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Abstract: Breast cancer exhibits various epigenetic abnormalities that regulate gene expression and
contribute to tumor characteristics. Epigenetic alterations play a significant role in cancer develop-
ment and progression, and epigenetic-targeting drugs such as DNA methyltransferase inhibitors,
histone-modifying enzymes, and mRNA regulators (such as miRNA mimics and antagomiRs) can
reverse these alterations. Therefore, these epigenetic-targeting drugs are promising candidates for
cancer treatment. However, there is currently no effective epi-drug monotherapy for breast cancer.
Combining epigenetic drugs with conventional therapies has yielded positive outcomes and may
be a promising strategy for breast cancer therapy. DNA methyltransferase inhibitors, such as azaci-
tidine, and histone deacetylase inhibitors, such as vorinostat, have been used in combination with
chemotherapy to treat breast cancer. miRNA regulators, such as miRNA mimics and antagomiRs,
can alter the expression of specific genes involved in cancer development. miRNA mimics, such as
miR-34, have been used to inhibit tumor growth, while antagomiRs, such as anti-miR-10b, have been
used to inhibit metastasis. The development of epi-drugs that target specific epigenetic changes may
lead to more effective monotherapy options in the future.

Keywords: biomarkers; chemoresistance; epigenetic targets; histone deacetylase inhibitors (HDACi);
DNA methyltransferase inhibitors (DNMTi); antagomiRs; mimic RNA

1. Introduction

Breast cancer is one of the most frequently diagnosed proliferative diseases in women
worldwide, with an estimated number of 2.3 million new cases globally according to
the GLOBOCAN 2020 data [1,2]. The risk of developing the disease is much higher in
genetically predisposed women. There is no doubt that the genetic background is of key
importance at every stage of the disease, starting with diagnosis and prognosis, monitoring
the progression and choosing the right treatment protocol [3–7].

The vast majority (approx. 80–90%) of breast cancer cases are the so-called sporadic
tumors. Up to 20% of diagnoses are hereditary cancers, associated with the presence of
germline mutations, most often in the BRCA1 (17q21.31) or BRCA2 (13q13.1) genes. Approx-
imately 5–15% of all diagnoses of the disease are cases with familial aggregation, for some of
which the presence of mutations in the predisposition genes cannot be confirmed [1,8–10].
The most common cause of hereditary breast cancer are mutations in the BRCA1 or BRCA2
genes. Nevertheless, there are dozens of genes associated with the risk of breast cancer.
Among them, genes participating in the repair of double-stranded DNA damage predom-
inate. Mutations and polymorphisms in them can lead to abnormal cell growth, which
can lead to the development of cancer. Among the genes that are associated with the
development and progression of breast cancer, the following are currently listed [8,10–20]:
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• BRCA1 and BRCA2 genes, which have the best documented association with breast
cancer; having a mutation in these genes is responsible for a 50–80% risk of breast
cancer and a 45% risk of ovarian cancer before the age of 85—with a mutation in
the BRCA1 gene and a 31–56% risk of breast cancer and 11–27% of ovarian cancer in
BRCA2 mutation [21–30];

• the PALB2 gene, which is responsible for the repair of damaged DNA; carriers of the
defective gene have a 35% risk of developing breast cancer before the age of 70 [31–36];

• the CHEK2 gene, which is responsible for the production of a protein that inhibits
tumor growth; women with a mutation in this gene have a twice as high a risk of
developing breast cancer compared to the general population [37–42];

• the NBN gene, which encodes a protein regulating the DNA repair process and
maintaining chromosome stability [43–47];

• CDKN2A gene, associated with the formation of proteins regulating the course of the
cell cycle and inhibiting the growth of cancer cells [48–52];

• other, less known genes whose mutations may increase the risk of breast and other
cancers, but which have not yet been precisely described, include TP53, PTEN, CASP8,
CTLA4, BARD1, BRIP1, CYP19A1, ATM, FGFR2, H19, LSP1, MAP3K1, MAP2K4,
MRE11A, RAD51 and TERT [53].

According to current guidelines, breast cancer risk assessment should be based pri-
marily on the analysis of 14 genes: ATM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, NBN,
NF1, PALB2, PTEN, RAD51C, RAD51D, STK11, TP53. Genetic testing should be performed
on every patient who: developed breast cancer before the age of 50, was diagnosed with
triple-negative cancer, or developed ovarian cancer. In carriers of mutations in the BRCA1
and BRCA2 genes, the risk of developing breast cancer increases to even 80%. In addition,
these BRCA1-associated breast tumors are usually triple-negative for estrogen receptor α
(ER-), progesterone receptor (PR-) and HER2 (HER2-), which makes the development of
targeted therapies difficult [21–24].

Detection of a specific mutation enables the implementation of appropriate further
diagnostics and the development of individual and preventive recommendations, including
imaging tests (ultrasound, magnetic resonance imaging, mammography). It has been
shown that hereditary cancers often coexist in pairs: cancer appears in both breasts, it
can develop in the ovaries, fallopian tubes, pancreas, and the risk of melanoma increases.
Knowledge of the genetic background therefore enables effective and targeted monitoring
of organs that are particularly vulnerable to the manifestation of the disease. Early detection
of mutations enables the appropriate selection of diagnostic tests and providing the affected
families with proper care and genetic counseling.

Genetic testing also plays an extremely important role in planning treatment. Con-
ventional treatment protocols have greatly improved the management of BC patients, but
subtype heterogeneity, the emergence of drug resistance, and disease relapse are major fac-
tors hampering the effectiveness of BC therapy. In the case of cancer patients, information
on the genetic load changes the scope of surgery and adjuvant treatment. Knowledge about
the genetic load is important for planning treatment, but also for the patient’s family, due
to the high probability of the offspring inheriting the disease-causing mutation.

2. Epigenetic Regulations

In addition to the study of germline genetic changes, epigenetic changes affecting the
modulation of predisposition gene expression, as well as causing disturbances in signaling
pathways, especially those related to DNA repair, are being increasingly studied. Epigenet-
ics is a critical mechanism for regulating transcription [54,55]. Epigenetic information is
encoded in the structure and function of covalent modifications of DNA (hypomethylation
or hypermethylation) and DNA-related nuclear chromatin histone proteins (such as acety-
lation, methylation, phosphorylation, sumoylation, ubiquitylation, or ADP-ribosylation).
In the last few years, attention has been increasingly paid to the role of microRNAs as
diverse expression regulators with high therapeutic potential. Epimutations can lead to
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the silencing of tumor suppressor genes independently and also in combination with
pathogenic genetic mutations. Epimutations can also promote tumorigenesis by activating
oncogenes. The events that lead to the onset of these epigenetic abnormalities are still not
fully understood. Nevertheless, because epigenetic changes are inherited, they are selected
in the rapidly growing population of cancer cells and provide a growth advantage for
cancer cells, promoting their uncontrolled growth. For many genes of high predisposition,
typical epigenetic changes have been determined, which affect the abnormal function of
these genes and are one of the causes of cell transformation. Individual epimutations
may act independently or together. As in the case of the BRCA1 gene (Figure 1), they can
be differentiated and involve different mechanisms. BRCA1 alters epigenetics through
physical interactions and transcriptional regulation of known epigenetic modifiers. In
addition, as an E3 ubiquitin ligase, BRCA1 directly ubiquitylates histones.
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Figure 1. Landscape of epigenetic changes in familial breast cancer associated with the BRCA1 gene
(based on [56]).

