Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = E × B drifts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11606 KiB  
Article
Emerging Highly Pathogenic Avian Influenza H5N1 Clade 2.3.4.4b Causes Neurological Disease and Mortality in Scavenging Ducks in Bangladesh
by Rokshana Parvin, Sumyea Binta Helal, Md Mohi Uddin, Shadia Tasnim, Md. Riabbel Hossain, Rupaida Akter Shila, Jahan Ara Begum, Mohammed Nooruzzaman, Ann Kathrin Ahrens, Timm Harder and Emdadul Haque Chowdhury
Vet. Sci. 2025, 12(8), 689; https://doi.org/10.3390/vetsci12080689 - 23 Jul 2025
Viewed by 509
Abstract
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular [...] Read more.
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular epidemiology and pathology of HPAI H5N1 viruses in unvaccinated scavenging ducks in Bangladesh, with the goal of assessing viral evolution and associated disease outcomes. Between June 2022 and March 2024, 40 scavenging duck flocks were investigated for HPAI outbreaks. Active HPAIV H5N1 infection was detected in 35% (14/40) of the flocks using RT-qPCR. Affected ducks exhibited clinical signs of incoordination, torticollis, and paralysis. Pathological examination revealed prominent meningoencephalitis, encephalopathy and encephalomalacia, along with widespread lesions in the trachea, lungs, liver, and spleen, indicative of systemic HPAIV infection. A phylogenetic analysis of full-genome sequences confirmed the continued circulation of clade 2.3.2.1a genotype G2 in these ducks. Notably, two samples of 2022 and 2023 harbored HPAIV H5N1 of clade 2.3.4.4b, showing genetic similarity to H5N1 strains circulating in Korea and Vietnam. A mutation analysis of the HA protein in clade 2.3.4.4b viruses revealed key substitutions, including T156A (loss of an N-linked glycosylation site), S141P (antigenic site A), and E193R/K (receptor-binding pocket), indicating potential antigenic drift and receptor-binding adaptation compared to clade 2.3.2.1a. The emergence of clade 2.3.4.4b with the first report of neurological and systemic lesions suggests ongoing viral evolution with increased pathogenic potential for ducks. These findings highlight the urgent need for enhanced surveillance and biosecurity to control HPAI spread in Bangladesh. Full article
Show Figures

Figure 1

24 pages, 5551 KiB  
Article
Global Validation of the Version F Geophysical Data Records from the TOPEX/POSEIDON Altimetry Satellite Mission
by Linda Forster, Jean-Damien Desjonquères, Matthieu Talpe, Shailen D. Desai, Hélène Roinard, François Bignalet-Cazalet, Philip S. Callahan, Josh K. Willis, Nicolas Picot, Glenn M. Shirtliffe and Thierry Guinle
Remote Sens. 2025, 17(14), 2418; https://doi.org/10.3390/rs17142418 - 12 Jul 2025
Viewed by 353
Abstract
We present the validation of the latest version F Geophysical Data Records (GDR-F) for the TOPEX/POSEIDON (T/P) altimetry satellite mission. The GDR-F products represent a major evolution with respect to the preceding version B Merged Geophysical Data Records (MGDR-B) that were released more [...] Read more.
We present the validation of the latest version F Geophysical Data Records (GDR-F) for the TOPEX/POSEIDON (T/P) altimetry satellite mission. The GDR-F products represent a major evolution with respect to the preceding version B Merged Geophysical Data Records (MGDR-B) that were released more than two decades ago. Specifically, the numerical retracking of the altimeter waveforms significantly mitigates long-standing issues in the TOPEX altimeter measurements, such as drifts and hemispherical biases in the altimeter range and significant wave height. Additionally, GDR-F incorporates updated geophysical model standards consistent with current altimeter missions, improved sea state bias corrections, end-of-mission calibration for the microwave radiometer, and refined orbit ephemeris solutions. These enhancements notably decrease the variance of the Sea Surface Height Anomaly (SSHA) measurements, with along-track SSHA variance reduced by 26 cm2 compared to MGDR-B and crossover SSHA variance lowered by 1 cm2. GDR-F products also demonstrate improved consistency with Jason-1 measurements during their tandem mission phase, reducing the standard deviation of differences from 6 cm to 4 cm when compared to Jason-1 GDR-E data. These results confirm that GDR-F products offer a more accurate and consistent T/P data record, enhancing the quality of long-term sea level studies and supporting inter-mission altimetry continuity. Full article
Show Figures

