Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks
Abstract
1. Introduction
2. Basic Equations
2.1. Effects of Current Gradient
2.2. Effects of Collisions
3. Correlation Length
4. High Confinement Mode (H-Mode)
5. Zonal Flows
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiland, J.; Nordman, H. Theory of Fusion Plasmas. In Proceedings of the Varenna-Lausanne Workshop, Chexbres, Switzerland, 3–7 October 1988; Bologna Editrice Compostori: Bologna, Italy, 1988; p. 451. [Google Scholar]
- Weiland, J. Review of mixing length estimates and effects of toroidicity in a fluid model for turbulent transport in tokamaks. Plasma Phys. Rep. 2016, 42, 502–513. [Google Scholar] [CrossRef]
- Weiland, J.; Holod, I. Drift wave transport scalings introduced by varying correlation length. Phys. Plasmas 2004, 12, 012505. [Google Scholar] [CrossRef]
- Eriksson, A.; Weiland, J. Electromagnetic effects on quasilinear turbulent particle transport. Phys. Plasmas 2005, 12, 092509. [Google Scholar] [CrossRef]
- Candy, J. Beta scaling of transport in microturbulence simulations. Phys. Plasmas 2005, 12, 072307. [Google Scholar] [CrossRef]
- Hein, T.; Angioni, C.; Fable, E.; Candy, J. Gyrokinetic study of the role of β on electron particle transport in tokamaks. Phys. Plasmas 2010, 17, 102309. [Google Scholar] [CrossRef]
- Weiland, J. Stability and Transport in Magnetic Confinement Systems; Springer: New York, NY, USA, 2012. [Google Scholar]
- Zhong, W.L.; Zou, X.L.; Bourdelle, C.; Song, S.D.; Artaud, J.F.; Aniel, T.; Duan, X.R. Convective Velocity Reversal Caused by Turbulence Transition in Tokamak Plasma. Phys. Rev. Lett. 2013, 111, 265001. [Google Scholar] [CrossRef]
- Ma, J.; Wang, G.; Weiland, J.; Rafiq, T.; Kritz, A.H. Reversal of particle flux in collisional-finite beta tokamak discharges. Phys. Plasmas 2015, 22, 012304. [Google Scholar] [CrossRef]
- Weiland, J.; Jarmén, A.; Nordman, H. Diffusive particle and heat pinch effects in toroidal plasmas. Nucl. Fusion 1989, 29, 1810. [Google Scholar] [CrossRef]
- Weiland, J. Turbulence at a pinch. Nat. Phys. 2010, 6, 167–168. [Google Scholar] [CrossRef]
- Andersson, P.; Weiland, J. Dispersion relation for pressure-driven toroidal modes including finite Larmor radius effects. Nucl. Fusion 1985, 25, 1761. [Google Scholar] [CrossRef]
- Andersson, P.; Weiland, J. Effect of convective damping on the growth rate of magnetohydrodynamic ballooning modes. Phys. Fluids 1986, 29, 1744–1746. [Google Scholar] [CrossRef]
- Weiland, J. Analytical eigenvalue solution for ηi modes of general modewidth. Phys. Plasmas 2004, 11, 3238–3241. [Google Scholar] [CrossRef]
- Weiland, J. Simulations of the L-H transition on experimental advanced superconducting Tokamak. Phys. Plasmas 2014, 21, 122501. [Google Scholar] [CrossRef]
- Weiland, J.; Zagorodny, A.; Rafiq, T. Theory for transport in magnetized plasmas. Phys. Scr. 2020, 95, 105607. [Google Scholar] [CrossRef]
- Rogers, B.N.; Drake, J.F.; Zeiler, A. Phase Space of Tokamak Edge Turbulence, the L − H Transition, and the Formation of the Edge Pedestal. Phys. Rev. Lett. 1998, 81, 4396–4399. [Google Scholar] [CrossRef]
- Weiland, J.; Mantica, P.; The JET-EFDA Contributors. Effects of flow shear on the correlation length of drift wave turbulence. In Proceedings of the 38th EPS Conference on Plasma Physics, Strasbourg, France, 27 June–1 July 2011; p. P5.130. [Google Scholar]
- Dupree, T.H. A Perturbation Theory for Strong Plasma Turbulence. Phys. Fluids 1966, 9, 1773–1782. [Google Scholar] [CrossRef]
- Zagorodny, A.; Weiland, J. Statistical theory of turbulent transport (non-Markovian effects). Phys. Plasmas 1999, 6, 2359–2372. [Google Scholar] [CrossRef]
- Weiland, J.; Rafiq, T.; Schuster, E. Fast particles in drift wave turbulence. Phys. Plasmas 2023, 30, 042517. [Google Scholar] [CrossRef]
- Weiland, J.; Crombe, K.; Mantica, P.; Naulin, V.; Tala, T. Comparison of Edge and Internal Transport Barriers in Drift Wave Predictive Simulations. AIP Conf. Proc. 2011, 1392, 85–91. [Google Scholar] [CrossRef]
- Rafiq, T.; Weiland, J. Self-consistent core-pedestal ITER scenario modeling. Nucl. Fusion 2021, 61, 116005. [Google Scholar] [CrossRef]
- Weiland, J.; Zagorodny, A. On the normalization of transport from ITG Modes. Phys. Plasmas 2016, 23, 102307. [Google Scholar] [CrossRef]
- Dimits, A.M.; Bateman, G.; Beer, M.A.; Cohen, B.I.; Dorland, W.; Hammett, G.W.; Kim, C.; Kinsey, J.E.; Kotschenreuther, M.; Kritz, A.H.; et al. Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 2000, 7, 969–983. [Google Scholar] [CrossRef]
- Waltz, R.E.; Dominguez, R.R.; Hammett, G.W. Gyro-Landau fluid models for toroidal geometry. Phys. Fluids B Plasma Phys. 1992, 4, 3138–3151. [Google Scholar] [CrossRef]
- Waltz, R.E.; Kerbel, G.D.; Milovich, J.; Hammett, G.W. Advances in the simulation of toroidal gyro-Landau fluid model turbulence. Phys. Plasmas 1995, 2, 2408–2416. [Google Scholar] [CrossRef]
- Zagorodny, A.; Weiland, J. Closure at the Irreducible Part of the Fourth Moment for the Case of Constant Coefficients in the Fokker-Planck Equation. AIP Conf. Proc. 2011, 1392, 24–32. [Google Scholar] [CrossRef]
- Merz, F.; Jenko, F. Nonlinear Saturation of Trapped Electron Modes via Perpendicular Particle Diffusion. Phys. Rev. Lett. 2008, 100, 035005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiland, J.; Rafiq, T.; Schuster, E. Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks. Plasma 2023, 6, 459-465. https://doi.org/10.3390/plasma6030031
Weiland J, Rafiq T, Schuster E. Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks. Plasma. 2023; 6(3):459-465. https://doi.org/10.3390/plasma6030031
Chicago/Turabian StyleWeiland, Jan, Tariq Rafiq, and Eugenio Schuster. 2023. "Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks" Plasma 6, no. 3: 459-465. https://doi.org/10.3390/plasma6030031
APA StyleWeiland, J., Rafiq, T., & Schuster, E. (2023). Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks. Plasma, 6(3), 459-465. https://doi.org/10.3390/plasma6030031

