Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = EAF simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2578 KB  
Review
Thermodynamic Guidelines for Minimizing Chromium Losses in Electric Arc Furnace Steelmaking
by Anže Bajželj and Jaka Burja
Metals 2025, 15(10), 1129; https://doi.org/10.3390/met15101129 (registering DOI) - 11 Oct 2025
Abstract
In the production of stainless steel, chromium losses, particularly in the electric arc furnace (EAF) phase, pose a challenge. This study addresses these issues by reviewing and analyzing the thermodynamics of the Fe-Cr-C-O-(Si) system, highlighting discrepancies in existing literature regarding Gibbs free energies, [...] Read more.
In the production of stainless steel, chromium losses, particularly in the electric arc furnace (EAF) phase, pose a challenge. This study addresses these issues by reviewing and analyzing the thermodynamics of the Fe-Cr-C-O-(Si) system, highlighting discrepancies in existing literature regarding Gibbs free energies, interaction parameters, and other thermodynamic data. We developed a simple to use thermodynamic model to simulate the oxidation process using established data from scientific literature. The model calculates the equilibrium solubilities of chromium and carbon, showing how process variables like temperature, partial pressure of carbon monoxide, and silicon concentration influence chromium oxidation. The findings confirm that higher temperatures and the presence of silicon significantly reduce chromium loss by favoring carbon oxidation over chromium. The research concludes by providing practical guidelines for minimizing chromium losses in EAFs, such as protecting scrap with carbon, silicon, and aluminum; controlling oxygen intake; and ensuring a high melt temperature during decarburization. These guidelines aim to improve the economic efficiency and sustainability of stainless steel production. The paper is an expanded version of a prior conference paper. Full article
(This article belongs to the Special Issue Recent Developments and Research on Ironmaking and Steelmaking)
25 pages, 5652 KB  
Article
Modeling and Optimization of the Vacuum Degassing Process in Electric Steelmaking Route
by Bikram Konar, Noah Quintana and Mukesh Sharma
Processes 2025, 13(8), 2368; https://doi.org/10.3390/pr13082368 - 25 Jul 2025
Viewed by 943
Abstract
Vacuum degassing (VD) is a critical refining step in electric arc furnace (EAF) steelmaking for producing clean steel with reduced nitrogen and hydrogen content. This study develops an Effective Equilibrium Reaction Zone (EERZ) model focused on denitrogenation (de-N) by simulating interfacial reactions at [...] Read more.
Vacuum degassing (VD) is a critical refining step in electric arc furnace (EAF) steelmaking for producing clean steel with reduced nitrogen and hydrogen content. This study develops an Effective Equilibrium Reaction Zone (EERZ) model focused on denitrogenation (de-N) by simulating interfacial reactions at the bubble–steel interface (Z1). The model incorporates key process parameters such as argon flow rate, vacuum pressure, and initial nitrogen and sulfur concentrations. A robust empirical correlation was established between de-N efficiency and the mass of Z1, reducing prediction time from a day to under a minute. Additionally, the model was further improved by incorporating a dynamic surface exposure zone (Z_eye) to account for transient ladle eye effects on nitrogen removal under deep vacuum (<10 torr), validated using synchronized plant trials and Python-based video analysis. The integrated approach—combining thermodynamic-kinetic modeling, plant validation, and image-based diagnostics—provides a robust framework for optimizing VD control and enhancing nitrogen removal control in EAF-based steelmaking. Full article
Show Figures