Graphical abstract

25 pages, 4740 KiB  
Article
Field Evaluation of Different Unmanned Aerial Spraying Systems Applied to Control Panonychus citri in Mountainous Citrus Orchards
by Zongyin Cui, Li Cui, Xiaojing Yan, Yifang Han, Weiguang Yang, Yilong Zhan, Jiapei Wu, Yingdong Qin, Pengchao Chen and Yubin Lan
Agriculture 2025, 15(12), 1283; https://doi.org/10.3390/agriculture15121283 - 13 Jun 2025
Viewed by 468
Abstract
In mountainous citrus orchards, the application of conventional ground sprayers for the control of citrus red mite (Panonychus citri) is often constrained by complex terrain and low operational efficiency. The Unmanned Aerial Spraying System (UASS), due to its low-altitude, low-volume, and [...] Read more.
In mountainous citrus orchards, the application of conventional ground sprayers for the control of citrus red mite (Panonychus citri) is often constrained by complex terrain and low operational efficiency. The Unmanned Aerial Spraying System (UASS), due to its low-altitude, low-volume, and high-maneuverability characteristics, has emerged as a promising alternative for pest management in such challenging environments. To evaluate the spray performance and field efficacy of different UASS types in controlling P. citri, five representative UASS models (JX25, DP, T1000, E-A2021, and T20), four mainstream pesticide formulations, and four novel tank-mix adjuvants were systematically assessed in a field experiment conducted in a typical hilly citrus orchard. The results showed that T20 delivered the best overall spray deposition, with upper canopy coverage reaching 10.63%, a deposition of 3.01 μg/cm2, and the highest pesticide utilization (43.2%). E-A2021, equipped with a centrifugal nozzle, produced the finest droplets and highest droplet density (120.3–151.4 deposits/cm2), but its deposition and coverage were lowest due to drift. Nonetheless, it exhibited superior penetration (dIPR 72.3%, dDPR 73.5%), facilitating internal canopy coverage. T1000, operating at higher flight parameters, had the weakest deposition. Formulation type had a limited impact, with microemulsions (MEs) outperforming emulsifiable concentrates (ECs) and suspension concentrates (SCs). All adjuvants improved spray metrics, especially Yimanchu and Silwet, which enhanced pesticide utilization to 46.8% and 46.4% for E-A2021 and DP, respectively. Adjuvant use increased utilization by 4.6–11.9%, but also raised ground losses by 1.5–4.2%, except for Yimanchu, which reduced ground loss by 2.3%. In terms of control effect, the rapid efficacy (1–7 days after application, DAA) of UASS spraying was slightly lower than that of ground sprayers—electric spray gun (ESG), while its residual efficacy (14–25 DAA) was slightly higher. The addition of adjuvants improved both rapid and residual efficacy, making it comparable to or even better than ESG. E-A2021 with 5% abamectin·etoxazole ME (5A·E) and Yimanchu achieved 97.4% efficacy at 25 DAA. Among UASSs, T20 showed the rapid control, while E-A2021 outperformed JX25 and T1000 due to finer droplets effectively targeting P. citri. In residual control (14–25 DAA), JX25 with 45% bifenazate·etoxazole SC (45B·E) was most effective, followed by T20. 5A·E and 45B·E showed better residual efficacy than abamectin-based formulations, which declined more rapidly. Adjuvants significantly extended control duration, with Yimanchu performing best. This study demonstrates that with optimized spraying parameters, nozzle types, and adjuvants, UASSs can match or surpass ground spraying in P. citri control in hilly citrus orchards, providing valuable guidance for precision pesticide application in complex terrain. Full article
(This article belongs to the Special Issue Smart Spraying Technology in Orchards: Innovation and Application)
Show Figures

