Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = DNMTi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 2976 KiB  
Review
Epigenetic Alterations in Glioblastoma Multiforme as Novel Therapeutic Targets: A Scoping Review
by Marco Meleiro and Rui Henrique
Int. J. Mol. Sci. 2025, 26(12), 5634; https://doi.org/10.3390/ijms26125634 - 12 Jun 2025
Viewed by 1344
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM’s molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical [...] Read more.
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM’s molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical contributors to GBM pathobiology, including aberrant DNA methylation, histone modifications, and non-coding RNA (ncRNA) dysregulation. These mechanisms drive oncogenesis, therapy resistance, and immune evasion. This scoping review evaluates the current state of knowledge on epigenetic modifications in GBM, synthesizing findings from original articles and preclinical and clinical trials published over the last decade. Particular attention is given to MGMT promoter hypermethylation status as a biomarker for temozolomide (TMZ) sensitivity, histone deacetylation and methylation as modulators of chromatin structure, and microRNAs as regulators of pathways such as apoptosis and angiogenesis. Therapeutically, epigenetic drugs, like DNA methyltransferase inhibitors (DNMTis) and histone deacetylase inhibitors (HDACis), appear as promising approaches in preclinical models and early trials. Emerging RNA-based therapies targeting dysregulated ncRNAs represent a novel approach to reprogram the tumor epigenome. Combination therapies, pairing epigenetic agents with immune checkpoint inhibitors or chemotherapy, are explored for their potential to enhance treatment response. Despite these advancements, challenges such as tumor heterogeneity, the blood–brain barrier (BBB), and off-target effects remain significant. Future directions emphasize integrative omics approaches to identify patient-specific targets and refine therapies. This article thus highlights the potential of epigenetics in reshaping GBM treatment paradigms. Full article
(This article belongs to the Special Issue Glioblastoma: Molecular Pathogenesis and Treatment)
Show Figures

Graphical abstract

22 pages, 3018 KiB  
Article
Uncovering a Novel Role of ROR1 in the Epigenetic Regulation of Tumor Suppressor Gene CREB3L1 in Triple-Negative Breast Cancer Cells
by Victoria L. Reed, Eric Lalu, Leena Yoon, Norman Fultang and Bela Peethambaran
Biomolecules 2025, 15(5), 734; https://doi.org/10.3390/biom15050734 - 16 May 2025
Viewed by 678
Abstract
A characteristic of triple-negative breast cancer (TNBC) is the epigenetic regulation of tumor suppressor genes, leading to TNBC heterogeneity and treatment resistance in patients. TNBC exhibits high methylation rates, leading to the silencing of numerous tumor suppressor genes. DNA methyltransferase inhibitors (DNMTis) have [...] Read more.
A characteristic of triple-negative breast cancer (TNBC) is the epigenetic regulation of tumor suppressor genes, leading to TNBC heterogeneity and treatment resistance in patients. TNBC exhibits high methylation rates, leading to the silencing of numerous tumor suppressor genes. DNA methyltransferase inhibitors (DNMTis) have shown limited clinical efficacy in TNBC treatment. This study aims to uncover a target that could be used to reverse the epigenetic silencing of tumor suppressor genes in TNBC. The Western blot analysis demonstrated that ROR1 knockdown, an oncofetal gene, reduced DNMT3A and DNMT3B protein expression in the TNBC cell lines MDA-MB-231 and HCC1806, as well as a non-malignant breast cell line, MCF10A. The reduced representation bisulfite sequencing (RRBS) analysis identified differential methylation of CREB3L1 when ROR1 is knocked down in TNBC cell lines. CREB3L1 is a transcription factor that plays tumor-suppressive roles in TNBC and is commonly epigenetically silenced in patients. This study shows that ROR1 requires pSTAT3 activation to upregulate DNMT3A and DNMT3B expression to induce CREB3L1 epigenetic silencing in TNBC. ROR1 knockdown resulted in the re-expression of CREB3L1 in TNBC cells. The data provide evidence that ROR1 inhibition, in combination with DNMTis, could enhance patient outcomes as a therapeutic approach for TNBC. Full article
(This article belongs to the Special Issue Tumour Suppressor Genes: The Guardians of Cell Integrity)
Show Figures