Figure 1

25 pages, 3674 KB  
Article
CFD Modelling of Refining Behaviour in EAF: Influence of Burner Arrangement and Oxygen Flow Rates
by Sathvika Kottapalli, Orlando Ugarte, Bikram Konar, Tyamo Okosun and Chenn Q. Zhou
Metals 2025, 15(7), 775; https://doi.org/10.3390/met15070775 - 9 Jul 2025
Viewed by 561
Abstract
The electric arc furnace (EAF) process includes key stages: charging scrap metal, melting using electric arcs, refining through oxygen injection and slag formation, and tapping molten steel. Recently, EAF steelmaking has become increasingly important due to its flexibility with recycled materials, lower environmental [...] Read more.
The electric arc furnace (EAF) process includes key stages: charging scrap metal, melting using electric arcs, refining through oxygen injection and slag formation, and tapping molten steel. Recently, EAF steelmaking has become increasingly important due to its flexibility with recycled materials, lower environmental impact, and reduced investment costs. This study focuses specifically on select aspects of the refining stage, analysing decarburization and the associated exothermic oxidation reactions following the removal of carbon with oxygen injection. Particular attention is given to FeO generation during refining, as it strongly affects slag chemistry, yield losses, and overall efficiency. Using a Computational Fluid Dynamics (CFD)-based refining simulator validated with industrial data from EVRAZ North America (showing an 8.57% deviation), this study investigated the impact of oxygen injection rate and burner configuration. The results in a three-burner EAF operation showed that increasing oxygen injection by 10% improved carbon removal by 5%, but with an associated increase of FeO generation of 22%. Conversely, reducing oxygen injection by 15% raised the residual carbon content by 43% but lowered FeO by 23%. Moreover, the impact of the number of burners was analysed by simulating a second scenario with 6 burners. The results show that by increasing the number of burners from three to six, the target carbon is reached 33% faster while increasing FeO by 42.5%. Moreover, by reducing the oxygen injection in the six-burner case, it is possible to reduce FeO generation from 42.5 to 28.5% without significantly impacting carbon removal. This set of results provides guidance for burner optimization and understanding the impact of oxygen injection on refining efficiency. Full article
Show Figures

Figure 1

21 pages, 5164 KB  
Article
An Evaluation of the Robustness of Length-Based Stock Assessment Approaches for Sustainable Fisheries Management in Data and Capacity Limited Situations
by Laurence T. Kell and Rishi Sharma
Sustainability 2025, 17(11), 4791; https://doi.org/10.3390/su17114791 - 23 May 2025
Cited by 1 | Viewed by 1273
Abstract
To ensure sustainability, the Ecosystem Approach to Fisheries (EAF) requires the evaluation of the impacts of fisheries beyond the main targeted species, to include those on bycaught, endangered, threatened and protected populations and keystone species. However, traditional stock assessments require extensive datasets that [...] Read more.
To ensure sustainability, the Ecosystem Approach to Fisheries (EAF) requires the evaluation of the impacts of fisheries beyond the main targeted species, to include those on bycaught, endangered, threatened and protected populations and keystone species. However, traditional stock assessments require extensive datasets that are often unavailable for data-limited fisheries, particularly in small-scale settings or in the Global South. This study evaluates the robustness of length-based approaches for fish stock assessment by comparing simple indicators and quantitative methods using an age-structured Operating Model. Simulations were conducted for a range of scenarios, for a range of life-history types and recruitment and natural mortality dynamics. Results reveal that while length-based approaches can effectively track trends in fishing mortality, performance varies significantly depending on species-specific life histories and assumptions about key parameters. Simple indicators often matched or outperformed complex methods, particularly when assumptions about equilibrium conditions or natural mortality were violated. The study highlights the limitations of length-based methods for classifying stock status relative to reference points, but demonstrates their utility when used with historical reference periods or as part of empirical harvest control rules. The findings provide practical guidance for applying length-based approaches in data-limited fisheries management, ensuring sustainability in data- and capacity-limited situations. Full article
Show Figures

Figure 1

15 pages, 2665 KB  
Article
Fluid Dynamics Analysis of Coherent Jet with a Mixed Shrouding H2-CO2/N2 for EAF Steelmaking
by Songtao Yan, Fuhai Liu, Rong Zhu, Guangsheng Wei and Kai Dong
Metals 2025, 15(3), 291; https://doi.org/10.3390/met15030291 - 7 Mar 2025
Viewed by 792
Abstract
In order to suppress the rapid combustion effect and consumption rate of pure hydrogen gas, N2 or CO2 at flow rates of 0, 80, and 240 Nm3/h was pre-mixed with shrouding H2 at flow rates of 800, 720, [...] Read more.
In order to suppress the rapid combustion effect and consumption rate of pure hydrogen gas, N2 or CO2 at flow rates of 0, 80, and 240 Nm3/h was pre-mixed with shrouding H2 at flow rates of 800, 720, and 560 Nm3/h at room temperature, and the behaviors of the main oxygen jet and shrouding flame were analyzed by both numerical simulation and combustion experiments. The results showed that, because of the participation of CO2 in the H2 combustion reaction, the length of the axial velocity potential core was reduced using the CO2 shrouding mixed injection method, compared to the same mixed rate of N2. This trend would be further enhanced as N2 and CO2 mixing ratio increased. Meanwhile, when the shrouding mixed rate is 30%, the maximum axial and radial expansion rate generated by N2-H2 shrouding method is 1.28 and 1.04 times longer than that by the CO2-H2 shrouding method. The Fo-a, theoretical impaction depth and area generated by the 10% N2 shrouding mixed rate was 84.0, 95.5 and 86.4% of those generated by the traditional coherent jet, respectively, which indicated that the 10% N2 shrouding mixed rate method might lead to comparable production indexes in the EAF steelmaking process. Full article
(This article belongs to the Special Issue Advanced Metal Smelting Technology and Prospects)
Show Figures

