Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = DREADD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3942 KiB  
Article
Widespread Changes in the Immunoreactivity of Bioactive Peptide T14 After Manipulating the Activity of Cortical Projection Neurons
by Auguste Vadisiute, Sara Garcia-Rates, Clive W. Coen, Susan Adele Greenfield and Zoltán Molnár
Int. J. Mol. Sci. 2025, 26(12), 5786; https://doi.org/10.3390/ijms26125786 - 17 Jun 2025
Viewed by 392
Abstract
Previous studies have suggested that T14, a 14-amino-acid peptide derived from acetylcholinesterase (AChE), functions as an activity-dependent signalling molecule with key roles in brain development, and its dysregulation has been linked to neurodegeneration in Alzheimer’s disease. In this study, we examined the distribution [...] Read more.
Previous studies have suggested that T14, a 14-amino-acid peptide derived from acetylcholinesterase (AChE), functions as an activity-dependent signalling molecule with key roles in brain development, and its dysregulation has been linked to neurodegeneration in Alzheimer’s disease. In this study, we examined the distribution of T14 under normal developmental conditions in the mouse forebrain, motor cortex (M1), striatum (STR), and substantia nigra (SN). T14 immunoreactivity declined from E16 to E17 and further decreased by P0, then peaked at P7 during early postnatal development before declining again by adulthood at P70. Lower T14 immunoreactivity in samples processed without Triton indicated that T14 is primarily localised intracellularly. To explore the relationship between T14 expression and neuronal activity, we used mouse models with chronic silencing (Rbp4Cre-Snap25), acute silencing (Rbp4Cre-hM4Di), and acute activation (Rbp4Cre-hM3D1). Chronic silencing altered the location and size of intracellular T14-immunoreactive particles in adult brains, while acute silencing had no observable effect. In contrast, acute activation increased T14+ density in the STR, modified T14 puncta size near Rbp4Cre cell bodies in M1 layer 5 and their projections to the STR, and enhanced co-localisation of T14 with presynaptic terminals in the SN. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 3574 KiB  
Article
The Sensory Input from the External Cuneate Nucleus and Central Cervical Nucleus to the Cerebellum Refines Forelimb Movements
by Chidubem Eneanya and George M. Smith
Cells 2025, 14(8), 589; https://doi.org/10.3390/cells14080589 - 13 Apr 2025
Viewed by 744
Abstract
Goal-directed reaching movements are extremely accurate to the point that the location, placement, and speed of the limbs are specific from trial to trial. These movements require descending motor commands and feedback modulation from ascending sensory information. The descending motor commands and ascending [...] Read more.
Goal-directed reaching movements are extremely accurate to the point that the location, placement, and speed of the limbs are specific from trial to trial. These movements require descending motor commands and feedback modulation from ascending sensory information. The descending motor commands and ascending sensory information work in conjunction to ensure that the movement is accurate and precise through an error-corrected process that resides in the cerebellum. Disruptions to this information may cause errors in the precision of forelimb motor targeting. According to the previous literature, the external cuneate nucleus (ECN) and central cervical nucleus (CeCv) are responsible for conveying unconscious sensory information from the forelimbs, shoulders, and neck muscles to the cerebellum. Here, we examined the significance of the ECN and CeCv, separately, in forelimb function. In conjunction with inhibitory DREADDs (hM4Di), we observed an obstruction in single pellet reaching and grasping when ECN activity was repressed, both unilaterally and bilaterally, in normal rats. We also observed reduced reach in the grooming assessment bilaterally. We discovered that the CeCv terminates in the medial cerebellar nucleus (MCN), within the deep cerebellar nuclei (DCN), which, to the best of our knowledge, was previously not clearly defined. Together, this information provides evidence that the requirement of ascending sensory information is important in forelimb function. Full article
(This article belongs to the Special Issue Charming Micro-Insights into Health and Diseases)
Show Figures