Graphical abstract

14 pages, 1435 KiB  
Article
Epigenetic Drift Is Involved in the Efficacy of HBV Vaccination
by Francesca Ferraresi, Simona Anticoli, Stefano Salvioli, Chiara Pirazzini, Luciano Calzari, Davide Gentilini, Christian Albano, Reparata Rosa Di Prinzio, Salvatore Zaffina, Rita Carsetti, Paolo Garagnani, Anna Ruggieri and Katarzyna Malgorzata Kwiatkowska
Vaccines 2024, 12(12), 1330; https://doi.org/10.3390/vaccines12121330 - 27 Nov 2024
Viewed by 1508
Abstract
Background/Objectives: HBV infections can lead to serious liver complications that can have fatal consequences. In 2022, around 1.1 million individuals died from HBV-related cirrhosis and hepatocellular carcinoma. Vaccines allow us to save more than 2.5 million lives each year; however, up to [...] Read more.
Background/Objectives: HBV infections can lead to serious liver complications that can have fatal consequences. In 2022, around 1.1 million individuals died from HBV-related cirrhosis and hepatocellular carcinoma. Vaccines allow us to save more than 2.5 million lives each year; however, up to 10% of vaccinated individuals may not develop sufficient protective antibody levels. The aim of this study was to investigate the epigenetic drift in the response to HBV vaccine in isolated B cells. Methods: Epigenetic drift was measured by counting rare DNA methylation variants. These epivariants were detected in epigenome-wide data collected from isolated B cell samples from 41 responders and 30 non-responders (age range 22–62 years) to vaccination against HBV. Results: We found an accumulation of epivariants in the NR group, with a significant increase in hyper-methylated aberrations. We identified the chromosomes (1, 3, 11, 12, and 14) and genes (e.g., RUSC1_AS1 or TROVE2) particularly enriched in epivariants in NRs. The literature search and pathway analysis indicate that such genes are involved in the correct functioning of the immune system. Moreover, we observed a correlation between epigenetic drift and DNA methylation entropy in the male population of the cohort. Finally, we confirmed the correlation between epivariant loads and age-related epigenetic clocks. Conclusions: Our findings support the idea that an age-related derangement of the epigenetic architecture is involved in unresponsiveness to the HBV vaccine. Furthermore, the overall results highlight the interconnection between various epigenetic dynamics (such as drift, clocks, and entropy), although these interconnections seem not to be involved in the altered immunological activity. Full article
(This article belongs to the Special Issue Novel Vaccines and Vaccine Technologies for Emerging Infections)
Show Figures

Figure 1

39 pages, 8691 KiB  
Review
Comprehensive Review of Lithium-Ion Battery State of Charge Estimation by Sliding Mode Observers
by Vahid Behnamgol, Mohammad Asadi, Mohamed A. A. Mohamed, Sumeet S. Aphale and Mona Faraji Niri
Energies 2024, 17(22), 5754; https://doi.org/10.3390/en17225754 - 18 Nov 2024
Cited by 4 | Viewed by 2629
Abstract
The state of charge (SoC) is a critical parameter in lithium-ion batteries and their alternatives. It determines the battery’s remaining energy capacity and influences its performance longevity. Accurate SoC estimation is essential for making informed charging and discharging decisions, mitigating the risks of [...] Read more.
The state of charge (SoC) is a critical parameter in lithium-ion batteries and their alternatives. It determines the battery’s remaining energy capacity and influences its performance longevity. Accurate SoC estimation is essential for making informed charging and discharging decisions, mitigating the risks of overcharging or deep discharge, and ensuring safety. Battery management systems rely on SoC estimation, utilising both hardware and software components to maintain safe and efficient battery operation. Existing SoC estimation methods are broadly classified into direct and indirect approaches. Direct methods (e.g., Coulumb counting) rely on current measurements. In contrast, indirect methods (often based on a filter or observer) utilise a model of a battery to incorporate voltage measurements besides the current. While the latter is more accurate, it faces challenges related to sensor drift, computational complexity, and model inaccuracies. The need for more precise and robust SoC estimation without increasing complexity is critical, particularly for real-time applications. Recently, sliding mode observers (SMOs) have gained prominence in this field for their robustness against model uncertainties and external disturbances, offering fast convergence and superior accuracy. Due to increased interest, this review focuses on various SMO approaches for SoC estimation, including first-order, adaptive, high-order, terminal, fractional-order, and advanced SMOs, along with hybrid methods integrating intelligent techniques. By evaluating these methodologies, their strengths, weaknesses, and modelling frameworks in the literature, this paper highlights the ongoing challenges and future directions in SoC estimation research. Unlike common review papers, this work also compares the performance of various existing methods via a comprehensive simulation study in MATLAB 2024b to quantify the difference and guide the users in selecting a suitable version for the applications. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