Figure 1

26 pages, 10523 KB  
Article
Fuzzy Logic Controller for Power Control of an Electric Arc Furnace
by Loredana Ghiormez, Manuela Panoiu and Caius Panoiu
Mathematics 2024, 12(21), 3445; https://doi.org/10.3390/math12213445 - 4 Nov 2024
Cited by 5 | Viewed by 1937
Abstract
Electric Arc Furnaces (EAFs) are widely used in the steel manufacturing industry to melt scrap steel by employing a large number of electric arcs. EAFs play an important role in ensuring the efficient production of steel. However, their nonlinear and variable load characteristics [...] Read more.
Electric Arc Furnaces (EAFs) are widely used in the steel manufacturing industry to melt scrap steel by employing a large number of electric arcs. EAFs play an important role in ensuring the efficient production of steel. However, their nonlinear and variable load characteristics have a significant impact on power quality. Because the active power of an electric arc depends on its length, a system for controlling the electrode positions is necessary. This paper presents a control system based on a fuzzy logic controller for the active power control of an electric arc furnace. Individual simulation scenarios were chosen with both reference values and the process taken into consideration. The reference, constant value, step variation, and the sequence of step variation were investigated, as well as step disturbances and the sequence of step disturbances from the viewpoint of the process. Furthermore, the procedure of changing the tap on a transformer was investigated. The proposed solution minimizes the time required for charge elaboration, but the main benefit is that there are no additional costs in the implementation process because the installation remains identical, with the only changes being improvements to soft control management. Full article
(This article belongs to the Special Issue Fuzzy Applications in Industrial Engineering, 3rd Edition)
Show Figures

Figure 1

19 pages, 6017 KB  
Article
CFD Modeling of HBI/scrap Melting in Industrial EAF and the Impact of Charge Layering on Melting Performance
by Orlando Ugarte, Jianghua Li, Jeff Haeberle, Thomas Frasz, Tyamo Okosun and Chenn Q. Zhou
Materials 2024, 17(21), 5139; https://doi.org/10.3390/ma17215139 - 22 Oct 2024
Cited by 2 | Viewed by 2224
Abstract
The melting of scrap and hot briquetted iron (HBI) in an AC electric arc furnace (EAF) is simulated by an advanced 3D computational fluid dynamics (CFD) model that captures the arc heating, the scrap/HBI melting process, and the solid collapse mechanisms. The CFD [...] Read more.
The melting of scrap and hot briquetted iron (HBI) in an AC electric arc furnace (EAF) is simulated by an advanced 3D computational fluid dynamics (CFD) model that captures the arc heating, the scrap/HBI melting process, and the solid collapse mechanisms. The CFD model is used to simulate a scenario where charge layering and EAF power profiles are provided by a real EAF operation. CFD simulation of the EAF operation shows proper prediction of the charge melting when compared with standard industry practice. Namely, the CFD model predicts a 32.5%/67.5% ratio of solid/liquid steel at the beginning of refining, which approaches the 30%/70% ratio used in standard practice. Based on this prediction, the melting rate in the CFD results differs by 8.3% from actual EAF operation. The impact of charge layering on melting is also investigated. CFD results show that distributing charge material into a greater number of layers in the first bucket (10 layers as compared to 4) enhances the melting rate by 12%. However, including dense material at the bottom of the furnace deteriorates melting performance, reducing the impact of the number of layers of the charge. The CFD platform can be used to optimize the use of HBI/scrap in real EAF operations and to determine best recipe practices. Full article
Show Figures