Graphical abstract

9 pages, 1403 KiB  
Article
Upregulation of TET2 and Resistance to DNA Methyltransferase (DNMT) Inhibitors in DNMT1-Deleted Cancer Cells
by Angelo B. A. Laranjeira, Dat Nguyen, Lorraine C. Pelosof, James H. Doroshow and Sherry X. Yang
Diseases 2024, 12(7), 163; https://doi.org/10.3390/diseases12070163 - 18 Jul 2024
Cited by 3 | Viewed by 2253
Abstract
Background: Ten-eleven-translocation (TET) 2 is a member of the TET family of proteins (TET1-3). DNMT1 gene deletion confers resistance to DNA methyltransferase (DNMT) inhibitors in colorectal, breast, and ovarian cancer cells. Currently, the effect of DNMT1 gene status on TET2 phenotype following DNMT [...] Read more.
Background: Ten-eleven-translocation (TET) 2 is a member of the TET family of proteins (TET1-3). DNMT1 gene deletion confers resistance to DNA methyltransferase (DNMT) inhibitors in colorectal, breast, and ovarian cancer cells. Currently, the effect of DNMT1 gene status on TET2 phenotype following DNMT inhibitor treatment is unclear in human malignancies. Methods: Human colorectal carcinoma HCT116 cells (DNMT+/+) and their isogenic DNMT1 knockout (DNMT1–/–) counterpart were treated with DNMT inhibitors. Expression of TET2 and tumor suppressor (p16ink4A and p15ink4B) proteins were examined by Western blot. Apoptosis and CDKN2A promoter demethylation following drug treatment were detected by Annexin-V apoptosis assay and methylation-specific PCR. Results: TET2 expression was robustly increased in DNMT1−/− cells by 0.5 µM and 5 µM decitabine and azacitidine treatment. Augmentation of TET2 expression was accompanied by re-expression of p16ink4A and p15ink4B proteins and CDKN2A promoter demethylation. TET2 upregulation and tumor suppressor re-expression were associated with resistance conferred by DNMT1 deletion. Treatment with 5-aza-4′-thio-2′-deoxycytidine at a low 0.5 µM dose only upregulated TET2 and reduced CDKN2A promoter methylation, and re-expression of p16ink4A in DNMT1−/− cells. DNMT inhibitors showed minimal effects on TET2 upregulation and re-expression of tumor suppressor proteins in cells with intact DNMT1. Conclusions: DNMT1 gene deletion made cancer cells prone to TET2 upregulation and activation of tumor suppressor expression upon DNMT inhibitor challenge. TET2 augmentation is concomitant with resistance to DNMT inhibitors in a DNMT1-deleted state. Full article
Show Figures

Figure 1

37 pages, 5984 KiB  
Review
Targeting DNA Methylation Machinery in Pediatric Solid Tumors
by Camilla Cristalli and Katia Scotlandi
Cells 2024, 13(14), 1209; https://doi.org/10.3390/cells13141209 - 18 Jul 2024
Cited by 7 | Viewed by 3141
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and [...] Read more.
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors. Full article
Show Figures