Disturbances in the processes of epigenetic reprogramming of genomic DNA tran-
scriptional activity may be the cause of neoplastic transformation. The fact that epigenetic
aberrations, unlike genetic mutations, are potentially reversible and can be restored to
their normal state by epigenetic therapy makes any epigenetic research promising and
therapeutically relevant.

BRCA1/2-associated hereditary breast cancer is characterized by global changes in
DNA methylation. In the presence of BRCA1/2 mutations, cancer cells are unable to
properly repair DNA damage, leading to uncontrolled proliferation and tumor develop-
ment. Changes in DNA methylation affect the expression of genes involved in DNA repair
processes, cell signaling, proliferation, and differentiation, which further contributes to
tumor development [57]. In the case of familial breast cancer not associated with BRCA1/2
mutations, changes in DNA methylation are also observed. It was shown that changes
in DNA methylation were more correlated with familial breast cancer than with sporadic
cases. These changes involved promoter regions of genes involved in cell cycle regulation,
signaling, and apoptosis. In the case of sporadic breast cancer, changes in DNA methylation
are more diverse and associated with the expression of different breast cancer subtypes.
One study showed that DNA methylation patterns in breast cancer subtypes are so diverse
that they can be used for classification [58].

It is believed that no two breast cancers are the same, and that the molecular profile
of a breast tumor is different in each patient; therefore, it is very important to choose the
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right therapy. Unfortunately, in breast cancer, we still have few targeted therapies that
directly target the changes that led to the cancer; however, the possibilities are constantly
changing. The aim of this paper is to present the current state of knowledge on epigenetic
factors and determining mechanisms in breast cancer, especially genetically determined,
with particular emphasis on their impact on therapy. For many years, advanced research
has been conducted on epigenome changes in breast cancer, and its goal is not only to
understand the role of epigenetics in the development and progression of BC, but also to
search for epi-drugs and develop new protocols based on epigenetic therapies.

3. Epigenetic Therapy in Breast Cancer

The reversible nature of epigenetic changes during oncogenesis has prompted the
consideration of epigenetic therapy. Epigenetic therapy is a therapeutic approach that
focuses on chemical modifications that affect gene activity in cancer cells. In breast cancer
treatment, epigenetic therapy aims to restore the normal expression of tumor suppres-
sor genes, which usually inhibit the growth of cancer cells. There are different types of
epigenetic therapy, but the most commonly used in breast cancer treatment are histone
deacetylase inhibitors (HDACi), DNA methyltransferase inhibitors (DNMTi) and RNA
inhibitors [57,59]. Nevertheless, the search for effective epigenetic therapies has broadened
and, in addition to these well-known inhibitors and target miRNAs, inhibition of HAT,
class I, II, and IV specific HDACs, class III HDACs (sirtuins), KMT, KDM, and many kinase
are being considered [60]. HDAC inhibitors inhibit the activity of enzymes that remove
acetyl groups from histones, which leads to chromatin changes and activation of tumor
suppressor genes. On the other hand, DNMT inhibitors inhibit the activity of enzymes
that add methyl groups to DNA, which usually leads to the blocking of tumor suppressor
gene expression. Inhibitors of epigenetic enzymes are referred to as “epi-drugs” [61–65].
RNA inhibitors, block the transcription and translation of mRNA, affecting the regulation
of gene expression. This class of epigenetic regulators is most often used in the so-called
replacement therapy [66].

Clinical studies have shown that epigenetic therapy can be effective in breast cancer
treatment, especially in hormone-resistant breast cancer. Epigenetic drugs are being tested
with increasing frequency, especially those effective in reversing DNA methylation and his-
tone modification aberrations. In therapeutic concepts, it is important to take into account
the interactions between various elements of the epigenetic machinery, and especially the
synergistic effect of DNA and HDAC methylation inhibitors. In the case of microRNA
expression disorders, therapeutic molecules (mimic or antagomiRs) are designed, whose
task is to regulate the target miRs [66]. Combinatorial treatment strategies have been found
to be more effective than individual therapeutic approaches. The first epigenetic drugs
were tested for hematologic cancers.

4. DNA Methylation Aberrations

The first epimutations identified for the initial stages of tumor initiation and progres-
sion are profound changes in DNA methylation. A hallmark of the epigenome of cancer
cells is genome-wide hypomethylation and promoter-specific hypermethylation of the
CpG island promoter. The consequence of DNA hypomethylation is increased genomic
instability, promoting chromosomal rearrangements. It also results in abnormal activation
of genes (proto-oncogenes) and non-coding regions through various mechanisms that
contribute to tumor development and progression.

Site-specific hypermethylation contributes to oncogenesis by silencing tumor suppres-
sor genes. Such a silencing mechanism was confirmed for BRCA1. In addition to the direct
inactivation of tumor suppressor genes, DNA hypermethylation can also indirectly lead
to the silencing of various classes of genes by inactivating transcription factors and DNA
repair genes [56,67]. Silencing DNA repair genes allows cells to accumulate further genetic
changes leading to rapid tumor progression. The ability of DNA hypermethylation to
silence predisposition genes in breast cancer is well-known, nevertheless, how the genes
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target this aberrant DNA methylation is not well-characterized. This mechanism is believed
to provide a cell growth advantage, resulting in clonal selection and proliferation. Further
understanding of how specific regions of the genome target DNA hypermethylation in
cancer could potentially lead to the identification of additional therapeutic targets.

Hypermethylation most often concerns tumor suppressor genes however, it has also
been confirmed for DNA repair genes, apoptosis, cell cycle regulation, cell growth, home-
ostasis and adhesion [62,68]. It is believed that DNA methylation status may be of value as
both a diagnostic and predictive marker, including response to therapy. DNA methylation
levels have been confirmed to be high at the gene loci proapoptotic genes (HOXA5, TMS1),
cell cycle inhibitory genes (p16, RASSF1A) and DNA repair genes [69,70]. It has been shown
that hypermethylation disorders of the genes encoding the estrogen receptor alpha and the
progesterone receptor are correlated with the silencing of these genes and the development
of ER- and PR-negative breast cancer. Hypermethylation of the RASSF1A gene is consid-
ered to be an important BC diagnostic marker, and the PITX2 gene is considered a marker
of tamoxifen resistance [62].

The relationship between BRCA and DNA methylation is the most widely stud-
ied [71,72]. The promoter of the BRCA1 gene has more than 90 CpG islands, and the
promoter of the BRCA2 gene has 70 sites that can undergo methylation [73]. The BRCA2
promoter is more often methylated; however, this gene is less frequently studied compared
to BRCA2 [73]. BRCA1-associated breast tumors show less DNA methylation compared
to sporadic breast tumors [71,72,74]. BRCA1 gene expression is significantly reduced
or completely inhibited by the methylation of its promoter [75–77]. Hypermethylation
of the promoter of this gene in sporadic breast cancer results in loss of function of this
gene analogous to its mutation in hereditary cases [77,78]. CpG island promoter methy-
lation is more common in young women with high-grade pathology and triple-negative
breast cancer (negative estrogen receptor, negative progesterone receptor, negative ERBB2
[Her2/Neu]) [79–82]. In addition, mutated BRCA1 is correlated with a number of epigenetic
modifications in carriers. BRCA1 physically interacts with the de novo methyltransferase
DNMT3B, modulates heterochromatin [83], regulates the transcription of the methylation
maintenance enzyme DNMT1 and prevents global DNA [67]. Genome hypermethylation in
BRCA1 carriers has been shown to be significantly correlated with cancer development [84].
Strong methylation of the estrogen receptor promoter alpha is the reason for the silencing the
expression of this gene in familial cases of breast cancer [85]. Loss of function by mutated
BRCA1 leads to increased hypomethylation, which promotes proliferation and invasiveness,
due to the increased expression of oncogenes such as RAD9, c-Fos, H-Ras and c-Myc [67,86].