17 pages, 2645 KiB  
Article
Insights into Genetic and Antigenic Characteristics of Influenza A(H1N1)pdm09 Viruses Circulating in Sicily During the Surveillance Season 2023–2024: The Potential Effect on the Seasonal Vaccine Effectiveness
by Fabio Tramuto, Carmelo Massimo Maida, Giulia Randazzo, Adriana Previti, Giuseppe Sferlazza, Giorgio Graziano, Claudio Costantino, Walter Mazzucco and Francesco Vitale
Viruses 2024, 16(10), 1644; https://doi.org/10.3390/v16101644 - 21 Oct 2024
Cited by 4 | Viewed by 2804
Abstract
After disruption in the influenza circulation due to the emergence of SARS-CoV-2, the intensity of seasonal outbreaks has returned to the pre-pandemic levels. This study aimed to evaluate the evolution and variability of whole-genome sequences of A(H1N1)pdm09, the predominant influenza virus in Sicily [...] Read more.
After disruption in the influenza circulation due to the emergence of SARS-CoV-2, the intensity of seasonal outbreaks has returned to the pre-pandemic levels. This study aimed to evaluate the evolution and variability of whole-genome sequences of A(H1N1)pdm09, the predominant influenza virus in Sicily (Italy) during the season 2023–2024. The potential vaccine efficacy was calculated using the pepitope model based on amino acid changes in the dominant epitope of hemagglutinin. The HA gene sequences showed several amino acid substitutions, some of which were within the major antigenic sites. The phylogenetic analysis showed that Sicilian strains grouped into two main genetic clades (6B.1A.5a.2a.1 and 6B.1A.5a.2a) and several subclades. Notably, about 40% of sequences partially drifted from the WHO-recommended vaccine strain A/Victoria/4897/2022 for the Northern Hemisphere. These sequences mostly belonged to the subclades C.1.8 and C.1.9 and harboured the amino acid mutations responsible for the modest predicted vaccine efficacy (E = 38.12% of 53%, pepitope = 0) against these viruses. Amino acid substitutions in other gene segments were also found. Since influenza viruses are constantly evolving, genomic surveillance is crucial in monitoring their molecular evolution and the occurrence of genetic and antigenic changes, and, thus, their potential impact on vaccine efficacy. Full article
Show Figures

Figure 1

39 pages, 31615 KiB  
Article
Seismic Retrofit Case Study of Shear-Critical RC Moment Frame T-Beams Strengthened with Full-Wrap FRP Anchored Strips in a High-Rise Building in Los Angeles
by Susana Anacleto-Lupianez, Luis Herrera, Scott F. Arnold, Winston Chai, Todd Erickson and Anne Lemnitzer
Appl. Sci. 2024, 14(19), 8654; https://doi.org/10.3390/app14198654 - 25 Sep 2024
Cited by 1 | Viewed by 1865
Abstract
This paper discusses the iteration of a seismic retrofit solution for shear-deficient end regions of 19 reinforced concrete (RC) moment-resisting frame (MRF) T-beams located in a 12-story RC MRF building in downtown Los Angeles, California. Local strengthening with externally bonded (EB) fiber-reinforced polymer [...] Read more.
This paper discusses the iteration of a seismic retrofit solution for shear-deficient end regions of 19 reinforced concrete (RC) moment-resisting frame (MRF) T-beams located in a 12-story RC MRF building in downtown Los Angeles, California. Local strengthening with externally bonded (EB) fiber-reinforced polymer (FRP) fabric was chosen as the preferred retrofit strategy due to its cost-effectiveness and proven performance. The FRP-shear-strengthening scheme for the deficient end-hinging regions of the MRF beams was designed and evaluated through large-scale cyclic testing of three replica specimens. The specimens were constructed at 4/5 scale and cantilever T-beam configurations with lengths of 3.40 m or 3.17 m. The cross-sectional geometry was 0.98 × 0.61 m with a top slab of 1.59 m in width and 0.12 m in thickness. Applied to these specimens were three different retrofit configurations, tested sequentially, namely: (a) unanchored continuous U-wrap; (b) anchored continuous U-wrap with conventional FRP-embedded anchors at the ends; and (c) fully closed external FRP hoops made of discrete FRP U-wrap strips and FRP through-anchors that penetrate the top slab and connect both ends of the FRP strips, combined with intermediate crack-control joints. The strengthening concept with FRP hoops precluded the premature debonding and anchor pullout issues of the two more conventional retrofit solutions and, despite a more challenging and labor-intensive installation, was selected for the in-situ implementation. The proposed hooplike EB-FRP shear-strengthening scheme enabled the deficient MRF beams to overcome a 30% shear overstress at the end-yielding region and to develop high-end rotations (e.g., 0.034 rad [3.4% drift] at peak and 0.038 rad [3.8% drift]) at strength loss for a beam that, otherwise, would have prematurely failed in shear. These values are about 30% larger than the ASCE 41 prescriptive value for the Life Safety (LS) performance objective. Energy dissipation achieved with the fully closed scheme was 108% higher than that of the unanchored FRP U-wrap and 45% higher than that of the FRP U-wrap with traditional embedded anchors. The intermediate saw-cut grooves successfully attracted crack formation between the strips and away from the FRP reinforcement, which contributed to not having any discernable debonding of the strips up to 3% drift. This paper presents the experimental evaluation of the three large-scale laboratory specimens that were used as the design basis for the final retrofit solution. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