Graphical abstract

9 pages, 1249 KiB  
Article
Neuroprotective Role of Cyclic AMP Signaling in Dopaminergic Degeneration Induced by a Parkinson’s Disease Toxin, Rotenone
by Sazan Ismael, Sarah Baitamouni and Daewoo Lee
NeuroSci 2025, 6(1), 24; https://doi.org/10.3390/neurosci6010024 - 11 Mar 2025
Viewed by 861
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic (DA) neurons in the midbrain. While dopamine precursor levodopa and D2 receptor agonists are commonly used to alleviate PD symptoms, these treatments do not halt or reverse disease [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic (DA) neurons in the midbrain. While dopamine precursor levodopa and D2 receptor agonists are commonly used to alleviate PD symptoms, these treatments do not halt or reverse disease progression. Thus, developing effective neuroprotective strategies remains a critical goal. In this study, we explored neuroprotective mechanisms in a Drosophila primary neuronal culture model of PD, created by administering the environmental toxin rotenone. Using the chemogenetic DREADD (designer receptors exclusively activated by designer drugs) system, we selectively activated cAMP signaling in DA neurons within the rotenone-induced model. Our results demonstrate that increasing cAMP signaling via Gs-coupled DREADD (rM3Ds) is protective against DA neurodegeneration. Furthermore, overexpression of the catalytic PKA-C1 subunit fully rescued DA neurons from rotenone-induced degeneration, with this effect restricted to DA neurons where PKA-C1 was specifically overexpressed. These findings reveal that cAMP-PKA signaling activation is neuroprotective in DA neurons against rotenone-induced degeneration, offering promising insights for developing targeted therapeutic strategies to slow or prevent PD pathology progression. Full article
Show Figures

Figure 1

18 pages, 4018 KiB  
Article
Pramipexole Hyperactivates the External Globus Pallidus and Impairs Decision-Making in a Mouse Model of Parkinson’s Disease
by Hisayoshi Kubota, Xinzhu Zhou, Xinjian Zhang, Hirohisa Watanabe and Taku Nagai
Int. J. Mol. Sci. 2024, 25(16), 8849; https://doi.org/10.3390/ijms25168849 - 14 Aug 2024
Cited by 3 | Viewed by 3081
Abstract
In patients with Parkinson’s disease (PD), dopamine replacement therapy with dopamine D2/D3 receptor agonists induces impairments in decision-making, including pathological gambling. The neurobiological mechanisms underlying these adverse effects remain elusive. Here, in a mouse model of PD, we investigated the effects of the [...] Read more.
In patients with Parkinson’s disease (PD), dopamine replacement therapy with dopamine D2/D3 receptor agonists induces impairments in decision-making, including pathological gambling. The neurobiological mechanisms underlying these adverse effects remain elusive. Here, in a mouse model of PD, we investigated the effects of the dopamine D3 receptor (D3R)-preferring agonist pramipexole (PPX) on decision-making. PD model mice were generated using a bilateral injection of the toxin 6-hydroxydopamine into the dorsolateral striatum. Subsequent treatment with PPX increased disadvantageous choices characterized by a high-risk/high-reward in the touchscreen-based Iowa Gambling Task. This effect was blocked by treatment with the selective D3R antagonist PG-01037. In model mice treated with PPX, the number of c-Fos-positive cells was increased in the external globus pallidus (GPe), indicating dysregulation of the indirect pathway in the corticothalamic-basal ganglia circuitry. In accordance, chemogenetic inhibition of the GPe restored normal c-Fos activation and rescued PPX-induced disadvantageous choices. These findings demonstrate that the hyperactivation of GPe neurons in the indirect pathway impairs decision-making in PD model mice. The results provide a candidate mechanism and therapeutic target for pathological gambling observed during D2/D3 receptor pharmacotherapy in PD patients. Full article
Show Figures