Observations on the methylation status of genes involved in the initiation and progres-
sion of breast cancer have been used in attempts to improve the effectiveness of anti-cancer
therapies. In vitro studies, animal models and clinical studies (Table 1) have shown the effec-
tiveness of nucleoside analogs, e.g., cytidine analogs, i.e., azacytidine (5-aza-CR; Vidaza®,
Celgene Corp., Summit, NJ, USA) and decitabine (5-aza-2′-deoxycytidine, 5-aza-CdR;
Dacogen®, SuperGen, Inc., Dublin, CA, USA), in inhibiting DNA methylation in cancer
cells [87]. Under culture conditions, after introducing the analogs, gene expression was
induced, causing the differentiation of these cells. Cytidine chemical analogues are incor-
porated into the DNA of rapidly growing tumor cells during replication, and inhibit DNA
methylation by forming covalent bonds with DNMT, leading to their depletion inside the
cell [87]. The downregulation of DNA methylation induced by these drugs is responsible
for inhibiting the growth of cancer cells by activating tumor suppressor genes that are
abnormally silenced in cancer cells [88,89]. Studies have shown a reduction in tumor size
in xenograft mice [90–92]. Tsai et al. [92] showed a correlation between the treatment
of mice with azacytidine and the inhibition of tumor growth at the 5th week of therapy.
Tao et al. [93] analyzed the possibility of breast cancer therapy using azacitidine. In their
experiment, using the MCF7 and MDA-MB-231 cell lines, it was possible to inhibit 23 out
of 26 hypermethylated genes in breast cancer. Moreover, for the CLDN6, PRA, RIN1 and
VGF genes, the ability to reactivate their expression was confirmed [93]. Efforts to treat
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breast cancer using decitabine, which prevents DNA remethylation, are also promising.
Cai et al. [94] reported that this analog is able to activate the apoptosis-inducing ligand
associated with tumor necrosis factor (TRAIL) in triple-negative breast cancer cells, thereby
sensitizing cancer cells to chemotherapy. In addition, reductions in tumor growth have
been observed in animal models [90,92]. CTFR is highly hypermethylated in breast cancer.
This change was characteristic of invasive cancers. Low levels of CFTR protein correlated
with poor patient survival. Treatment with decitabine enabled high expression of CTFR
and thus inhibition of cell growth [95]. Borges et al. [90] noted the importance of aberrant
methylation of the PRKD1 gene promoter during tumor progression and lung metastasis.
Restoring the normal methylation pattern of this gene with decitabine affected tumor ag-
gressiveness and inhibited tumor spread in a PKD1-dependent manner. These researchers
emphasized that the promoter status of the PKD1 gene may be both a marker of early
diagnosis and of significant importance in therapy.

Restoring the correct epigenetic state is also important for genes for which mutations
have not been found, but they are inactivated in cancer cells. Genes such as RASSF1,
GSTP1, MGMT, and BRMS1 are markers of response to therapy, including difficult cases.
Demethylation has also been shown to have promising effects in overcoming resistance to
hormone therapy [62]. Restoration of expression of genes such as ESR1 [96] or PITX2 [97]
sensitizes cancer cells to tamoxifen, and the analysis of promoter methylation status of
these genes enables the identification of patients with positive expression of the hormone
receptor that will not benefit from the drug administration [62].

Table 1. Exemplary clinical studies on the role of methyltransferase inhibitors in breast cancer (based
on ClinicalTrials.gov (accessed on 5 March 2023) [98]).

NCT Number Study Type Description Outcome Measures Study Population

Azacitidine

NCT04891068 Interventional

Determination of the effect of low-dose
azacitidine therapy on

tumor-infiltrating lymphocytes (TILs)
in primary tumors from patients with

high-risk early stage breast cancer.

Clinical response (change
Ki67 and tumor size) of

primary tumor following
treatment with low-dose
azacitidine therapy, DFS

and OS measures.

Age ≥ 18 years of age at
time of consent

NCT01349959 Interventional

Evaluation of the response rate using
RECIST criteria of the combination of
azacitidine and entinostat in women

with advanced breast cancer,
triple-negative and
hormone-refractory.

Clinical Benefit Rate, OS,
PFS, change in expression
of relevant genes (e.g., ER

alpha and RAR beta).

Histologically or
cytologically confirmed
adenocarcinoma of the

breast triple-negative (ER-,
PR-, HER2- or

hormone-positive/ HER2-,
with evidence of locally

advanced and inoperable
or metastatic disease).

NCT01292083 Interventional

Evaluation of the ability of DNA
methylation inhibition using

5-azacitidine to induce expression of
the ER and PR genes in solid human

triple-negative invasive breast cancer.

Percentage of participants
with ER/PR response after

receiving 10 doses of
5-Azacitidine.

Resectable tumor
measuring 2 cm or more;
triple-negative invasive

breast cancer

NCT02374099 Interventional

Assessing the efficacy and safety of the
combination of fulvestrant with

CC-486 in subjects with ER+, HER2-
metastatic breast cancer who have

progressed after prior AI.

Percentage of participants
who achieved a confirmed
CR, PR or SD to treatment,

estimation of DoR and
TEAEs.

≥18 years of age with
metastatic breast cancer

NCT00748553 Interventional

Testing whether treatment of patients
with advanced or metastatic solid

tumors or breast cancer with Abraxane
plus Vidaza is safe and results in good

tumor response.

Percentage of participants
with ORR measured using

RECIST 1.0 criteria,
including CR, PR, SD,

or PD.

Patients with advanced or
metastatic HER2-negative

breast cancer who have
not received treatment for
their metastatic disease.

Decitabine

NCT03295552 Interventional

Evaluation the effect of novel DNA
demethylating agents in the treatment
of metastatic TNBC (drugs: decitabine,

carboplatin).

Partial response (PR) +
complete response

(CR) rate.

Pathologically confirmed
metastatic triple-negative
breast cancer, age between

18 years and 70 years.

ClinicalTrials.gov
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Table 1. Cont.

NCT Number Study Type Description Outcome Measures Study Population

Decitabine

NCT02957968 Interventional

Course of immunotherapy consisting
of sequential decitabine followed by

pembrolizumab administered prior to
a standard neoadjuvant chemotherapy

regimen for patients with locally
advanced HER2-negative breast cancer.

Determination of whether
the immunotherapy

increases the presence and
percentage of tumor

and/or stromal area of
infiltrating lymphocytes

prior to initiation of
standard neoadju-

vant chemotherapy.

Invasive adenocarcinoma
of the breast,

HER2-negative.

NCT03282825 Interventional

Decitabine and paclitaxel combination
therapy in treating patients with
metastatic and locally advanced

breast cancer.

Measure of maximum
tolerant dose (MTD) and

dose limiting
toxicity (DLT).

Unable to operate for
therapy with HER2

negative breast
adenocarcinoma and

metastatic breast cancer,
one or

more chemotherapy.

NCT01194908 Interventional

Reactivation of ER using decitabine in
combination with LBH589 (deacetylase
inhibitor). Reactivated ER can then be

targeted with agents such
as tamoxifen.

Measure of MTD of
Decitabine and LBH589

given in combination and
determination of the

safety of tamoxifen in
combination with

decitabine and LBH589.