31 pages, 10270 KiB  
Article
Study and Modelling of the Impact of June 2015 Geomagnetic Storms on the Brazilian Ionosphere
by Oladayo O. Afolabi, Claudia Maria Nicoli Candido, Fabio Becker-Guedes and Christine Amory-Mazaudier
Atmosphere 2024, 15(5), 597; https://doi.org/10.3390/atmos15050597 - 14 May 2024
Viewed by 2241
Abstract
This study investigated the impact of the June 2015 geomagnetic storms on the Brazilian equatorial and low-latitude ionosphere by analyzing various data sources, including solar wind parameters from the advanced compositional explorer satellite (ACE), global positioning satellite vertical total electron content (GPS-VTEC [...] Read more.
This study investigated the impact of the June 2015 geomagnetic storms on the Brazilian equatorial and low-latitude ionosphere by analyzing various data sources, including solar wind parameters from the advanced compositional explorer satellite (ACE), global positioning satellite vertical total electron content (GPS-VTEC), geomagnetic data, and validation of the SAMI2 model-VTEC with GPS-VTEC. The effect of geomagnetic disturbances on the Brazilian longitudinal sector was examined by applying multiresolution analysis (MRA) of the maximum overlap discrete wavelet transform (MODWT) to isolate the diurnal component of the disturbance dynamo (Ddyn), DP2 current fluctuations from the ionospheric electric current disturbance (Diono), and semblance cross-correlation wavelet analysis for local phase comparison between the Sq and Diono currents. Our findings revealed that the significant fluctuations in DP2 at the Brazilian equatorial stations (Belem, dip lat: −0.47° and Alta Floresta, dip lat: −3.75°) were influenced by IMF Bz oscillations; the equatorial electrojet also fluctuated in tandem with the DP2 currents, and dayside reconnection generated the field-aligned current that drove the DP2 current system. The short-lived positive ionospheric storm during the main phase on 22 June in the Southern Hemisphere in the Brazilian sector was caused by the interplay between the eastward prompt penetration of the magnetospheric convection electric field and the westward disturbance dynamo electric field. The negative ionospheric storms that occurred during the recovery phase from 23 to 29 June 2015, were attributed to the westward disturbance dynamo electric field, which caused the downward E × B drift of the plasma to a lower height with a high recombination rate. The comparison between the SAMI2 model-VTEC and GPS-VTEC indicates that the SAMI2 model underestimated the VTEC within magnetic latitudes of −9° to −24° in the Brazilian longitudinal sector from 6 to 17 June 2015. However, it demonstrated satisfactory agreement with the GPS-VTEC within magnetic latitudes of −9° to 10° from 8 to 15 June 2015. Conversely, the SAMI2 model overestimated the VTEC between ±10° magnetic latitudes from 16 to 28 June 2015. The most substantial root mean square error (RMSE) values, notably 10.30 and 5.48 TECU, were recorded on 22 and 23 June 2015, coinciding with periods of intense geomagnetic disturbance. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