Figure 1

21 pages, 869 KiB  
Review
Recent Advancements in Research on DNA Methylation and Testicular Germ Cell Tumors: Unveiling the Intricate Relationship
by Alina-Teodora Nicu, Ileana Paula Ionel, Ileana Stoica, Liliana Burlibasa and Viorel Jinga
Biomedicines 2024, 12(5), 1041; https://doi.org/10.3390/biomedicines12051041 - 8 May 2024
Cited by 3 | Viewed by 2449
Abstract
Testicular germ cell tumors (TGCTs) are the most common type of testicular cancer, with a particularly high incidence in the 15–45-year age category. Although highly treatable, resistance to therapy sometimes occurs, with devastating consequences for the patients. Additionally, the young age at diagnosis [...] Read more.
Testicular germ cell tumors (TGCTs) are the most common type of testicular cancer, with a particularly high incidence in the 15–45-year age category. Although highly treatable, resistance to therapy sometimes occurs, with devastating consequences for the patients. Additionally, the young age at diagnosis and the treatment itself pose a great threat to patients’ fertility. Despite extensive research concerning genetic and environmental risk factors, little is known about TGCT etiology. However, epigenetics has recently come into the spotlight as a major factor in TGCT initiation, progression, and even resistance to treatment. As such, recent studies have been focusing on epigenetic mechanisms, which have revealed their potential in the development of novel, non-invasive biomarkers. As the most studied epigenetic mechanism, DNA methylation was the first revelation in this particular field, and it continues to be a main target of investigations as research into its association with TGCT has contributed to a better understanding of this type of cancer and constantly reveals novel aspects that can be exploited through clinical applications. In addition to biomarker development, DNA methylation holds potential for developing novel treatments based on DNA methyltransferase inhibitors (DNMTis) and may even be of interest for fertility management in cancer survivors. This manuscript is structured as a literature review, which comprehensively explores the pivotal role of DNA methylation in the pathogenesis, progression, and treatment resistance of TGCTs. Full article
Show Figures

Figure 1

28 pages, 1961 KiB  
Review
Epigenetic Dysregulation in MYCN-Amplified Neuroblastoma
by Soraya Epp, Shin Mei Chuah and Melinda Halasz
Int. J. Mol. Sci. 2023, 24(23), 17085; https://doi.org/10.3390/ijms242317085 - 3 Dec 2023
Cited by 10 | Viewed by 4008
Abstract
Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic factors play a pivotal role in normal neural crest and NB development, influencing gene expression patterns critical for tumorigenesis. [...] Read more.
Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic factors play a pivotal role in normal neural crest and NB development, influencing gene expression patterns critical for tumorigenesis. This review delves into the multifaceted interplay between MYCN and known epigenetic modifications during NB genesis, shedding light on the intricate regulatory networks underlying the disease. We provide an extensive survey of known epigenetic mechanisms, encompassing DNA methylation, histone modifications, non-coding RNAs, super-enhancers (SEs), bromodomains (BET), and chromatin modifiers in MYCN-amplified (MNA) NB. These epigenetic changes collectively contribute to the dysregulated gene expression landscape observed in MNA NB. Furthermore, we review emerging therapeutic strategies targeting epigenetic regulators, including histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), and DNA methyltransferase inhibitors (DNMTi). We also discuss and summarize current drugs in preclinical and clinical trials, offering insights into their potential for improving outcomes for MNA NB patients. Full article
(This article belongs to the Special Issue The Epigenetic Landscape in Cancer)
Show Figures

Figure 1

33 pages, 1951 KiB  
Review
Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on?
by Marina G. Gladkova, Este Leidmaa and Elmira A. Anderzhanova
Cells 2023, 12(11), 1464; https://doi.org/10.3390/cells12111464 - 24 May 2023
Cited by 17 | Viewed by 4014
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the [...] Read more.
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia. Full article
Show Figures