ER-, PR-, HER2-
metastatic or locally

advanced breast cancer.

FdCyd

NCT00978250
and

NCT01479348
Interventional

Testing of FdCyd (also called
5-fluoro-2′-deoxcytidine), and THU

(also called tetrahydrouridine)
effectiveness in treating cancer that has
not responded to standard therapies.

Determination of PFS
and/or the response rate

(CR + PR) of FdCyd.

Individuals who were 18
years of age and older
who have advanced

non-small cell lung cancer,
breast cancer, bladder

cancer, or head and neck
cancer that has progressed

after receiving
standard treatment.

In the case of breast cancer, DNMTi can be used as an adjunct therapy in the treatment
of advanced and hormone-resistant breast cancer. The studies that have been conducted
have shown that DNMTi reduce the size of breast tumors and inhibit their growth, in
addition to improving the effectiveness of hormonal therapy. In addition, DNMTi may
also contribute to the inhibition of the development of metastases in other organs, which
may improve the overall effectiveness of treatment. However, DNMTi therapy is still in the
clinical trial stage, and its effectiveness in the treatment of breast cancer requires further
research and confirmation.

5. Changes in Histone Modifications

Covalent modifications of histones most often concern the N-terminal tails, which can
undergo various post-translational changes including the following: methylation, acetyla-
tion, ubiquitylation, sumoylation and phosphorylation at specific residues [99]. These are
key changes in the regulation of cellular processes such as transcription, replication and
genome repair. Depending on which residues are modified and the type of modifications
present, histone modifications can result in activation or repression. The global consequence
of HDAC-mediated loss of acetylated H4-lysine trimethylation is gene repression. In turn,
alteration of the methylation pattern, especially of H3 histones, mediated by HMT, has been
associated with abnormal gene silencing [100]. The most common histone modification
is acetylation, a dynamic event carried out by histone acetyltransferases (HATs) and the
deacetylase complex histone factor (HDAC). These enzymes, respectively, add and remove
acetyl groups from the tails of [101].

BRCA1 is involved in numerous histone modifications leading to the modulation
of chromatin activity. Of these, the most common are: histone H2A ubiquitination (re-
sulting in satellite DNA overexpression, homologous recombination disorders, genomic
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instability) [102–104], deacetylation of H2A and H3, interactions with HDAC1 result-
ing in deacetylation of DNA repair genes (e.g., KDM5B, Ku70 pathway genes) [105–108].
In addition, BRCA1 interacts with CBP and p300, two structurally related HATs [101].
Zheng et al. [109] described the mechanism of estrogen receptor repression through the
interaction of the BRCA1 gene with the catalytic subunits of the deacetylase complex
histone. BRCA1-dependent ERα repression is largely restored by the HDAC inhibitor
trichostatin A. Moreover, BRCA1 and HDAC2 interactions have an effect on the epigenetic
silencing of mir-155 [110]. Silencing of miR-155 expression occurs upon the binding of
BRCA1 to the oncomiR promoter. The consequence of the combination is the recruitment
of HDAC2 to deacetylate histones H2A and H3. It has been experimentally shown that
the administration of HDAC inhibitors restores the normal level of miR-155 expression.
However, this is not possible in BRCA1-deficient cells because a mutation in the BRCT
domain prevents interaction with HDAC2 [110]. Loss of histone acetylation may be the
cause of gene silencing abnormalities. Therefore, it was considered that treatment with
HDAC inhibitors, leading to the restoration of normal histone acetylation patterns, may
have anti-cancer effects, following growth arrest, activation of apoptosis and induction
of differentiation. Thanks to the introduction of HDAC inhibitors into cancer cells, it is
possible to reactivate silenced tumor suppressor genes. Recently, HMT inhibitors (e.g.,
DZNep) are also being actively investigated.

There are four groups of HDACs: (1) short-chain fatty acids, e.g., sodium butyrate and
valproic acid; (2) hydroxamic acids, e.g., trichostatin A, vorinostat, Panobinostat; (3) cyclic
tetrapeptides, e.g., depsipetide, romidepsin / isostax; (4) benzamides, e.g., entinostat,
tacedynalin [94,111]. Numerous HDAC inhibitors have also been tested to date, but only
vorinostat and romidepsin (the treatment of lymphoma skin with T cells) [112–117]. Never-
theless, the clinical use of these epidrugs is acceptable in a number of solid tumor cancers,
including breast cancer (Table 2), due to in vitro and in vivo antitumor activity [118–122].
HDAC monotherapy has been shown to have a positive effect on apoptosis induction,
growth arrest, and differentiation of breast cancer [94,111,118,119,123]. Although numerous
histone modifications typical of breast cancer have been described in the scientific literature,
the positive effect of monotherapy with inhibitors has not yet been unequivocally proven.
Much more promising are the effects of sensitizing cancer cells to radiotherapy and conven-
tional anticancer drugs [94,124]. In overcoming drug resistance, including HER2-targeted
therapies, the effectiveness has been confirmed, among others, by for valproic acid, tricho-
statin A and entinostat [125]. Huang et al. [125] tested the efficacy of SNDX-275, a class
I HDAC inhibitor, to overcome trastuzumab resistance in erbB2 overexpressing patients.
The mechanism of overcoming drug resistance involved a radical reduction of erbB3 and its
phosphorylation (P-erbB3) and inhibition of Akt signaling. The combination of trastuzumab
therapy and SNDX-275 significantly enhanced DNA fragmentation, induction of PARP
cleavage and caspase-3 activation. The synergy effect was observed in both sensitive and
resistant cells [125]. A similar effect was also observed in tamoxifen-resistant cells. Acti-
vation of ESR1 gene expression by HDACi sensitized cells to estrogen receptor-targeted
therapy [126–129]. Unfortunately, the opposite effect is also observed, mainly due to the
non-selective effect of HDACi on non-histone proteins. Fisk et al. [130] reported the effects
of increased acetylation of heat shock proteins after the administration of verinostat. Hy-
peracetylation of hsp90 inhibits its protective function. As a result of this modification, the
level of ERalpha decreased in cancer cells and increased ubiquitination. Munster et al. [131]
analyzed the effect of vorinostat on tamoxifen therapy. In their study, they assessed histone
acetylation and HDAC2 expression in peripheral blood mononuclear cells. From these,
they observed significant clinical benefits for patients that correlated with histone hyper-
acetylation and higher baseline HDAC2 levels. Yardley et al. [132] reported the effect of
an HDAC inhibitor on overcoming resistance to hormone therapies in estrogen receptor
positive breast cancer. For this purpose, they conducted phase II clinical trials evaluating
entinostat in combination with exemestane in patients with metastatic breast cancer. Based
on their observations, they concluded that changes in the acetylation pattern may be of
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clinical benefit in ER-targeted therapies, as the combination of exemestane with entinostat
significantly improved progression-free survival and overall survival [132]. Ramaswamy
et al. [133] analyzed the efficacy of vorinostat with paclitaxel and bevacizumab in a phase
I/II study involving 54 patients with metastatic breast cancer. They observed a significant
effect of vorinostat on the improvement of treatment results (49% objective response rate
(partial + complete remission) and 78% clinical benefit rate (objective response + disease
stabilization > 6 months), with not too severe side effects. As a mechanism of tumor cell
sensitization, the authors indicate the induction of histone and alpha tubulin acetylation,
and epigenetic inhibition of Hsp90 function [133].