13 pages, 1748 KiB  
Article
Phylodynamic and Evolution of the Hemagglutinin (HA) and Neuraminidase (NA) Genes of Influenza A(H1N1) pdm09 Viruses Circulating in the 2009 and 2023 Seasons in Italy
by Fabio Scarpa, Leonardo Sernicola, Stefania Farcomeni, Alessandra Ciccozzi, Daria Sanna, Marco Casu, Marco Vitale, Alessia Cicenia, Marta Giovanetti, Chiara Romano, Francesco Branda, Massimo Ciccozzi and Alessandra Borsetti
Pathogens 2024, 13(4), 334; https://doi.org/10.3390/pathogens13040334 - 17 Apr 2024
Cited by 1 | Viewed by 2666
Abstract
The influenza A(H1N1) pdm09 virus, which emerged in 2009, has been circulating seasonally since then. In this study, we conducted a comprehensive genome-based investigation to gain a detailed understanding of the genetic and evolutionary characteristics of the hemagglutinin (HA) and neuraminidase (NA) surface [...] Read more.
The influenza A(H1N1) pdm09 virus, which emerged in 2009, has been circulating seasonally since then. In this study, we conducted a comprehensive genome-based investigation to gain a detailed understanding of the genetic and evolutionary characteristics of the hemagglutinin (HA) and neuraminidase (NA) surface proteins of A/H1N1pdm09 strains circulating in Italy over a fourteen-year period from 2009 to 2023 in relation to global strains. Phylogenetic analysis revealed rapid transmission and diversification of viral variants during the early pandemic that clustered in clade 6B.1. In contrast, limited genetic diversity was observed during the 2023 season, probably due to the genetic drift, which provides the virus with a constant adaptability to the host; furthermore, all isolates were split into two main groups representing two clades, i.e., 6B.1A.5a.2a and its descendant 6B.1A.5a.2a.1. The HA gene showed a faster rate of evolution compared to the NA gene. Using FUBAR, we identified positively selected sites 41 and 177 for HA and 248, 286, and 455 for NA in 2009, as well as sites 22, 123, and 513 for HA and 339 for NA in 2023, all of which may be important sites related to the host immune response. Changes in glycosylation acquisition/loss at prominent sites, i.e., 177 in HA and 248 in NA, should be considered as a predictive tool for early warning signs of emerging pandemics, and for vaccine and drug development. Full article
(This article belongs to the Special Issue Advance in Influenza A and Influenza B Viruses)
Show Figures

Figure 1

7 pages, 281 KiB  
Communication
Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks
by Jan Weiland, Tariq Rafiq and Eugenio Schuster
Plasma 2023, 6(3), 459-465; https://doi.org/10.3390/plasma6030031 - 27 Jul 2023
Viewed by 1252
Abstract
Turbulence and transport phenomena play a crucial role in the confinement and stability of tokamak plasmas. Turbulent fluctuations in certain physical quantities, such as density or temperature fluctuations, can have a wide range of spatial scales, and understanding their correlation length is important [...] Read more.
Turbulence and transport phenomena play a crucial role in the confinement and stability of tokamak plasmas. Turbulent fluctuations in certain physical quantities, such as density or temperature fluctuations, can have a wide range of spatial scales, and understanding their correlation length is important for predicting and controlling the behavior of the plasma. The correlation length in the radial direction is identified as the critical length in real space. The dynamics in real space are of significant interest because transport in configuration space is primarily focused on them. When investigating transport caused by the E×B drift, the correlation length in real space represents the size of E×B whirls. It was numerically discovered that in drift wave turbulence, this length is inversely proportional to the normalized mode number of the fastest growing mode relative to the drift frequency. Considerable time was required before a proper analytical derivation of this condition was accomplished. Therefore, a connection has been established between phenomena occurring in real space and those occurring in k-space. Although accompanied by a turbulent spectrum in k-space with a substantial width, transport in real space is uniquely determined by the correlation length, allowing for accurate transport calculations through the dynamics of a single mode. Naturally, the dynamics are subject to nonlinear effects, with resonance broadening in frequency being the most significant nonlinear effect. Thus, mode number space is once again involved. Resonance broadening leads to the detuning of waves from particles, permitting a fluid treatment. It should be emphasized that the consideration here involves the total electric field, including the induction part, which becomes particularly important at higher beta plasmas. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
16 pages, 3723 KiB  
Article
Interferometry Observations of the Gravity Wave Effect on the Sporadic E Layer
by Chane Moges Seid, Ching-Lun Su, Chien-Ya Wang and Yen-Hsyang Chu
Atmosphere 2023, 14(6), 987; https://doi.org/10.3390/atmos14060987 - 6 Jun 2023
Cited by 1 | Viewed by 1795
Abstract
On the basis of interferometry measurement made with the Chung-Li VHF radar, we investigated the effects of upward propagating gravity waves on the spatial structures and dynamic behavior of the 3 m field-aligned irregularities (FAIs) of the sporadic E (Es) layer. The results [...] Read more.
On the basis of interferometry measurement made with the Chung-Li VHF radar, we investigated the effects of upward propagating gravity waves on the spatial structures and dynamic behavior of the 3 m field-aligned irregularities (FAIs) of the sporadic E (Es) layer. The results demonstrate that the quasi-periodic gravity waves oscillating at a dominant wave period of about 46.3 min propagating from east-southeast to west-northwest not only modulated the Es layer but also significantly disturbed the Es layer. Interferometry analysis indicates that the plasma structures associated with gravity wave propagation were in clumpy or plume-like structures, while those not disturbed by the gravity waves were in a thin layer structure that descended over time at a rate of about 2.17 km/h. Observation reveals that the height of a thin Es layer with a thickness of about 2–4 km can be severely modulated by the gravity wave with a height as large as 10 km or more. Moreover, sharply inclined plume-like plasma irregularities with a tilted angle of about 55° or more with respect to the zonal direction were observed. In addition, concave and convex shapes of the Es layer caused by the gravity wave modulations were also found. Some of the wave-generated electric fields were so intense that the corresponding E × B drift velocities of the 3 m Es FAIs approximated 90 m s−1. Most interestingly, sharp Doppler velocity shear as large as 68 m/s/km of the Es FAIs at a height of around 108 km, which bore a strong association with the result of the gravity wave propagation, was provided. The plausible mechanisms responsible for this tremendously large Doppler velocity shear are discussed. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