Figure 1

19 pages, 1038 KiB  
Article
Characterisation of miRNA Expression in Dental Pulp Cells during Epigenetically-Driven Reparative Processes
by Michaela Kearney, Paul R. Cooper, Anthony J. Smith and Henry F. Duncan
Int. J. Mol. Sci. 2023, 24(10), 8631; https://doi.org/10.3390/ijms24108631 - 11 May 2023
Cited by 5 | Viewed by 2190
Abstract
Within regenerative endodontics, exciting opportunities exist for the development of next-generation targeted biomaterials that harness epigenetic machinery, including microRNAs (miRNAs), histone acetylation, and DNA methylation, which are used to control pulpitis and to stimulate repair. Although histone deacetylase inhibitors (HDACi) and DNA methyltransferase [...] Read more.
Within regenerative endodontics, exciting opportunities exist for the development of next-generation targeted biomaterials that harness epigenetic machinery, including microRNAs (miRNAs), histone acetylation, and DNA methylation, which are used to control pulpitis and to stimulate repair. Although histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) induce mineralisation in dental pulp cell (DPC) populations, their interaction with miRNAs during DPC mineralisation is not known. Here, small RNA sequencing and bioinformatic analysis were used to establish a miRNA expression profile for mineralising DPCs in culture. Additionally, the effects of a HDACi, suberoylanilide hydroxamic acid (SAHA), and a DNMTi, 5-aza-2′-deoxycytidine (5-AZA-CdR), on miRNA expression, as well as DPC mineralisation and proliferation, were analysed. Both inhibitors increased mineralisation. However, they reduced cell growth. Epigenetically-enhanced mineralisation was accompanied by widespread changes in miRNA expression. Bioinformatic analysis identified many differentially expressed mature miRNAs that were suggested to have roles in mineralisation and stem cell differentiation, including regulation of the Wnt and MAPK pathways. Selected candidate miRNAs were demonstrated by qRT-PCR to be differentially regulated at various time points in mineralising DPC cultures treated with SAHA or 5-AZA-CdR. These data validated the RNA sequencing analysis and highlighted an increased and dynamic interaction between miRNA and epigenetic modifiers during the DPC reparative processes. Full article
(This article belongs to the Special Issue Etiology and Pathogenesis of Pulpitis and Apical Periodontitis 2023)
Show Figures

Figure 1

27 pages, 1663 KiB  
Review
Harnessing Epigenetics for Breast Cancer Therapy: The Role of DNA Methylation, Histone Modifications, and MicroRNA
by Joanna Szczepanek, Monika Skorupa, Joanna Jarkiewicz-Tretyn, Cezary Cybulski and Andrzej Tretyn
Int. J. Mol. Sci. 2023, 24(8), 7235; https://doi.org/10.3390/ijms24087235 - 13 Apr 2023
Cited by 32 | Viewed by 7481
Abstract
Breast cancer exhibits various epigenetic abnormalities that regulate gene expression and contribute to tumor characteristics. Epigenetic alterations play a significant role in cancer development and progression, and epigenetic-targeting drugs such as DNA methyltransferase inhibitors, histone-modifying enzymes, and mRNA regulators (such as miRNA mimics [...] Read more.
Breast cancer exhibits various epigenetic abnormalities that regulate gene expression and contribute to tumor characteristics. Epigenetic alterations play a significant role in cancer development and progression, and epigenetic-targeting drugs such as DNA methyltransferase inhibitors, histone-modifying enzymes, and mRNA regulators (such as miRNA mimics and antagomiRs) can reverse these alterations. Therefore, these epigenetic-targeting drugs are promising candidates for cancer treatment. However, there is currently no effective epi-drug monotherapy for breast cancer. Combining epigenetic drugs with conventional therapies has yielded positive outcomes and may be a promising strategy for breast cancer therapy. DNA methyltransferase inhibitors, such as azacitidine, and histone deacetylase inhibitors, such as vorinostat, have been used in combination with chemotherapy to treat breast cancer. miRNA regulators, such as miRNA mimics and antagomiRs, can alter the expression of specific genes involved in cancer development. miRNA mimics, such as miR-34, have been used to inhibit tumor growth, while antagomiRs, such as anti-miR-10b, have been used to inhibit metastasis. The development of epi-drugs that target specific epigenetic changes may lead to more effective monotherapy options in the future. Full article
Show Figures