Table 2. Exemplary clinical studies on the role of histone deacetylase inhibitors in breast cancer
(based on ClinicalTrials.gov (accessed on 5 March 2023) [98]).

NCT Number Study Type Description Outcome Measures Study Population

Vorinostat

NCT00574587 Interventional

Determination of the optimal dose of
vorinostat to use in combination

with standard chemotherapy alone
(or in combination with plus

trastuzumab for HER2-positive
disease), and to determine whether

vorinostat enhances the effectiveness
of standard chemotherapy (+/−

trastuzumab) in patients with locally
advanced breast cancer.

Measure of pathological
complete response

Histologically or
cytologically confirmed
adenocarcinoma of the

breast associated with the
following stages: IIB, IIIA,

IIIB or IIIC; Her2/neu
positive; no prior

chemotherapy, radiation
or definitive

therapeutic surgery

NCT01084057 Interventional
Determination of the safety and

tolerability of the combination of
vorinostat with ixabepilone

Objective response rate
and/or clinical benefit

rate; toxicity profile

Histologically or
cytologically confirmed

stage IV adenocarcinoma
of the breast

NCT03742245 Interventional

Testing of the safety and preliminary
efficacy of 10laparib and vorinostat
when used together in participants

with relapsed/refractory and or
metastatic breast cancer.

MTD, dose-limiting
toxicities, RP2D and
antitumor activity

Breast cancer with the
exception of human

epidermal growth factor
receptor 2-positive breast

cancer.

NCT01194427 Interventional

Looking at the effects of the
combination of vorinostat

(Suberoylanilide Hydroxamic Acid
or Zolinza) and tamoxifen on breast

cancer tissue.

Determination of the
percentage change in

proliferation index Ki-67
in both ER+ and ER-

tumors between baseline
and post-treatment biopsy

Stage I-III invasive
breast cancer

NCT01153672
Additionally,
NCT01720602

Interventional
Treating patients with stage IV breast
cancer receiving aromatase inhibitor

(AI) therapy.

Determination of the rate
of clinical benefit

(objective response plus
stable disease); duration of

response, PFS,
overall survival

Histologically or
cytologically proven

diagnosis of breast cancer.

NCT01695057 Interventional

Evaluation of the ability of HDAC
inhibition using suberoylanilide

hydroxamic acid (SAHA, vorinostat)
to induce expression of the ER and

PR genes in solid human
triple-negative invasive

breast cancer.

Combined PR/ER
response, grade 3 or

4 toxicities
Resectable tumor

measuring 2 cm or more

NCT00616967 Interventional

Studying how well giving
carboplatin together with paclitaxel

albumin-stabilized nanoparticle
formulation works with or without
vorinostat in treating women with
breast cancer that can be removed

in surgery.

pCR rate, cCR, absolute
change from baseline in

Ki-67, changes in
methylation index within
a panel of 10 genes which

included: HIST1H3C,
AKR1B1, GPX7, HOXB4,

TMEFF2, RASGRF2,
COL6A2, ARHGEF7,

TM6SF1, and RASSF1A.

Histologically confirmed
infiltrating ductal breast

cancer by core
needle biopsy,

HER2-negative disease

NCT04190056
and NCT02395627 Interventional

Studies how well pembrolizumab
(monoclonal antibody) and

tamoxifen with or without vorinostat
work for the treatment of estrogen

receptor positive breast cancer.

Overall response rate,
duration of response, PFS

and OS

Pre- and postmenopausal
women or men with stage

IV ER+ breast cancer
histological or

cytological confirmation

ClinicalTrials.gov
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Table 2. Cont.

NCT Number Study Type Description Outcome Measures Study Population

NCT00365599 Interventional Exploration the efficacy of vorinostat
and tamoxifen combined.

OR, time to progression,
safety evaluation

Cytologically/histologically
documented locally

advanced or metastatic
breast cancer, ER+ or PR+

Entinostat

NCT04296942 Interventional

Analysis of new combination of
immunotherapy drugs in metastatic

breast cancer (drugs: entinostat,
biological: brachyury-TRICOM,

M7824, ado-trastuzumab emtansine).

Overall response,
PFS, TILs

Adults 18 and older who
have been diagnosed with

metastatic breast cancer,
such as Triple-negative

Breast Cancer (TNBC) or
estrogen receptors

(ER)-/progesterone
receptors (PR)-/human
epidermal growth factor

receptor 2 (HER2)+ Breast
Cancer (HER2+BC)

NCT02115282 Interventional

Evaluation of whether the addition
of entinostat to endocrine therapy

(exemestane) improves PFS and/or
OS in patients with HR+,

HER2-negative locally advanced or
metastatic breast cancer who have

previously progressed on a
non-steroidal aromatase inhibitor.

Objective response rate,
PFS, OS, time-to-treatment

deterioration, lysine
acetylation change in

CD45 blood mononuclear
cells, health-related

quality of life

H.istologically confirmed
adenocarcinoma of the

breast with staining of ≥
1% cells is

considered positive

NCT03473639 Interventional

Determination of‘ the safety and side
effects of combining entinostat, with

capecitabine, in both participants
with metastatic breast cancer and
then participants with high-risk

breast cancer after
neo-adjuvant therapy.

Identification of a
maximum tolerated dose
combination of entinostat

and capecitabine;
frequency of adverse

events, DFS, OS,
relationship of circulating

tumor DNA and
residual disease

Histologically confirmed
diagnosis of stage IV

invasive breast cancer,
positive OR negative

estrogen and progesterone
receptor status.

NCT00676663
and

NCT02820961
Interventional

Evaluation of the safety and efficacy
of entinostat in combination with

exemestane in the treatment of
advanced breast cancer.

PFS, ORR, clinical
benefit rate

Postmenopausal female
patients, ER+, relapsed or

progressed on prior
treatment with

aromatase inhibitor

NCT02453620 Interventional

Evaluate the safety and tolerability
of the combination of entinostat and

nivolumab with or without
ipilimumab in subjects with

advanced solid tumors.

Incidence of adverse
events, changes in ratio of

effector T cell (Teff) to
regulatory T cell (Treg) in
tumor biopsies, CR, PR,

SD, PFS, post-combination
therapy expression of
checkpoint inhibitors

(PD-1/PD-L1) in tumor
biopsies, changes in other

immune-related
biomarkers, analysis of

tumor-specific mutations
and mutant neo-antigens,
Changes in candidate gene
re-expression in malignant
tissue, gene methylation
silencing in circulating

DNA and malignant tissue
pre and post-therapy,

pharmacodynamic
outcomes

Confirmed invasive
adenocarcinoma of the

breast HER2- that is locally
advanced/metastatic and

has progressed despite
standard therapy

Panobinostat

NCT01105312 Interventional

Studying the side effects and best
dose of panobinostat when given
together with letrozole and to see

how well it works in treating patients
with metastatic breast cancer.

Maximum-tolerated dose,
response rate, survival
time, time-to-disease
progression, PFS, CR,

PR, SD

Any ER, PR, or HER2 level
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Table 2. Cont.

NCT Number Study Type Description Outcome Measures Study Population

Panobinostat

NCT00788931
and NCT00567879 Interventional

Identification the maximum
tolerated dose of both intravenous

and oral panobinostat when given in
combination with trastuzumab and

paclitaxel.