23 pages, 20261 KiB  
Article
Spatial Development of Strong Storm-Induced Ionospheric Perturbations during 25–27 August 2018
by Wang Li, Dongsheng Zhao, Jiandi Feng, Xuequn Wu and Zhen Zhang
Remote Sens. 2023, 15(10), 2549; https://doi.org/10.3390/rs15102549 - 12 May 2023
Cited by 2 | Viewed by 1825
Abstract
The 25–27 August 2018 geomagnetic storm was the third largest storm in the 24th solar cycle. It was a surprising space event that originated from low-level solar activity. This study provides an overview of the temporal–spatial behaviors of plasma irregularities as functions of [...] Read more.
The 25–27 August 2018 geomagnetic storm was the third largest storm in the 24th solar cycle. It was a surprising space event that originated from low-level solar activity. This study provides an overview of the temporal–spatial behaviors of plasma irregularities as functions of geographic longitude, latitude, and altitude using ground-based (GNSS receivers and ionosonde) instruments and space-borne Swarm satellites. The results not only reveal enhanced equatorial ionization anomaly (EIA) and hemispheric asymmetry over the Asian–Australian and American sectors at a particular time but also hemispheric asymmetric features of global ROT in the main and recovery phases. Additionally, this storm triggered positive plasma irregularities in altitudes of 100 to 150 km near the Auroral zone, and the changed ratio of bottom-side plasma irregularities exceeded 250%. This finding has been cross-validated by other instruments and models. Furthermore, the storm significantly affected the thermospheric O/N2 density ratio, equatorial electrojet, and vertical E×B drifts. The equatorial and mid-latitude plasma irregularities may be a combined action of thermospheric composition change, equatorial electrojet, and vertical E×B drifts. Finally, the storm induced positive Joule heating irregularities in the Auroral ionosphere in altitudes of 100 to 400 km with a maximum changed ratio of over 200%, as well as enhanced cross-Polar voltage to ~90 kv. The Polar ionospheric irregularities may be associated with additional energy input through particle precipitation, Joule heating, and ionospheric current intensification. Full article
(This article belongs to the Special Issue Remote Sensing in Space Geodesy and Cartography Methods II)
Show Figures

Figure 1

10 pages, 17681 KiB  
Article
Systematic Analysis of a Modified Uni-Traveling-Carrier Photodiode under High-Power Operating Conditions
by Wanshu Xiong, Zhangwan Peng, Ruoyun Yao, Qianwen Guo, Chaodan Chi and Chen Ji
Photonics 2023, 10(4), 471; https://doi.org/10.3390/photonics10040471 - 20 Apr 2023
Cited by 6 | Viewed by 2760
Abstract
We theoretically analyzed the detailed carrier transport process based on the drift-diffusion model in the InGaAs/InP modified Uni-Traveling-Carrier Photodiode (MUTC-PD) under high optical input power conditions. A high-speed MUTC-PD design was simulated in depth using the commercial simulation software APSYS. The complex interplay [...] Read more.
We theoretically analyzed the detailed carrier transport process based on the drift-diffusion model in the InGaAs/InP modified Uni-Traveling-Carrier Photodiode (MUTC-PD) under high optical input power conditions. A high-speed MUTC-PD design was simulated in depth using the commercial simulation software APSYS. The complex interplay between photo-electron and hole transport processes was quantitatively analyzed. The slowdown of hole transit time due to E field reduction in the undoped InGaAs absorber layer dominated the response speed of MUTC-PDs at a high optical power level. The optimized MUTC-PD design has a relatively strong dependence on optical power level. Based on an optimized design, an O–E conversion responsivity around 0.15 A/W and the intrinsic 3 dB bandwidth of 172 GHz were demonstrated when the input optical power density reached 20 mW/μm2. Our simulation analysis results presented here can be utilized for designing broadband MUTC-PDs in future sub-Terahertz free-space data link applications. Full article
Show Figures

