film–crude-oil–rock molecular system was established. Then, the influence of water-film thickness on the dissolution and dispersion of CO2 and crude oil [...] Read more.
The impact of water on CO2 sequestration and enhanced oil recovery processes is significant. In this study, a CO2–water-film–crude-oil–rock molecular system was established. Then, the influence of water-film thickness on the dissolution and dispersion of CO2 and crude oil under different temperature and pressure scenarios was examined through molecular dynamics simulations. The results indicate that water films hinder CO2 diffusion into the oil, reducing its ability to lower oil density. When the thickness of the water film increases from 0 nm to 3 nm, the oil density increases by 86.9%, and the average diffusion coefficient of oil decreases by 72.30%. Increasing the temperature enhances CO2–oil interactions, promoting CO2 and water diffusion into oil, thereby reducing oil density. Under conditions of a 2 nm water film and 10 MPa pressure, increasing the temperature from 100 °C to 300 °C results in a decrease of approximately 32.1% in the oil density. Pressure also promotes oil and water-film density reduction, but its effect is less significant compared to temperature. These results elucidate the function of the water film in CO2-EOR processes and its impact on CO2 dissolution and diffusion in water-bearing reservoirs. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 4351 KiB  
Article
Preparation and Enhanced Oil Recovery Mechanisms of Janus-SiO2-Reinforced Polymer Gel Microspheres
by Fei Gao, Baolei Liu, Yuelong Liu, Lei Xing and Yan Zhang
Gels 2025, 11(7), 506; https://doi.org/10.3390/gels11070506 - 30 Jun 2025
Cited by 1 | Viewed by 376
Abstract
In order to improve oil recovery efficiency in low-permeability reservoirs, this study developed amphiphilic Janus-SiO2 nanoparticles to prepare polymer gel microspheres for enhanced oil recovery (EOR). Firstly, Janus-SiO2 nanoparticles were synthesized via surface modification using (3-aminopropyl)triethoxysilane and α-bromoisobutyryl bromide. Fourier-transform infrared [...] Read more.
In order to improve oil recovery efficiency in low-permeability reservoirs, this study developed amphiphilic Janus-SiO2 nanoparticles to prepare polymer gel microspheres for enhanced oil recovery (EOR). Firstly, Janus-SiO2 nanoparticles were synthesized via surface modification using (3-aminopropyl)triethoxysilane and α-bromoisobutyryl bromide. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) characterization confirmed the successful grafting of amino and styrene chains, with the particle size increasing from 23.8 nm to 32.9 nm while maintaining good dispersion stability. The Janus nanoparticles exhibited high interfacial activity, reducing the oil–water interfacial tension to 0.095 mN/m and converting the rock surface wettability from oil-wet (15.4°) to strongly water-wet (120.6°), thereby significantly enhancing the oil stripping efficiency. Then, polymer gel microspheres were prepared by reversed-phase emulsion polymerization using Janus-SiO2 nanoparticles as emulsifiers. When the concentration range of nanoparticles was 0.1–0.5 wt%, the particle size range of polymer gel microspheres was 316.4–562.7 nm. Polymer gel microspheres prepared with a high concentration of Janus-SiO2 nanoparticles can ensure the moderate swelling capacity of the particles under high-temperature and high-salinity conditions. At the same time, it can also improve the mechanical strength and shear resistance of the microspheres. Core displacement experiments confirmed the dual synergistic effect of this system. Polymer gel microspheres can effectively plug high-permeability zones and improve sweep volume, while Janus-SiO2 nanoparticles enhance oil displacement efficiency. Ultimately, this system achieved an incremental oil recovery of 19.72%, exceeding that of conventional polymer microsphere systems by more than 5.96%. The proposed method provides a promising strategy for improving oil recovery in low-permeability heterogeneous reservoir development. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Graphical abstract

28 pages, 31155 KiB  
Article
Numerical Simulation of Treatment Capacity and Operating Limits of Alkali/Surfactant/Polymer (ASP) Flooding Produced Water Treatment Process in Oilfields
by Jiawei Zhu, Mingxin Wang, Keyu Jing, Jiajun Hong, Fanxi Bu and Zhihua Wang
Energies 2025, 18(13), 3420; https://doi.org/10.3390/en18133420 - 29 Jun 2025
Viewed by 339
Abstract
As an enhanced oil recovery (EOR) technique, alkali/surfactant/polymer (ASP) flooding effectively mitigates production decline in mature oilfields through chemical flooding mechanisms. The breakthrough of ASP chemical agents poses challenges to the green and efficient separation of oilfield produced water. In this paper, sedimentation [...] Read more.
As an enhanced oil recovery (EOR) technique, alkali/surfactant/polymer (ASP) flooding effectively mitigates production decline in mature oilfields through chemical flooding mechanisms. The breakthrough of ASP chemical agents poses challenges to the green and efficient separation of oilfield produced water. In this paper, sedimentation separation of produced water was simulated using the Eulerian method and the RNG k–ε model. In addition, the filtration process was simulated using a discrete phase model (DPM) and a porous media model. The distribution characteristics of oil/suspended solids obtained through simulation, along with the water quality parameters at each treatment node, were systematically extracted, and the influence of operating conditions on treatment capacity was analyzed. Simulations reveal that elevated treatment loads and produced water polymer concentrations synergistically impair ASP flooding produced water treatment efficiency. Fluctuations of operating conditions generate oil/suspended solids content in output water ranges spanning 13–78 mg/L and 19–92 mg/L, respectively. The interpolation method is adopted to determine the critical water quality parameters of each treatment node, ensuring that the treated produced water meets the treatment standards. The operating limits of the ASP flooding produced water treatment process are established. Full article
(This article belongs to the Special Issue Advances in Wastewater Treatment, 2nd Edition)
Show Figures

Figure 1

Back to TopTop