Figure 1

14 pages, 3565 KiB  
Article
The Expression Patterns of Human Cancer-Testis Genes Are Induced through Epigenetic Drugs in Colon Cancer Cells
by Mikhlid H. Almutairi, Turki M. Alrubie, Bader O. Almutairi, Abdullah M. Alamri, Abdulwahed F. Alrefaei, Maha M. Arafah, Mohammad Alanazi and Abdelhabib Semlali
Pharmaceuticals 2022, 15(11), 1319; https://doi.org/10.3390/ph15111319 - 26 Oct 2022
Cited by 7 | Viewed by 2451
Abstract
Background: The expression of human germline genes is restricted to the germ cells of the gonads, which produce sperm and eggs. The germline genes involved in testis development and potentially activated in cancer cells are known as cancer-testis (CT) genes. These genes are [...] Read more.
Background: The expression of human germline genes is restricted to the germ cells of the gonads, which produce sperm and eggs. The germline genes involved in testis development and potentially activated in cancer cells are known as cancer-testis (CT) genes. These genes are potential therapeutic targets and biomarkers, as well as drivers of the oncogenic process. CT genes can be reactivated by treatment with drugs that demethylate DNA. The majority of the existing literature on CT gene activation focuses on X-chromosome-produced CT genes. We tested the hypothesis that epigenetic landscape changes, such as DNA methylation, can alter several CT gene expression profiles in cancer and germ cells. Methods: Colon cancer (CC) cell lines were treated with the DNA methyltransferase inhibitor (DNMTi) 5-aza-2’-deoxycytidine, or with the histone deacetylase inhibitor (HDACi) trichostatin A (TSA). The effects of these epigenetic treatments on the transcriptional activation of previously published CT genes (CTAG1A, SCP2D1, TKTL2, LYZL6, TEX33, and ACTRT1) and testis-specific genes (NUTM1, ASB17, ZSWIM2, ADAM2, and C10orf82) were investigated. Results: We found that treatment of CC cell lines with 5-aza-2’-deoxycytidine or TSA correlated with activation of X-encoded CT genes and non-X-encoded CT genes in somatic (non-germline) cells. Conclusion: These findings confirm that a subset of CT genes can be regulated by hypomethylating drugs and subsequently provide a potential therapeutic target for cancer. Full article
(This article belongs to the Topic Pharmacogenetics: A Tool in Cancer Therapy)
Show Figures

Figure 1

14 pages, 1633 KiB  
Article
Epigenetic-Like Stimulation of Receptor Expression in SSTR2 Transfected HEK293 Cells as a New Therapeutic Strategy
by Joerg Kotzerke, Dorothee Buesser, Anne Naumann, Roswitha Runge, Lisa Huebinger, Andrea Kliewer, Robert Freudenberg and Claudia Brogsitter
Cancers 2022, 14(10), 2513; https://doi.org/10.3390/cancers14102513 - 19 May 2022
Cited by 13 | Viewed by 2542
Abstract
The aim of the study was to increase the uptake of the SSTR2-targeted radioligand Lu-177-DOTATATE using the DNA methyltransferase inhibitor (DNMTi) 5-aza-2′-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The HEKsst2 and PC3 cells were incubated with variable concentrations [...] Read more.
The aim of the study was to increase the uptake of the SSTR2-targeted radioligand Lu-177-DOTATATE using the DNA methyltransferase inhibitor (DNMTi) 5-aza-2′-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The HEKsst2 and PC3 cells were incubated with variable concentrations of 5-aza-dC and VPA to investigate the uptake of Lu-177-DOTATATE. Cell survival, subsequent to external X-rays (0.6 or 1.2 Gy) and a 24 h incubation with 57.5 or 136 kBq/mL Lu-177-DOTATATE, was investigated via colony formation assay to examine the effect of the epidrugs. In the case of stimulated HEKsst2 cells, the uptake of Lu-177-DOTATATE increased by a factor of 28 in comparison to the unstimulated cells. Further, stimulated HEKsst2 cells demonstrated lower survival fractions (factor 4). The survival fractions of the PC3 cells remained almost unchanged. VPA and 5-aza-dC did not induce changes to the intrinsic radiosensitivity of the cells after X-ray irradiation. Clear stimulatory effects on HEKsst2 cells were demonstrated by increased cell uptake of the radioligand and enhanced SST2 receptor quantity. In conclusion, the investigated approach is suitable to stimulate the somatostatin receptor expression and thus the uptake of Lu-177-DOTATATE, enabling a more efficient treatment for patients with poor response to peptide radionuclide therapy (PRRT). Full article
(This article belongs to the Special Issue Metabolomics and Target Heterogeneity in Radioligand Therapy)
Show Figures