Figure 1

15 pages, 7170 KiB  
Article
Particle-in-Cell Simulations for the Improvement of the Target Erosion Uniformity by the Permanent Magnet Configuration of DC Magnetron Sputtering Systems
by Young Hyun Jo, Cheongbin Cheon, Heesung Park and Hae June Lee
Coatings 2023, 13(4), 749; https://doi.org/10.3390/coatings13040749 - 7 Apr 2023
Cited by 1 | Viewed by 3119
Abstract
Improving the target erosion uniformity in a commercial direct current (DC) magnetron sputtering system is a crucial issue in terms of process management as well as enhancing the properties of the deposited film. Especially, nonuniform target erosion was reported when the magnetic flux [...] Read more.
Improving the target erosion uniformity in a commercial direct current (DC) magnetron sputtering system is a crucial issue in terms of process management as well as enhancing the properties of the deposited film. Especially, nonuniform target erosion was reported when the magnetic flux density gradient existed. A two-dimensional (2D) and a three-dimensional (3D) parallelized particle-in-cell (PIC) simulation were performed to investigate relationships between magnetic fields and the target erosion profile. The 2D PIC simulation presents the correlation between the heating mechanism and the spatial density profiles under various magnet conditions. In addition, the 3D PIC simulation shows the different plasma characteristics depending on the azimuthal asymmetry of the magnets and the mechanism of the mutual competition of the E × B drift and the grad-B drift for the change in the electron density uniformity. Full article
(This article belongs to the Special Issue Advances in Thin Film Fabrication by Magnetron Sputtering)
Show Figures

Figure 1

24 pages, 35825 KiB  
Article
The Respondence of Wave on Sea Surface Temperature in the Context of Global Change
by Ru Yao, Weizeng Shao, Mengyu Hao, Juncheng Zuo and Song Hu
Remote Sens. 2023, 15(7), 1948; https://doi.org/10.3390/rs15071948 - 6 Apr 2023
Cited by 17 | Viewed by 2744
Abstract
Several aspects of global climate change, e.g., the rise of sea level and water temperature anomalies, suggest the advantages of studying wave distributions. In this study, WAVEWATCH-III (WW3) (version 6.07), which is a well-known numerical wave model, was employed for simulating waves over [...] Read more.
Several aspects of global climate change, e.g., the rise of sea level and water temperature anomalies, suggest the advantages of studying wave distributions. In this study, WAVEWATCH-III (WW3) (version 6.07), which is a well-known numerical wave model, was employed for simulating waves over global seas from 1993–2020. The European Centre for Medium-Range Weather Forecasts (ECMWF), Copernicus Marine Environment Monitoring Service (CMEMS), current and sea level were used as the forcing fields in the WW3 model. The validation of modelling simulations against the measurements from the National Data Buoy Center (NDBC) buoys and Haiyang-2B (HY-2B) altimeter yielded a root mean square error (RMSE) of 0.49 m and 0.63 m, with a correlation (COR) of 0.89 and 0.90, respectively. The terms calculated by WW3-simulated waves, i.e., breaking waves, nonbreaking waves, radiation stress, and Stokes drift, were included in the water temperature simulation by a numerical circulation model named the Stony Brook Parallel Ocean Model (sbPOM). The water temperature was simulated in 2005–2015 using the high-quality Simple Ocean Data Assimilation (SODA) data. The validation of sbPOM-simulated results against the measurements obtained from the Array for Real-time Geostrophic Oceanography (Argo) buoys yielded a RMSE of 1.12 °C and a COR of 0.99. By the seasonal variation, the interrelation of the currents, sea level anomaly, and significant wave heights (SWHs) were strong in the Indian Ocean. In the strong current areas, the distribution of the sea level was consistent with the SWHs. The monthly variation of SWHs, currents, sea surface elevation, and sea level anomalies revealed that the upward trends of SWHs and sea level anomalies were consistent from 1993–2015 over the global ocean. In the Indian Ocean, the SWHs were obviously influenced by the SST and sea surface wind stress. The rise of wind stress intensity and sea level enlarges the growth of waves, and the wave-induced terms strengthen the heat exchange at the air–sea layer. It was assumed that the SST oscillation had a negative response to the SWHs in the global ocean from 2005–2015. This feedback indicates that the growth of waves could slow down the amplitude of water warming. Full article
Show Figures

Figure 1

Back to TopTop