Figure 1

17 pages, 5208 KB  
Article
The Development of Simulation and Optimisation Tools with an Intuitive User Interface to Improve the Operation of Electric Arc Furnaces
by Simon Tomažič, Igor Škrjanc, Goran Andonovski and Vito Logar
Machines 2024, 12(8), 508; https://doi.org/10.3390/machines12080508 - 28 Jul 2024
Cited by 1 | Viewed by 1665
Abstract
The paper presents a novel decision support system designed to improve the efficiency and effectiveness of decision-making for electric arc furnace (EAF) operators. The system integrates two primary tools: the EAF Simulator, which is based on advanced mechanistic models, and the EAF Optimiser, [...] Read more.
The paper presents a novel decision support system designed to improve the efficiency and effectiveness of decision-making for electric arc furnace (EAF) operators. The system integrates two primary tools: the EAF Simulator, which is based on advanced mechanistic models, and the EAF Optimiser, which uses data-driven models trained on historical data. These tools enable the simulation and optimisation of furnace settings in real time and provide operators with important insights. A key objective was to develop a user-friendly interface with the Siemens Insights Hub Cloud Service and Node-RED that enables interactive management and support. The interface allows operators to analyse and compare past and simulated batches by adjusting the input data and parameters, resulting in improved optimisation and reduced costs. In addition, the system focuses on the collection and pre-processing of input data for the simulator and optimiser and uses Message Queuing Telemetry Transport (MQTT)communication between the user interfaces and models to ensure seamless data exchange. The EAF Simulator uses a comprehensive mathematical model to simulate the complex dynamics of heat and mass transfer, while the EAF Optimiser uses a fuzzy logic-based approach to predict optimal energy consumption. The integration with Siemens Edge Streaming Analytics ensures robust data collection and real-time responsiveness. The dual-interface design improves user accessibility and operational flexibility. This system has significant potential to reduce energy consumption by up to 10% and melting times by up to 15%, improving the efficiency and sustainability of the entire process. Full article
(This article belongs to the Section Industrial Systems)
Show Figures

Figure 1

19 pages, 7301 KB  
Article
The Melting Behavior of Hydrogen Direct Reduced Iron in Molten Steel and Slag: An Integrated Computational and Experimental Study
by Fabian Andres Calderon Hurtado, Joseph Govro, Arezoo Emdadi and Ronald J. O’Malley
Metals 2024, 14(7), 821; https://doi.org/10.3390/met14070821 - 17 Jul 2024
Cited by 4 | Viewed by 3740
Abstract
Direct reduced iron (DRI) and hot briquetted iron (HBI) are essential feedstocks for tramp element control in the electric arc furnace (EAF). Due to greenhouse gas (GHG) concerns related to CO2 emissions, hydrogen as a substitute for natural gas and a reductant [...] Read more.
Direct reduced iron (DRI) and hot briquetted iron (HBI) are essential feedstocks for tramp element control in the electric arc furnace (EAF). Due to greenhouse gas (GHG) concerns related to CO2 emissions, hydrogen as a substitute for natural gas and a reductant in DRI production is being widely explored to reduce GHG emissions in ironmaking. This study examines the melting behavior of hydrogen DRI (H-DRI) pellets in the EAF containing low-carbon (0.1 wt.%) molten steel and molten slag. A computational heat transfer model was developed to predict the melting behavior of H-DRI pellets. To validate the model, a set of experimental laboratory simulations was conducted by immersing H-DRI in a molten steel bath and slag. The temperature history at the center of the pellet during melting and the shell thickness at different melting stages were utilized to validate the model. The simulation results agree with the experimental measurements of steel balls and H-DRI in different metallic molten steel and slag baths. Full article
Show Figures

Graphical abstract

24 pages, 4453 KB  
Article
A Novel Error-Based Adaptive Feedback Zeroing Neural Network for Solving Time-Varying Quadratic Programming Problems
by Daxuan Yan, Chunquan Li, Junyun Wu, Jinhua Deng, Zhijun Zhang, Junzhi Yu and Peter X. Liu
Mathematics 2024, 12(13), 2090; https://doi.org/10.3390/math12132090 - 3 Jul 2024
Cited by 5 | Viewed by 1510
Abstract
This paper introduces a novel error-based adaptive feedback zeroing neural network (EAF-ZNN) to solve the time-varying quadratic programming (TVQP) problem. Compared to existing variable gain ZNNs, the EAF-ZNN dynamically adjusts the parameter to adaptively accelerate without increasing to very large values over time. [...] Read more.
This paper introduces a novel error-based adaptive feedback zeroing neural network (EAF-ZNN) to solve the time-varying quadratic programming (TVQP) problem. Compared to existing variable gain ZNNs, the EAF-ZNN dynamically adjusts the parameter to adaptively accelerate without increasing to very large values over time. Unlike adaptive fuzzy ZNN, which only considers the current convergence error, EAF-ZNN ensures regulation by introducing a feedback regulation mechanism between the current convergence error, the historical cumulative convergence error, the change rate of the convergence error, and the model gain parameter. This regulation mechanism promotes effective neural dynamic evolution, which results in high convergence rate and accuracy. This paper provides a detailed analysis of the convergence of the model, utilizing four distinct activation functions. Furthermore, the effect of changes in the proportional, integral, and derivative factors in the EAF-ZNN model on the rate of convergence is explored. To assess the superiority of EAF-ZNN in solving TVQP problems, a comparative evaluation with three existing ZNN models is performed. Simulation experiments demonstrate that the EAF-ZNN model exhibits a superior convergence rate. Finally, the EAF-ZNN model is compared with the other three models through the redundant robotic arms example, which achieves smaller position error. Full article
Show Figures