Determination of MTD,
safety and tolerability,

evaluation of the efficacy

Adult female patients
with HER2+ metastatic

breast cancer

NCT00777335
and NCT00777049 Interventional

Analysis of the benefit of
panobinostat monotherapy given
either orally or i.v. to women with
HER2-positive locally recurrent or

metastatic breast cancer

The assessment of OR,
CR + PR

Women with v-ERB-B2
avian erythroblastic

leukemia viral oncogene
homolog 2 (HER2)

positive locally recurrent
or metastatic breast cancer

VPA

NCT00395655 Interventional

Analysis of the benefit of the
demethylating hydralazine plus the

HDAC inhibitor magnesium
valproate addition to neoadjuvant

doxorubicin and cyclophosphamide
in locally advanced breast cancer to

assess their safety and
biological efficacy.

Global DNA methylation,
histone deacetylase
activity and global

gene expression

Aged 18 and older;
histologically proven

invasive T2-3, N0-2, and
M0 (stages IIB-IIIA)
breast carcinoma.

Depsipeptide/Romidepsin

NCT01938833 Interventional

Studies the side effects and best dose
of romidepsin when given together
with paclitaxel albumin-stabilized

nanoparticle formulation and to see
how well they work in treating

patients with metastatic
inflammatory breast cancer.

MTD, PFS, ORR, CBR and
incidence of

adverse events

Breast carcinoma with a
clinical diagnosis of IBC
based on the presence of
inflammatory changes in
the involved breast, such

as diffuse erythema
and edema

NCT02393794 Interventional

Studies the combination use of
cisplatin plus romidepsin and

nivolumab in metastatic
triple-negative breast cancer or

BRCA mutation-associated locally
recurrent or metastatic breast cancer

MTD and ORR
determination, median

progression-free survival
and overall survival

Confirmed germline
BRCA1 or BRCA2

mutation, regardless of
subtype of breast cancer

NCT00098397 Interventional

Determination of the efficacy and
safety of FR901228 (depsipeptide) in

patients with metastatic
breast cancer.

Clinical activity of this
drug, in terms of

progression-free survival,
in these patients

Metastatic disease,
patients have received

prior anthracycline
(doxorubicin or epirubicin)
and/or taxane (paclitaxel
or docetaxel) as adjuvant

therapy or for
advanced disease

In the treatment of breast cancer, HDACi can be used both as stand-alone drugs and
in combination with other anti-cancer therapies. Studies have shown that HDACi have
the ability to induce apoptosis of breast cancer cells, which contributes to the reduction in
tumor volume. They can also act synergistically with hormonal drugs and increase their
effectiveness. HDACi can also be used in the therapy of breast cancer associated with
mutations in the BRCA1 gene, which is involved in DNA damage repair. Research suggests
that HDACi may contribute to increasing the sensitivity of cells to therapy, leading to a
reduction in tumor size.

Most of the current histone deacetylase inhibitors have limited efficacy against solid
tumors and can produce toxic side effects leading to drug resistance. As a result, there
is a need for the development of new histone modification inhibitors with improved
anti-tumor activities and reduced toxicities for breast cancer therapy, as well as further
investigation into their mechanisms of action. In addition to the inhibitors described
above, other promising therapeutic agents such as histone methyltransferase (KMT) and
histone demethylase (KDM)are being investigated in in vivo and in vitro studies for their
potential in treating various types of cancers, including breast cancer. KMT is an enzyme
that transfers a methyl group to the lysine or arginine position of histones, which can
lead to gene transcription activation or repression [134,135]. One KMT inhibitor that has
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shown efficacy in mouse breast cancer studies is GSK-J4. Yan et al. [136] demonstrated
that GSK-J4 had the ability to effectively inhibit breast cancer stem cells by reducing
their expansion, self-renewal capacity, and expression of stemness-related markers. The
SETD8 inhibitor has been investigated as a potential therapy for breast cancer associated
with the BRCA1 mutation. New findings suggest that SETD8 and the methylation of its
corresponding histone H4K20 play a role in determining the choice of DNA double-strand
break repair pathway [137]. KDM, on the other hand, removes methyl groups from histones,
which can also affect gene activity [138]. The KDM4 family, including KDM4A-F, plays
a role in oncogene activation, tumor suppressor silencing, and chromosomal instability,
making them potential therapeutic targets. Inhibitors targeting KDM4 enzymes have
shown anticancer effects in vitro; however, their structural similarities and active domain
conservation pose challenges in discovering selective inhibitors. Despite promising results,
no KDM4 inhibitors have entered clinical trials yet [139]. One KDM inhibitor that shows
potential in breast cancer treatment is also GSK-J1 [140]. Wang et al. used GSK-J1, a small-
molecule inhibitor of JMJD3/KDM6B to treat LPS-induced mammary gland inflammation
in mice and mouse mammary epithelial cells in vivo and in vitro. The KDM1A (LSD1)
inhibitor has been investigated as a therapeutic target in breast cancer because it has shown
promising results in inhibiting the growth and invasion of cancer cells [141]. However,
research on KMT and KDM inhibitors in breast cancer therapy is still in its early stages
and requires further investigation to confirm their efficacy and safety. All of the inhibitors
mentioned are being currently investigated as single therapies; however, research indicates
that combinations of KMT and KDM inhibitors may prove more effective in treating breast
cancer (Li et al., 2021) [142]. It is worth noting that unlike traditional chemotherapy, which kills
both cancerous and healthy cells, KMT and KDM inhibitors directly affect molecular processes
associated with cancer, which can lead to more targeted and effective breast cancer therapy.

6. The Role of miRNAs

miRNA expression pattern is associated with oncogenesis. MiRNAs are a special class
of small (18–26 nucleotides), evolutionarily conserved non-coding RNA molecules, which,
through post-transcriptional regulation of gene expression, affect the proper development
and maintenance of tissue homeostasis, as well as being involved in the development of
pathological processes [143–145]. They are thought to be responsible for regulating close to
30% of human mRNAs; one miRNA can regulate multiple target sequences, and one gene
can be controlled by numerous microRNAs. In recent years, they have gained popularity
as non-invasive biomarkers for assessing tumor development, as their significant role in
carcinogenesis, cancer progression, cell cycle checkpoint bypass, drug response regulation,
and invasion has been described [146–151] (Figure 2). It has been shown that miRNAs act as
both oncogenes and tumor suppressor genes, which gives them a wide range of modulation
processes in cancer cells [152–154]. Numerous studies have identified miRs associated with
abnormal expression and function of breast cancer predisposition genes (Figure 3).

Research on the importance and potential of miRs in oncology is extremely intensive;
however, most breast cancer clinical trials are still observational (Table 3). Their goal is to
identify miRs that modulate the response of cancer cells to specific drugs, or to analyze the
relationship between the selected miRs and the effectiveness of neoadjuvant and adjuvant
chemotherapy. Both in scientific and clinical research, it was possible to identify miRs
that may be markers of drug resistance or predictors of hormonal sensitivity, as well as
molecules associated with the risk of developing complications of therapy.

In this review, a selective choice of presented microRNAs related to breast cancer
therapy and monitoring, drug resistance, serving as targets for targeted therapy, and
complementing standard breast cancer treatment was made. To maintain an appropriate
scope of the review, we focused on microRNAs that can supplement standard breast cancer
treatment and have the potential for use in therapeutic protocols. Their significance and
prospects for application in clinical practice were presented.
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MicroRNAs are currently an important area of research in cancer therapy. The use
of miRNAs in breast cancer therapy aims to impact the proliferation, invasion, migration,
angiogenesis, and apoptosis of cancer cells. MiRNAs can have the following goals and
types of applications in oncology therapy:
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(1) Diagnosis: miRNAs can be used as biomarkers for assessing the risk of breast cancer
development, diagnosis, and disease monitoring [155–159].