Figure 1

16 pages, 9084 KiB  
Article
Chemogenetic Excitation of Ventromedial Hypothalamic Steroidogenic Factor 1 (SF1) Neurons Increases Muscle Thermogenesis in Mice
by Christina A. Watts, Jordan Smith, Roman Giacomino, Dinah Walter, Guensu Jang, Aalia Malik, Nicholas Harvey and Colleen M. Novak
Biomolecules 2024, 14(7), 821; https://doi.org/10.3390/biom14070821 - 9 Jul 2024
Cited by 2 | Viewed by 1426
Abstract
Allostatic adaptations to a perceived threat are crucial for survival and may tap into mechanisms serving the homeostatic control of energy balance. We previously established that exposure to predator odor (PO) in rats significantly increases skeletal muscle thermogenesis and energy expenditure (EE). Evidence [...] Read more.
Allostatic adaptations to a perceived threat are crucial for survival and may tap into mechanisms serving the homeostatic control of energy balance. We previously established that exposure to predator odor (PO) in rats significantly increases skeletal muscle thermogenesis and energy expenditure (EE). Evidence highlights steroidogenic factor 1 (SF1) cells within the central and dorsomedial ventromedial hypothalamus (c/dmVMH) as a modulator of both energy homeostasis and defensive behavior. However, the brain mechanism driving elevated EE and muscle thermogenesis during PO exposure has yet to be elucidated. To assess the ability of SF1 neurons of the c/dmVMH to induce muscle thermogenesis, we used the combined technology of chemogenetics, transgenic mice, temperature transponders, and indirect calorimetry. Here, we evaluate EE and muscle thermogenesis in SF1-Cre mice exposed to PO (ferret odor) compared to transgenic and viral controls. We detected significant increases in muscle temperature, EE, and oxygen consumption following the chemogenetic stimulation of SF1 cells. However, there were no detectable changes in muscle temperature in response to PO in either the presence or absence of chemogenetic stimulation. While the specific role of the VMH SF1 cells in PO-induced thermogenesis remains uncertain, these data establish a supporting role for SF1 neurons in the induction of muscle thermogenesis and EE similar to what is seen after predator threats. Full article
(This article belongs to the Special Issue Skeletal Muscle Homeostasis and Regeneration)
Show Figures

Figure 1

18 pages, 394 KiB  
Review
Parvalbumin Interneuron Dysfunction in Neurological Disorders: Focus on Epilepsy and Alzheimer’s Disease
by Beulah Leitch
Int. J. Mol. Sci. 2024, 25(10), 5549; https://doi.org/10.3390/ijms25105549 - 19 May 2024
Cited by 10 | Viewed by 5241
Abstract
Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their [...] Read more.
Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer’s disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2024)
18 pages, 1651 KiB  
Review
Updated Toolbox for Assessing Neuronal Network Reconstruction after Cell Therapy
by Ana Gonzalez-Ramos, Claudia Puigsasllosas-Pastor, Ainhoa Arcas-Marquez and Daniel Tornero
Bioengineering 2024, 11(5), 487; https://doi.org/10.3390/bioengineering11050487 - 14 May 2024
Cited by 2 | Viewed by 2501
Abstract
Cell therapy has proven to be a promising treatment for a range of neurological disorders, including Parkinson Disease, drug-resistant epilepsy, and stroke, by restoring function after brain damage. Nevertheless, evaluating the true effectiveness of these therapeutic interventions requires a deep understanding of the [...] Read more.
Cell therapy has proven to be a promising treatment for a range of neurological disorders, including Parkinson Disease, drug-resistant epilepsy, and stroke, by restoring function after brain damage. Nevertheless, evaluating the true effectiveness of these therapeutic interventions requires a deep understanding of the functional integration of grafted cells into existing neural networks. This review explores a powerful arsenal of molecular techniques revolutionizing our ability to unveil functional integration of grafted cells within the host brain. From precise manipulation of neuronal activity to pinpoint the functional contribution of transplanted cells by using opto- and chemo-genetics, to real-time monitoring of neuronal dynamics shedding light on functional connectivity within the reconstructed circuits by using genetically encoded (calcium) indicators in vivo. Finally, structural reconstruction and mapping communication pathways between grafted and host neurons can be achieved by monosynaptic tracing with viral vectors. The cutting-edge toolbox presented here holds immense promise for elucidating the impact of cell therapy on neural circuitry and guiding the development of more effective treatments for neurological disorders. Full article
(This article belongs to the Special Issue Novel Advances in Stem Cell Therapy for Neurological Diseases)
Show Figures