Figure 1

17 pages, 3473 KiB  
Article
Enhanced Cytotoxic Effects in Human Oral Squamous Cell Carcinoma Cells Treated with Combined Methyltransferase Inhibitors and Histone Deacetylase Inhibitors
by Ryosuke Ushio, Miki Hiroi, Ari Matsumoto, Kazumasa Mori, Nobuharu Yamamoto and Yoshihiro Ohmori
Biomedicines 2022, 10(4), 763; https://doi.org/10.3390/biomedicines10040763 - 24 Mar 2022
Cited by 10 | Viewed by 2691
Abstract
Combined treatment of human oral squamous cell carcinoma (OSCCs) with DNA methyltransferase inhibitors (DNMTis), histone methyltransferase inhibitors (HMTis), and histone deacetylase inhibitors (HDACis), and the molecular mechanisms underlying their anticancer effects, have not been fully elucidated. Herein, we investigated the cytotoxic effects of [...] Read more.
Combined treatment of human oral squamous cell carcinoma (OSCCs) with DNA methyltransferase inhibitors (DNMTis), histone methyltransferase inhibitors (HMTis), and histone deacetylase inhibitors (HDACis), and the molecular mechanisms underlying their anticancer effects, have not been fully elucidated. Herein, we investigated the cytotoxic effects of combined DNMTis (5-Aza-deoxycytidine: 5-Aza-dC, RG108), HMTis (3-deazaneplanocin A: DZNep), and HDACis (trichostatin A: TSA) treatment on human OSCC cells and explored their molecular mechanisms. Combined 5-Aza-dC, or RG108, and TSA treatment significantly decreased HSC-2 and Ca9-22 cell viability. Combinatorial DZNep and TSA treatment also decreased Ca9-22 cell viability. Although caspase 3/7 activation was not observed in HSC-2 cells following combined treatment, caspase activity was significantly increased in Ca9-22 cells treated with DZNep and TSA. Moreover, combined treatment with 5-Aza-dC, RG108, and TSA increased the proportion of HSC-2 and Ca9-22 cells in the S and G2/M phases. Meanwhile, increased phosphorylation of the histone variant H2A.X, a marker of double-stranded DNA breaks, was observed in both cells after combination treatment. Hence, the decreased viability induced by combined treatment with epigenomic inhibitors results from apoptosis and cell cycle arrest in S and G2/M phases. Thus, epigenomic therapy comprising combined low concentrations of DNMTi, HMTi, and HDACi is effective against OSCC. Full article
(This article belongs to the Special Issue Head and Neck Tumors)
Show Figures

Figure 1

18 pages, 2789 KiB  
Review
Usefulness of Melatonin and Other Compounds as Antioxidants and Epidrugs in the Treatment of Head and Neck Cancer
by Joaquín Guerra and Jesús Devesa
Antioxidants 2022, 11(1), 35; https://doi.org/10.3390/antiox11010035 - 24 Dec 2021
Cited by 12 | Viewed by 4550
Abstract
Along with genetic mutations, aberrant epigenetic alterations are the initiators of head and neck cancer carcinogenesis. Currently, several drugs are being developed to correct these epigenetic alterations, known as epidrugs. Some compounds with an antioxidant effect have been shown to be effective in [...] Read more.
Along with genetic mutations, aberrant epigenetic alterations are the initiators of head and neck cancer carcinogenesis. Currently, several drugs are being developed to correct these epigenetic alterations, known as epidrugs. Some compounds with an antioxidant effect have been shown to be effective in preventing these malignant lesions and in minimizing the complications derived from cytotoxic treatment. Furthermore, in vitro and in vivo studies show a promising role in the treatment of head and neck squamous cell carcinoma (HNSCC). This is the case of supplements with DNA methylation inhibitory function (DNMTi), such as epigallocatechin gallate, sulforaphane, and folic acid; histone deacetylase inhibitors (HDACi), such as sodium butyrate and melatonin or histone acetyltransferase inhibitors (HATi), such as curcumin. The objective of this review is to describe the role of some antioxidants and their epigenetic mechanism of action, with special emphasis on melatonin and butyric acid given their organic production, in the prevention and treatment of HNSCC. Full article
Show Figures