(2) Targeted therapy: miRNAs that are expressed in cancer cells in large quantities can
be inhibited by specific miRNA inhibitors (antimiRNAs). AntimiRNAs are small
molecules that bind to the target miRNA and inhibit its activity, leading to the inhibi-
tion of the growth and proliferation of cancer cells [160–162].

(3) Gene therapy: the introduction of miRNAs into cancer cells that express a low level of
a particular miRNA can be a method of gene therapy. In gene therapy, miRNAs can
be used for therapeutic or diagnostic purposes [163–165].

(4) Combined therapy: miRNAs can be used in combination with other anticancer drugs
to increase their efficacy. For example, miRNAs and chemo- or immunotherapeutic
drugs can be used together to increase the effectiveness of therapy and reduce the
toxicity of the drugs [166–169].

In the therapy of breast cancer, various miRNAs play significant roles, including
the following:

(1) MiR-21: this is one of the most commonly identified miRNAs associated with breast
cancer. MiR-21 has been shown to contribute to breast cancer development and
progression by regulating a range of genes responsible for proliferation, angiogenesis,
and invasion of cancer cells [170–174].

(2) MiR-34a: miR-34a has been shown to inhibit proliferation and induce apoptosis of
breast cancer cells, making it a potential therapeutic target [175–177].

(3) MiR-155: it has been shown that miR-155 is involved in inflammatory processes and
proliferation of cancer cells in breast cancer. Therefore, miR-155 has become a subject
of interest as a potential therapeutic target [178–182].

(4) MiR-200: this is a miRNA that is involved in the invasion and metastasis of breast
cancer through the regulation of EMT (epithelial-mesenchymal transition) processes.
Increasing miR-200 expression has been shown to reduce the ability of cancer cells to
invade and migrate, making it a potential therapeutic target [183,184].

(5) MiR-10b: it has been shown that miR-10b is involved in the metastasis of breast cancer
through the regulation of EMT processes. Therefore, miR-10b has become a subject of
interest as a potential therapeutic target [185–187].

One of the most extensively studied is the suppressor miR-34a [188]. MiR-34a is
one of the most important factors involved in the regulation of cell cycle and apoptosis.
Laboratory studies have shown that miR-34a is often mutated or decreased in breast
cancer. The use of miR-34a in breast cancer therapy involves introducing an additional
dose of miR-34a into cancer cells, which leads to the inhibition of proliferation, invasion,
migration, and induction of apoptosis. Studies have shown that miR-34a can also enhance
the effect of chemotherapy in breast cancer. For example, in one study, breast cancer
cells were treated with a combination of synthetic miR-34a and 5-fluorouracil (5-FU), a
chemotherapy drug commonly used in breast cancer treatment. The results showed that the
combination of miR-34a and 5-FU led to a greater inhibition of cell growth and increased
apoptosis compared to treatment with 5-FU alone. Adams et al. [189] demonstrated
the benefits of miR-34a replacement therapy in retarding the growth of subcutaneous
and orthotopic transplanted tumors. They have experimentally proven that in triple-
negative breast cancer models, restoring miR-34a expression leads to the inhibition of
proliferation and invasion as well as the activation of senescence. Moreover, they described
a negative feedback between miR-34a and c-SRC affecting the sensitization of cancer cells
to dasatinib [189]. MiR-34a also has an effect on 5-fluorouracil chemotherapy as shown by
Li et al. [190]. In their study, they noticed a significant reduction in the level of miR-34a in
breast cancer cell lines and breast cancer samples, which resulted in no inhibition of cancer
cell invasion and inhibition of apoptosis. The beneficial effect, including sensitization of
cells to 5-FU after administration of miR-34, was due to the effect of targeting Bcl-2 and
SIRT1. These studies confirmed the efficacy of the mimetic miR-34a (MXR34) as a potential
therapeutic agent for patients with breast cancer [190] and other types of cancer [191–194].
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Li et al. [195] observed that the expression of miR-34a in tissues and drug-resistant cell
lines is significantly reduced and correlated with breast cancer multidrug resistance (MDR).
As noted by the authors, patients with low miR-34a expression had worse overall survival
and disease-free survival; the introduction of the mimetic miR-34a in vitro led to a partial
reversal of MDR. The authors indicated Bcl-2, CCND1 and NOTCH1 as the targets of this
miR, while also noting the lack of a direct effect of miR-34a on the expression of HER-2,
TP53 and TOP-2a. One of the challenges in the use of miR-34a in breast cancer therapy is
the problem of delivering miRNA to cancer cells. Currently, various methods of miRNA
transport are being investigated, such as lipid nanoparticles, viral vectors, or vector-based
nanoparticles, which aim to improve the effectiveness of delivering miRNA to cancer cells.

Xue et al. [169] identified elevated miR-621 expression associated with paclitaxel
and carboplatin (PTX/CBP) sensitivity. Administration of the mimetic miR-621 made it
possible to sensitize breast tumors to these drugs by inhibiting FBXO11 and enhancing
p53 activity [169]. Mei et al. [196] showed that overexpression of miR-21 is associated
with taxol resistance, and Chen and Bourguignon [197] showed that upregulation of this
molecule has an effect on the increase in Bcl-2 activity. Shaban et al. [198] highlighted
that miR-34 and miR-21 can predict the response of breast cancer patients to chemo-
radiotherapy, especially by regulating Bcl-2, BRCA1, BRCA2, and p53 targets in breast
cancer cells. In turn, Yadav et al. [199] observed a decrease in miR-21 expression in breast
cancer patients who received neoadjuvant therapy. Differential expression of miR-125b
and changes in miR-21 expression during neoadjuvant chemotherapy were associated with
response to chemotherapy and disease-free survival. The correlation of downregulation of
miR-125b expression with resistance to four cycles of neoadjuvant 5-fluorouracil, epirubicin
and cyclophosphamide was confirmed by Wang et al. [200]. The mechanism of action
involved modulation E2F2 expression. MiR-125b is involved in regulating numerous
signaling pathways, including NF-κB, p53, PI3K/Akt/mTOR, ErbB2, Wnt. Hence, it is also
important marker involved in controlling cell proliferation, differentiation, metabolism,
apoptosis, drug resistance and tumor immunity [201]. In HER2-negative patients, the
differential expression of miR-222, miR-20a and miR-451 in clinical response to neoadjuvant
chemotherapy has been confirmed to be related to chemosensitivity [202].

Cardiotoxicity is one of the most significant complications among breast cancer pa-
tients as a result of the use of agents such as anthracyclines and monoclonal antibodies
directed against HER2. Therefore, the search for prognostic biomarkers of this event is crucial
in mitigating the risk of cardiotoxicity in vulnerable patients [203,204]. Numerous microRNAs
are considered among the candidates, including hsa-miR-1273 g-3p and hsa-miR-4638-3p
(regulating TGF-β and CTGF pathways, responsible for atherosclerotic plaque instability and
heart failure [205]), hsa-miR-208 (associated with fibrosis and EMT progression, and specif-
ically targeted to the BMP co-receptor, endoglin [206,207]), hsa-miR-130a (associated with
cardiomyopathy [208–210]), hsa-miR-29a (involved in hemolysis of blood cells [211,212]) or
proangiogenic hsa-miR-17-5p, hsa-miR-19a, hsa-miR-378, hsa-Let-7b [208,209] and hsa-miR-
126 [207,211]. On the basis of laboratory tests, the concept of introducing antimiRs as a real
cardioprotective agent in patients after chemotherapy is being considered.
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Table 3. Examples of clinical trials taking into account the importance of microRNAs in the treatment of breast cancer.