Figure 1

19 pages, 2941 KiB  
Article
Chemogenetic Manipulation of Amygdala Kappa Opioid Receptor Neurons Modulates Amygdala Neuronal Activity and Neuropathic Pain Behaviors
by Guangchen Ji, Peyton Presto, Takaki Kiritoshi, Yong Chen, Edita Navratilova, Frank Porreca and Volker Neugebauer
Cells 2024, 13(8), 705; https://doi.org/10.3390/cells13080705 - 19 Apr 2024
Cited by 2 | Viewed by 2785
Abstract
Neuroplasticity in the central nucleus of the amygdala (CeA) plays a key role in the modulation of pain and its aversive component. The dynorphin/kappa opioid receptor (KOR) system in the amygdala is critical for averse-affective behaviors in pain conditions, but its mechanisms are [...] Read more.
Neuroplasticity in the central nucleus of the amygdala (CeA) plays a key role in the modulation of pain and its aversive component. The dynorphin/kappa opioid receptor (KOR) system in the amygdala is critical for averse-affective behaviors in pain conditions, but its mechanisms are not well understood. Here, we used chemogenetic manipulations of amygdala KOR-expressing neurons to analyze the behavioral consequences in a chronic neuropathic pain model. For the chemogenetic inhibition or activation of KOR neurons in the CeA, a Cre-inducible viral vector encoding Gi-DREADD (hM4Di) or Gq-DREADD (hM3Dq) was injected stereotaxically into the right CeA of transgenic KOR-Cre mice. The chemogenetic inhibition of KOR neurons expressing hM4Di with a selective DREADD actuator (deschloroclozapine, DCZ) in sham control mice significantly decreased inhibitory transmission, resulting in a shift of inhibition/excitation balance to promote excitation and induced pain behaviors. The chemogenetic activation of KOR neurons expressing hM3Dq with DCZ in neuropathic mice significantly increased inhibitory transmission, decreased excitability, and decreased neuropathic pain behaviors. These data suggest that amygdala KOR neurons modulate pain behaviors by exerting an inhibitory tone on downstream CeA neurons. Therefore, activation of these interneurons or blockade of inhibitory KOR signaling in these neurons could restore control of amygdala output and mitigate pain. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Chronic Pain)
Show Figures

Figure 1

22 pages, 3481 KiB  
Article
The Dopaminergic Cells in the Median Raphe Region Regulate Social Behavior in Male Mice
by Tiago Chaves, Bibiána Török, Csilla Lea Fazekas, Pedro Correia, Eszter Sipos, Dorottya Várkonyi, Zsuzsanna E. Tóth, Fanni Dóra, Árpád Dobolyi and Dóra Zelena
Int. J. Mol. Sci. 2024, 25(8), 4315; https://doi.org/10.3390/ijms25084315 - 13 Apr 2024
Cited by 3 | Viewed by 1973
Abstract
According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very [...] Read more.
According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response. Full article
Show Figures

Figure 1

26 pages, 7822 KiB  
Article
Transcranial Direct Current Stimulation (tDCS) Ameliorates Stress-Induced Sleep Disruption via Activating Infralimbic-Ventrolateral Preoptic Projections
by Yu-Jie Su, Pei-Lu Yi and Fang-Chia Chang
Brain Sci. 2024, 14(1), 105; https://doi.org/10.3390/brainsci14010105 - 22 Jan 2024
Cited by 3 | Viewed by 4325
Abstract
Transcranial direct current stimulation (tDCS) is acknowledged for its non-invasive modulation of neuronal activity in psychiatric disorders. However, its application in insomnia research yields varied outcomes depending on different tDCS types and patient conditions. Our primary objective is to elucidate its efficiency and [...] Read more.
Transcranial direct current stimulation (tDCS) is acknowledged for its non-invasive modulation of neuronal activity in psychiatric disorders. However, its application in insomnia research yields varied outcomes depending on different tDCS types and patient conditions. Our primary objective is to elucidate its efficiency and uncover the underlying mechanisms in insomnia treatment. We hypothesized that anodal prefrontal cortex stimulation activates glutamatergic projections from the infralimbic cortex (IL) to the ventrolateral preoptic area (VLPO) to promote sleep. After administering 0.06 mA of electrical currents for 8 min, our results indicate significant non-rapid eye movement (NREM) enhancement in naïve mice within the initial 3 h post-stimulation, persisting up to 16–24 h. In the insomnia group, tDCS enhanced NREM sleep bout numbers during acute stress response and improved NREM and REM sleep duration in subsequent acute insomnia. Sleep quality, assessed through NREM delta powers, remains unaffected. Interference of the IL-VLPO pathway, utilizing designer receptors exclusively activated by designer drugs (DREADDs) with the cre-DIO system, partially blocked tDCS’s sleep improvement in stress-induced insomnia. This study elucidated that the activation of the IL-VLPO pathway mediates tDCS’s effect on stress-induced insomnia. These findings support the understanding of tDCS effects on sleep disturbances, providing valuable insights for future research and clinical applications in sleep therapy. Full article
Show Figures