Figure 1

21 pages, 2754 KiB  
Article
Epigenetic DNA Methylation of EBI3 Modulates Human Interleukin-35 Formation via NFkB Signaling: A Promising Therapeutic Option in Ulcerative Colitis
by Alexandra Wetzel, Bettina Scholtka, Fabian Schumacher, Harshadrai Rawel, Birte Geisendörfer and Burkhard Kleuser
Int. J. Mol. Sci. 2021, 22(10), 5329; https://doi.org/10.3390/ijms22105329 - 19 May 2021
Cited by 14 | Viewed by 3668
Abstract
Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. EpsteinBarr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of [...] Read more.
Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. EpsteinBarr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of either pro- or anti-inflammatory function. After having recently demonstrated that upregulation of EBI3 by histone acetylation alleviates disease symptoms in a dextran sulfate sodium (DSS)-treated mouse model of chronic colitis, we now aimed to examine a possible further epigenetic regulation of EBI3 by DNA methylation under inflammatory conditions. Treatment with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC) and TNFα led to synergistic upregulation of EBI3 in human colon epithelial cells (HCEC). Use of different signaling pathway inhibitors indicated NFκB signaling was necessary and proportional to the synergistic EBI3 induction. MALDI-TOF/MS and HPLC-ESI-MS/MS analysis of DAC/TNFα-treated HCEC identified IL-12p35 as the most probable binding partner to form a functional protein. EBI3/IL-12p35 heterodimers (IL-35) induce their own gene upregulation, something that was indeed observed in HCEC cultured with media from previously DAC/TNFα-treated HCEC. These results suggest that under inflammatory and demethylating conditions the upregulation of EBI3 results in the formation of anti-inflammatory IL-35, which might be considered as a therapeutic target in colitis. Full article
(This article belongs to the Special Issue Epigenetic Modifications and Carcinogenesis)
Show Figures

Figure 1

19 pages, 1631 KiB  
Review
Oncolytic Virotherapy: The Cancer Cell Side
by Marcelo Ehrlich and Eran Bacharach
Cancers 2021, 13(5), 939; https://doi.org/10.3390/cancers13050939 - 24 Feb 2021
Cited by 13 | Viewed by 4308
Abstract
Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses, including recognition of invading pathogens, inhibition of viral replication, reprogramming of cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation of immunostimulatory inflammation. In tumor development and/or immunotherapy settings, selective pressure [...] Read more.
Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses, including recognition of invading pathogens, inhibition of viral replication, reprogramming of cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation of immunostimulatory inflammation. In tumor development and/or immunotherapy settings, selective pressure applied by the immune system results in tumor immunoediting, a reduction in the immunostimulatory potential of the cancer cell. This editing process comprises the reduced expression and/or function of cell autonomous immunity genes, allowing for immune-evasion of the tumor while concomitantly attenuating anti-viral defenses. Combined with the oncogene-enhanced anabolic nature of cancer-cell metabolism, this attenuation of antiviral defenses contributes to viral replication and to the selectivity of oncolytic viruses (OVs) towards malignant cells. Here, we review the manners by which oncogene-mediated transformation and tumor immunoediting combine to alter the intracellular milieu of tumor cells, for the benefit of OV replication. We also explore the functional connection between oncogenic signaling and epigenetic silencing, and the way by which restriction of such silencing results in immune activation. Together, the picture that emerges is one in which OVs and epigenetic modifiers are part of a growing therapeutic toolbox that employs activation of anti-tumor immunity for cancer therapy. Full article
(This article belongs to the Special Issue Oncolytic Virus Immunotherapy)
Show Figures

Figure 1

Back to TopTop