NCT Number Study Type Description Outcome Measures Study Population Publications

NCT03779022 Observational miRNA and relevant biomarkers of BC
patients undergoing neoadjuvant treatment

Clinical disease response was evaluated
for every two cycles of chemotherapy till

surgery with RECIST criteria.

Patients with early stage breast cancer patients,
with stage II-III disease [200,202,213,214]

NCT01598285 Observational

Genome-wide association study (GWAS)
and microRNA (miRNA) profiling for

identification of genetic variants and blood
miRNA signatures predictors of

bevacizumab response cancer

To identify miRNA signatures in whole
blood as bevacizumab response
predictors in metastatic breast

cancer patients

Patients suffering from metastatic
(disseminated at the time of diagnosis) breast

cancer, treated with bevacizumab.
[98]

NCT02656589 Observational

A perspective study of the predictive value
of microRNA in patients with HER2

positive advanced stage breast cancer who
were treated with herceptin

Progression-free survival (PFS) evaluation
defined as the interval from the diagnosis

of advanced breast cancer with HER2
positive to disease progression, relapse,

death due to any causes or last follow-up.
The follow-up interval is 2 years.

Advanced breast cancer patients first diagnosis,
≥ 18yrs ages, HER2 positive:

immunohistochemistry (+++) or FISH (+), stage
IV, the patients have no history of

chemotherapy, hormone therapy, radiotherapy
or surgery after diagnosis of breast cancer.

[215–217]

NCT01612871 Interventional Circulating miRNAs as biomarkers of
hormone sensitivity in breast cancer

Analysis of the larger-scale circulating
miRNAs in plasma of these patients

before and after one month of treatment
with tamoxifen or anti aromatase.

Correlation between the specific miRNAs
initial expression and the appearance of

an objective response or clinical benefit of
hormone therapy and the time

to progression.

Drugs: Tamoxifen, Letrozole, Anastrozole,
Exemestane

Women with metastatic invasive breast cancer
or locally advanced (without surgical project),

for which treatment with tamoxifen or
anti aromatase.

Cancer HER2-negative.

[98]

NCT05151224 Observational
Circulating microRNA-21 expression level

before and after neoadjuvant systemic
therapy in breast carcinoma

Describes miRNA 21 expression level
before and after neoadjuvant systemic

therapy in breast cancer patient.

Invasive breast cancer, from stage IIB to stage
IIIC, all subtypes are included, either HR (ER,
PR)-positive or -negative, HER2-positive or

-negative, eligible to neoadjuvant
systemic therapy.

Neoadjuvant systemic treatment composed of
anthracyclines-based chemotherapy and

taxanes, trastuzumab for
HER2-positive patients.

[196,197,199,200,202,218–220]
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Table 3. Cont.

NCT Number Study Type Description Outcome Measures Study Population Publications

NCT01722851 Observational
Novel breast cancer biomarkers and their
use for guiding and monitoring response

to chemotherapy

Relationship between changes in a
patients circulating miRNA expression
levels over the course of their systemic

therapy, and their response to
that treatment.

Cohort 1: All patients with a new diagnosis of
breast cancer, who are destined to undergo

neoadjuvant chemotherapy.
OR Cohort 2: All breast cancer patients who

present with metastatic disease, disease
recurrence or progression who will receive

up-front chemotherapy ± hormonal therapy.
OR Cohort 3: All breast cancer patient who

present with metastatic disease who are
commencing hormonal therapy only.

[98]

NCT02950207 Observational

Prospective observational study of
antitumor activity correlation between

hormonal therapy and
expression miRNA-100

Mono-centric, observational, prospective
study, designed for patients with

diagnosis of hormone-positive breast
cancer to evaluate the correlation between

the response to hormonal treatment
indicated by the reduction of the level of

Ki67 and miRNA100 in two groups
of patients

Post-menopausal hormone-positive breast
cancer patients.

Histological diagnosis of invasive carcinoma of
the breast. X-ray evidence (mammography and

/ or ultrasound) strongly suggestive for the
presence of invasive breast cancer (BIRADS 4c
or BIRADS 5) of greater than 15 mm diameter.
Positivity for the estrogen receptor and / or to

the progestin defined as the expression of one or
both hormone receptors in ≥10% of tumor cells,

negativity for HER2.

[98]
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Clinical trials using miRNA in breast cancer therapy are still in the early stages. Most
of them have focused mainly on Phase I and II clinical trials aimed at evaluating the safety
and tolerability of miRNA. However, the results of these trials are promising, suggesting
potential therapeutic benefits and the safety of miRNA use in breast cancer treatment.
Several miRNAs, such as miR-34a, miR-21, miR-155, miR-29b, and miR-16, have been
identified as potential therapeutic targets in breast cancer therapy. Introducing miRNA as
a new therapeutic tool may help to better understand pathological processes and result in
improved therapeutic outcomes for patients with breast cancer.

7. Summary

The clinical trials conducted to date have failed to confirm the high effectiveness of
monotherapy based on epigenetic drugs. According to Falahi et al. [111], anticancer efficacy
of epitherapy in breast cancer is at the level of 10%. However, much better results are
obtained when the therapy is combined with cytostatics or targeted therapy. Significantly
higher progression-free survival and survival were observed in the phase I and II studies.

The introduction of epigenetic drugs for oncotherapy raises questions about their
possible side effects. It is believed that epitherapeutics primarily affect rapidly dividing
cells; therefore, their toxic effect on normal cells should be minimal. Nevertheless, an
alternative approach is actively sought to develop non-nucleoside compounds that can,
e.g., effectively inhibit DNA methylation without being incorporated into DNA, such
as SGI-1027, RG108 and MG98 [221–223]. The mechanism of action of these molecules
involves blocking the DNMT catalytic/ cofactor binding sites, or targeting their regulatory
messenger RNA sequences. Non-nucleoside DNMTs of natural origin such as polyphenols
or epigallocatechin-3-gallate are also tested [87,224,225]. It has been shown that these
compounds have, e.g., inhibition effect, VEGF inhibition and apoptosis induction, and
ESR1 re- expression. Nevertheless, the proliferation-inhibiting potential of drugs based on
non-nucleoside compounds is not satisfactory. The advantage of miRNAs is that, as natural
cellular components, they should not cause side effects and toxicity, and subsequent studies
prove high efficiency and low antigenicity of such therapy. However, the clinical use of
miRs in breast cancer therapy still requires a significant amount of research work, including
refining methods of therapeutic manipulation, delivery to target cells, overcoming immune
barriers and maintaining long-term activity of nanoconstructs [66].

Epigenome characteristics can be important in determining prognosis and can be used to
stratify patients into risk categories. It is also helpful in identifying breast cancer patients who
are likely to respond well to neoadjuvant and adjuvant chemotherapy, or who are sensitive
or resistant to a given therapeutic agent. Monitoring individual epimutations or circulating
microRNAs could improve patient response to chemotherapy and hormone therapies.

Current breast cancer therapy protocols do not allow the introduction of epigenetic
drugs as monotherapy. Such therapy is in its early stages, and requires careful study
of its benefits for patients, potential side effects, interactions with other drugs and the
exact mechanisms of both the effect on the cancer cell and the acquisition of resistance
by it. Much more promising are the possibilities of using epi-drugs in combination with
chemotherapeutics and targeted therapies to increase or restore sensitivity to these drugs.
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