Figure 1

17 pages, 5696 KiB  
Article
Astrocytic Regulation of Endocannabinoid-Dependent Synaptic Plasticity in the Dorsolateral Striatum
by Louise Adermark, Rosita Stomberg, Bo Söderpalm and Mia Ericson
Int. J. Mol. Sci. 2024, 25(1), 581; https://doi.org/10.3390/ijms25010581 - 1 Jan 2024
Cited by 3 | Viewed by 2475
Abstract
Astrocytes are pivotal for synaptic transmission and may also play a role in the induction and expression of synaptic plasticity, including endocannabinoid-mediated long-term depression (eCB-LTD). In the dorsolateral striatum (DLS), eCB signaling plays a major role in balancing excitation and inhibition and promoting [...] Read more.
Astrocytes are pivotal for synaptic transmission and may also play a role in the induction and expression of synaptic plasticity, including endocannabinoid-mediated long-term depression (eCB-LTD). In the dorsolateral striatum (DLS), eCB signaling plays a major role in balancing excitation and inhibition and promoting habitual learning. The aim of this study was to outline the role of astrocytes in regulating eCB signaling in the DLS. To this end, we employed electrophysiological slice recordings combined with metabolic, chemogenetic and pharmacological approaches in an attempt to selectively suppress astrocyte function. High-frequency stimulation induced eCB-mediated LTD (HFS-LTD) in brain slices from both male and female rats. The metabolic uncoupler fluorocitrate (FC) reduced the probability of transmitter release and depressed synaptic output in a manner that was independent on cannabinoid 1 receptor (CB1R) activation. Fluorocitrate did not affect the LTD induced by the CB1R agonist WIN55,212-2, but enhanced CB1R-dependent HFS-LTD. Reduced neurotransmission and facilitated HFS-LTD were also observed during chemogenetic manipulation using Gi-coupled DREADDs targeting glial fibrillary acidic protein (GFAP)-expressing cells, during the pharmacological inhibition of connexins using carbenoxolone disodium, or during astrocytic glutamate uptake using TFB-TBOA. While pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) failed to prevent synaptic depression induced by FC, it blocked the facilitation of HFS-LTD. While the lack of tools to disentangle astrocytes from neurons is a major limitation of this study, our data collectively support a role for astrocytes in modulating basal neurotransmission and eCB-mediated synaptic plasticity. Full article
Show Figures