Figure 1

19 pages, 5441 KB  
Article
Numerical Study on Heat Transfer Characteristic of Hot Metal Transportation before EAF Steelmaking Process
by Weizhen Chen, Hang Hu, Shuai Wang, Feng Chen, Yufeng Guo and Lingzhi Yang
Metals 2024, 14(6), 673; https://doi.org/10.3390/met14060673 - 6 Jun 2024
Cited by 1 | Viewed by 1658
Abstract
The temperature of hot metal (HM) is crucial for the energy input and smelting in the electric arc furnace (EAF) steelmaking process with HM and scrap as the charge structure. However, due to the influence of many factors in the heat dissipation in [...] Read more.
The temperature of hot metal (HM) is crucial for the energy input and smelting in the electric arc furnace (EAF) steelmaking process with HM and scrap as the charge structure. However, due to the influence of many factors in the heat dissipation in HM transportation before the EAF steelmaking process, the temperature drop of HM before charged is usually fluctuating and uncertain. This situation is not conducive to the input energy control and energy optimization of the EAF steelmaking process. In this paper, a three-dimensional numerical model of a 90-ton hot metal ladle is established to simulate the heat transfer characteristic of HM transportation through ANSYS Fluent 2023 and verified by on-the-spot testing and sample analysis. The effects of ambient temperature, air velocity, slag thickness and furnace cover thickness on the temperature drop of HM are investigated and quantitatively analyzed in 30 numerical schemes. The results indicate that slag thickness is the most influential factor, followed by furnace cover thickness, air velocity and ambient temperature. In the case of 50 min transport time, the temperature drop of HM is 55.2, 15.06, 12.08, 10.38, 10.29 and 10.26 °C when the slag thickness is 0, 50, 100, 150, 200 and 250 mm, respectively. While HM is not covered by slag, the furnace cover can also greatly reduce the temperature drop. Based on the simulated data, a prediction model of HM temperature drop is obtained through the multi-factor coupling analysis and mathematical fitting. This study can help develop targeted insulation measures and determine the temperature of HM, which is expected to control the input energy for deep energy-saving optimization in the EAF steelmaking process. Full article
(This article belongs to the Special Issue Advances in Ironmaking and Steelmaking Processes (2nd Edition))
Show Figures

Figure 1

14 pages, 2189 KB  
Article
Collaborative Operation Optimization Scheduling Strategy of Electric Vehicle and Steel Plant Considering V2G
by Weiqi Pan, Bokang Zou, Fengtao Li, Yifu Luo, Qirui Chen, Yuanshi Zhang and Yang Li
Energies 2024, 17(11), 2448; https://doi.org/10.3390/en17112448 - 21 May 2024
Cited by 4 | Viewed by 1449
Abstract
With the shortage of fossil fuels and the increasingly serious problem of environmental pollution, low-carbon industrial production technology has become an effective way to reduce industrial carbon emissions. Electrified steel plants based on electronic arc furnaces (EAF) can reduce most carbon emissions compared [...] Read more.
With the shortage of fossil fuels and the increasingly serious problem of environmental pollution, low-carbon industrial production technology has become an effective way to reduce industrial carbon emissions. Electrified steel plants based on electronic arc furnaces (EAF) can reduce most carbon emissions compared with traditional steel production methods, but the production steps have fixed electricity consumption behavior, and impact loads are easily generated in the production process, which has an impact on the stability of the power system. EV has the characteristics of a mobile energy storage unit. When a large number of EVs are connected to the power grid, they can be regarded as distributed energy storage units with scheduling flexibility. Through the orderly scheduling of EVs, the spatial–temporal transfer of EV charging and discharging load can be realized. Therefore, the EV situated in the steel plant’s distribution network node has the capacity to be utilized by providing peak shaving and valley filling services for the steel production load. This study proposes an operation optimization scheduling method for EVs and steel plants. Taking the lowest overall operating cost as the objective, an optimal scheduling model considering EVs operation, steel plant, and distributed generator is established. Based on the IEEE-33 node distribution network model considering distributed generators, the proposed model is simulated and analyzed, and the effectiveness of the EV steel plant operation optimization scheduling strategy is investigated. Full article
Show Figures