Graphical abstract

25 pages, 12683 KiB  
Article
Nicotine-Mediated Recruitment of GABAergic Neurons to a Dopaminergic Phenotype Attenuates Motor Deficits in an Alpha-Synuclein Parkinson’s Model
by Jessica IChi Lai, Alessandra Porcu, Benedetto Romoli, Maria Keisler, Fredric P. Manfredsson, Susan B. Powell and Davide Dulcis
Int. J. Mol. Sci. 2023, 24(4), 4204; https://doi.org/10.3390/ijms24044204 - 20 Feb 2023
Cited by 13 | Viewed by 4176
Abstract
Previous work revealed an inverse correlation between tobacco smoking and Parkinson’s disease (PD) that is associated with nicotine-induced neuroprotection of dopaminergic (DA) neurons against nigrostriatal damage in PD primates and rodent models. Nicotine, a neuroactive component of tobacco, can directly alter the activity [...] Read more.
Previous work revealed an inverse correlation between tobacco smoking and Parkinson’s disease (PD) that is associated with nicotine-induced neuroprotection of dopaminergic (DA) neurons against nigrostriatal damage in PD primates and rodent models. Nicotine, a neuroactive component of tobacco, can directly alter the activity of midbrain DA neurons and induce non-DA neurons in the substantia nigra (SN) to acquire a DA phenotype. Here, we investigated the recruitment mechanism of nigrostriatal GABAergic neurons to express DA phenotypes, such as transcription factor Nurr1 and DA-synthesizing enzyme tyrosine hydroxylase (TH), and the concomitant effects on motor function. Wild-type and α-syn-overexpressing (PD) mice treated with chronic nicotine were assessed by behavioral pattern monitor (BPM) and immunohistochemistry/in situ hybridization to measure behavior and the translational/transcriptional regulation of neurotransmitter phenotype following selective Nurr1 overexpression or DREADD-mediated chemogenetic activation. We found that nicotine treatment led to a transcriptional TH and translational Nurr1 upregulation within a pool of SN GABAergic neurons in wild-type animals. In PD mice, nicotine increased Nurr1 expression, reduced the number of α-syn-expressing neurons, and simultaneously rescued motor deficits. Hyperactivation of GABA neurons alone was sufficient to elicit de novo translational upregulation of Nurr1. Retrograde labeling revealed that a fraction of these GABAergic neurons projects to the dorsal striatum. Finally, concomitant depolarization and Nurr1 overexpression within GABA neurons were sufficient to mimic nicotine-mediated dopamine plasticity. Revealing the mechanism of nicotine-induced DA plasticity protecting SN neurons against nigrostriatal damage could contribute to developing new strategies for neurotransmitter replacement in PD. Full article
(This article belongs to the Special Issue Development of Dopaminergic Neurons 2.0)
Show Figures

Figure 1

15 pages, 43215 KiB  
Article
DDC-Promoter-Driven Chemogenetic Activation of SNpc Dopaminergic Neurons Alleviates Parkinsonian Motor Symptoms
by Dong-Chan Seo, Yeon Ha Ju, Jin-Ju Seo, Soo-Jin Oh, C. Justin Lee, Seung Eun Lee and Min-Ho Nam
Int. J. Mol. Sci. 2023, 24(3), 2491; https://doi.org/10.3390/ijms24032491 - 27 Jan 2023
Cited by 2 | Viewed by 3591
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder with typical motor symptoms. Recent studies have suggested that excessive GABA from reactive astrocytes tonically inhibits dopaminergic neurons and reduces the expression of tyrosine hydroxylase (TH), the key dopamine-synthesizing enzyme, in the substantia nigra pars compacta [...] Read more.
Parkinson’s disease (PD) is a neurodegenerative disorder with typical motor symptoms. Recent studies have suggested that excessive GABA from reactive astrocytes tonically inhibits dopaminergic neurons and reduces the expression of tyrosine hydroxylase (TH), the key dopamine-synthesizing enzyme, in the substantia nigra pars compacta (SNpc). However, the expression of DOPA decarboxylase (DDC), another dopamine-synthesizing enzyme, is relatively spared, raising a possibility that the live but non-functional TH-negative/DDC-positive neurons could be the therapeutic target for rescuing PD motor symptoms. However, due to the absence of a validated DDC-specific promoter, manipulating DDC-positive neuronal activity has not been tested as a therapeutic strategy for PD. Here, we developed an AAV vector expressing mCherry under rat DDC promoter (AAV-rDDC-mCherry) and validated the specificity in the rat SNpc. Modifying this vector, we expressed hM3Dq (Gq-DREADD) under DDC promoter in the SNpc and ex vivo electrophysiologically validated the functionality. In the A53T-mutated alpha-synuclein overexpression model of PD, the chemogenetic activation of DDC-positive neurons in the SNpc significantly alleviated the parkinsonian motor symptoms and rescued the nigrostriatal TH expression. Altogether, our DDC-promoter will allow dopaminergic neuron-specific gene delivery in rodents. Furthermore, we propose that the activation of dormant dopaminergic neurons could be a potential therapeutic strategy for PD. Full article
(This article belongs to the Special Issue Advances in Neurodegenerative Diseases Research and Therapy 2.0)
Show Figures

Figure 1

17 pages, 2509 KiB  
Article
Activation of the Ventrolateral Preoptic Neurons Projecting to the Perifornical-Hypothalamic Area Promotes Sleep: DREADD Activation in Wild-Type Rats
by Andrey Kostin, Md. Aftab Alam, Anton Saevskiy, Dennis McGinty and Md. Noor Alam
Cells 2022, 11(14), 2140; https://doi.org/10.3390/cells11142140 - 7 Jul 2022
Cited by 6 | Viewed by 3549
Abstract
The ventrolateral preoptic area (VLPO) predominantly contains sleep-active neurons and is involved in sleep regulation. The perifornical-hypothalamic area (PF-HA) is a wake-regulatory region and predominantly contains wake-active neurons. VLPO GABAergic/galaninergic neurons project to the PF-HA. Previously, the specific contribution of VLPO neurons projecting [...] Read more.
The ventrolateral preoptic area (VLPO) predominantly contains sleep-active neurons and is involved in sleep regulation. The perifornical-hypothalamic area (PF-HA) is a wake-regulatory region and predominantly contains wake-active neurons. VLPO GABAergic/galaninergic neurons project to the PF-HA. Previously, the specific contribution of VLPO neurons projecting to the PF-HA (VLPO > PF-HAPRJ) in sleep regulation in rats could not be investigated due to the lack of tools that could selectively target these neurons. We determined the contribution of VLPO > PF-HAPRJ neurons in sleep regulation by selectively activating them using designer receptors exclusively activated by designer drugs (DREADDs) in wild-type Fischer-344 rats. We used a combination of two viral vectors to retrogradely deliver the Cre-recombinase gene, specifically, in VLPO > PF-HA neurons, and further express hM3Dq in those neurons to selectively activate them for delineating their specific contributions to sleep–wake functions. Compared to the control, in DREADD rats, clozapine-N-oxide (CNO) significantly increased fos-expression, a marker of neuronal activation, in VLPO > PF-HAPRJ neurons (2% vs. 20%, p < 0.01) during the dark phase. CNO treatment also increased nonREM sleep (27% vs. 40%, p < 0.01) during the first 3 h of the dark phase, when rats are typically awake, and after exposure to the novel environment (55% vs. 65%; p < 0.01), which induces acute arousal during the light phase. These results support a hypothesis that VLPO > PF-HAPRJ neurons constitute a critical component of the hypothalamic sleep–wake regulatory circuitry and promote sleep by suppressing wake-active PF-HA neurons. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

26 pages, 8956 KiB  
Article
Chronic Chemogenetic Activation of the Superior Colliculus in Glaucomatous Mice: Local and Retrograde Molecular Signature
by Marie Claes, Emiel Geeraerts, Stéphane Plaisance, Stephanie Mentens, Chris Van den Haute, Lies De Groef, Lut Arckens and Lieve Moons
Cells 2022, 11(11), 1784; https://doi.org/10.3390/cells11111784 - 29 May 2022
Cited by 5 | Viewed by 4005
Abstract
One important facet of glaucoma pathophysiology is axonal damage, which ultimately disrupts the connection between the retina and its postsynaptic brain targets. The concurrent loss of retrograde support interferes with the functionality and survival of the retinal ganglion cells (RGCs). Previous research has [...] Read more.
One important facet of glaucoma pathophysiology is axonal damage, which ultimately disrupts the connection between the retina and its postsynaptic brain targets. The concurrent loss of retrograde support interferes with the functionality and survival of the retinal ganglion cells (RGCs). Previous research has shown that stimulation of neuronal activity in a primary retinal target area—i.e., the superior colliculus—promotes RGC survival in an acute mouse model of glaucoma. To build further on this observation, we applied repeated chemogenetics in the superior colliculus of a more chronic murine glaucoma model—i.e., the microbead occlusion model—and performed bulk RNA sequencing on collicular lysates and isolated RGCs. Our study revealed that chronic target stimulation upon glaucomatous injury phenocopies the a priori expected molecular response: growth factors were pinpointed as essential transcriptional regulators both in the locally stimulated tissue and in distant, unstimulated RGCs. Strikingly, and although the RGC transcriptome revealed a partial reversal of the glaucomatous signature and an enrichment of pro-survival signaling pathways, functional rescue of injured RGCs was not achieved. By postulating various explanations for the lack of RGC neuroprotection, we aim to warrant researchers and drug developers for the complexity of chronic neuromodulation and growth factor signaling. Full article
Show Figures

Figure 1

Back to TopTop