Figure 1

20 pages, 9931 KB  
Article
Numerical Simulation of the Hydrogen-Based Directly Reduced Iron Melting Process
by Xiaoping Lin, Bing Ni and Fangqin Shangguan
Processes 2024, 12(3), 537; https://doi.org/10.3390/pr12030537 - 8 Mar 2024
Cited by 2 | Viewed by 2662
Abstract
In the context of carbon reduction and emission reduction, the new process of electric arc furnace (EAF) steelmaking based on direct hydrogen reduction is an important potential method for the green and sustainable development of the steel industry. Within an electric furnace for [...] Read more.
In the context of carbon reduction and emission reduction, the new process of electric arc furnace (EAF) steelmaking based on direct hydrogen reduction is an important potential method for the green and sustainable development of the steel industry. Within an electric furnace for the hydrogen-based direct reduction of iron, after hydrogen-based directly reduced iron (HDRI) is produced through a shaft furnace, HDRI is melted or smelted in an EAF to form final products such as high-purity iron or high-end special steel. As smelting proceeds in the electric furnace, it is easy for pieces of HDRI to bond to each other and become larger pieces; they may even form an “iceberg”, and this phenomenon may then worsen the smelting working conditions. Therefore, the melting of HDRI is the key to affecting the smelting cycle and energy consumption of EAFs. In this study, based on the basic characteristics of HDRI, we established an HDRI melting model using COMSOL Multiphysics 6.0 and studied the HDRI melting process, utilizing pellets with a radius of 8 mm. The results of our simulation show that the HDRI melting process can be divided into three different stages: generating a solidified steel layer, melting the solidified steel layer, and melting HDRI bodies. Moreover, multiple HDRI processes are prone to bonding in the melting process. Increasing the spacing between pieces of HDRI and increasing the preheating temperature used on the HDRI can effectively reduce the aforementioned bonding phenomenon. When the melting pool temperature is 1873 K, increasing the spacing of HDRI to 10 mm and increasing the initial HDRI temperature to 973 K was shown to effectively reduce or eliminate the bonding phenomenon among pieces of HDRI. In addition, with the increase in the melting pool temperature, the time required for melting within the three stages of the HDRI melting process shortened, and the melting speed was accelerated. With the increase in the temperature used to preheat the HDRI, the duration of the solidified steel layer’s existence was also shortened, but this had no significant impact on the time required for the complete melting of HDRI. This study provides a theoretical basis for the optimization of the HDRI process within EAFs. Full article
(This article belongs to the Special Issue Digital Research and Development of Materials and Processes)
Show Figures

Figure 1

21 pages, 9331 KB  
Article
Recovery of Materials from Refrigerator: A Study Focused on Product Distribution, Recyclability and LCA Evaluation
by Felipe Alejandro Garcia Paz, Magdalena Heibeck, Ashak Mahmud Parvez, Jorge Torrubia, Karl Gerald van den Boogaart and Simone Raatz
Sustainability 2024, 16(3), 1082; https://doi.org/10.3390/su16031082 - 26 Jan 2024
Cited by 8 | Viewed by 4192
Abstract
This study outlines a recycling initiative conducted at Rekular GmbH, focusing on the recycling of 100 refrigerators. The recycling process employed a combination of manual dismantling, depollution, and mechanical processing techniques. Manual dismantling followed a predefined protocol to extract various materials, while the [...] Read more.
This study outlines a recycling initiative conducted at Rekular GmbH, focusing on the recycling of 100 refrigerators. The recycling process employed a combination of manual dismantling, depollution, and mechanical processing techniques. Manual dismantling followed a predefined protocol to extract various materials, while the mechanical and physical processes involved shredding, zigzag, magnetic, and eddy current separation (ECS) to liberate and separate different materials. The resulting ferrous, non-ferrous and polymer product fractions were analyzed and categorized, providing valuable insights into the quality of interim products in the refrigerator recycling process. Simulations were then performed using FactSageTM version 8.2 and HSC Chemistry 10 version 10.3.7.1 software to simulate the recovery of metals from the ferrous and non-ferrous fractions using pyro metallurgical and hydrometallurgical methods. An electric arc furnace (EAF) was utilized for iron (Fe), while a re-smelter process for aluminium (Al), and the black copper route was simulated for copper (Cu) recovery. The recovery rates including metallurgical, mechanical, and physical processes are as follows: Fe (78%), Al (68.4%), and Cu (52.4%). In contrast, the recovery rates through metallurgical processes are as follows: Al (99%), Fe (79%), and Cu (88%). This discrepancy is attributed to losses of these elements resulting from incomplete liberation in mechanical processing. Additionally, a product/centric approach was applied and the recycling index reached 76% for recovery the Al, Cu, and Fe metals in a refrigerator recycling process. Turning to the environmental impact evaluation within the life cycle assessment (LCA), the process unit with the highest emissions per refrigerator in the recycling process was the use of nitrogen during the shredding process, accounting for 3.7 kg CO2 eq/refrigerator. Subsequently, the consumption of medium voltage electricity from the German grid during mechanical and physical separations contributed to 0.6 kg CO2 eq/refrigerator. The EAF, and electrolytic refining stages in the metallurgical recovery process also had a notable impact, generating 10.7 kg CO2 eq/refrigerator. Full article
(This article belongs to the Special Issue Sustainability: Resources and Waste Management)
Show Figures

Figure 1

27 pages, 13043 KB  
Article
Impact of Injection Rate on Flow Mixing during the Refining Stage in an Electric Arc Furnace
by Orlando Ugarte, Neel Busa, Bikram Konar, Tyamo Okosun and Chenn Q. Zhou
Metals 2024, 14(2), 134; https://doi.org/10.3390/met14020134 - 23 Jan 2024
Cited by 3 | Viewed by 2714
Abstract
During the refining stage of electric arc furnace (EAF) operation, molten steel is stirred to facilitate gas/steel/slag reactions and the removal of impurities, which determines the quality of the steel. The stirring process can be driven by the injection of oxygen, which is [...] Read more.
During the refining stage of electric arc furnace (EAF) operation, molten steel is stirred to facilitate gas/steel/slag reactions and the removal of impurities, which determines the quality of the steel. The stirring process can be driven by the injection of oxygen, which is carried out by burners operating in lance mode. In this study, a computational fluid dynamics (CFD) platform is used to simulate the liquid steel flow dynamics in an industrial-scale scrap-based EAF. The CFD platform simulates the three-dimensional, transient, non-reacting flow of the liquid steel bath stirred by oxygen injection to analyze the mixing process. In particular, the CFD study simulates liquid steel flow in an industrial-scale EAF with three asymmetric coherent jets, which impacts the liquid steel mixing under different injection conditions. The liquid steel mixing is quantified by defining two variables: the mixing time and the standard deviation of the flow velocity. The results indicate that the mixing rate of the bath is determined by flow dynamics near the injection cavities and that the formation of very low-velocity regions or ‘dead zones’ at the center of the furnace and the balcony regions prevents flow mixing. This study includes a baseline case, where oxygen is injected at 1000 SCFM in all the burners. Two sets of cases are also included: The first set considers cases where oxygen is injected at a reduced and at an increased uniform flow rate, 750 and 1250 SCFM, respectively. The second set considers cases with non-uniform injection rates in each burner, which keep the same total flow rate of the baseline case, 3000 SCFM. Comparison between the two sets of simulations against the baseline case shows that by increasing the uniform flow rate from 1000 to 1250 SCFM, the mixing time is reduced by 10.9%. Moreover, all the non-uniform injection cases reduce the mixing time obtained in the baseline case. However, the reduction in mixing times in these cases is accompanied by an increase in the standard deviations of the flow field. Among the non-uniform injection cases, the largest reduction in mixing time compared to the baseline case is 10.2%, which is obtained when the largest flow rates are assigned to coherent jets located opposite each other across the furnace. Full article
(This article belongs to the Special Issue Electric Arc Furnace and Converter Steelmaking)
Show Figures

Figure 1

Back to TopTop