Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = DNA-PKcs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1782 KiB  
Article
HSP110 Regulates the Assembly of the SWI/SNF Complex
by Océane Pointeau, Manon Paccagnini, Natalia Borges-Bonan, Léo Biziorek, Sébastien Causse, Carmen Garrido and Laurence Dubrez
Cells 2025, 14(11), 849; https://doi.org/10.3390/cells14110849 - 5 Jun 2025
Viewed by 551
Abstract
HSP110 is a ubiquitous chaperone contributing to proteostasis. It has a disaggregation activity and can refold denatured proteins. It can regulate fundamental signaling pathways involved in oncogenesis, such as Wnt/β-catenin, NF-κB and STAT3 signaling pathways. In gastric and colorectal cancer, HSP110 has been [...] Read more.
HSP110 is a ubiquitous chaperone contributing to proteostasis. It has a disaggregation activity and can refold denatured proteins. It can regulate fundamental signaling pathways involved in oncogenesis, such as Wnt/β-catenin, NF-κB and STAT3 signaling pathways. In gastric and colorectal cancer, HSP110 has been detected in the nucleus, and nuclear expression has been associated with the resistance of cells to 5-FU chemotherapy. Nuclear translocation of HSP110 is promoted by the exposure of cells to DNA-damaging agents. In a previous work, we demonstrated that nuclear HSP110 participates in the NHEJ DNA repair pathway by facilitating the recruitment of DNA-PKcs to Ku70/80 heterodimers at the site of DNA double-strand breaks. In the present work, analysis of HSP110s’ nuclear interactome revealed an enrichment of components from SWI/SNF chromatin remodeling complexes. We demonstrate that HSP110 is strongly associated with chromatin in temozolomide- and oxaliplatin-treated cells and directly interacts with the core subunit SMARCC2, thereby facilitating the assembly of SWI/SNF complexes. This work expands upon the role of HSP110, which regulates not only proteostasis but also the assembly of critical nuclear macromolecular complexes involved in the adaptive stress response. Full article
(This article belongs to the Special Issue Heat Shock Proteins and Human Cancers)
Show Figures

Figure 1

25 pages, 4703 KiB  
Article
CRISPR/Cas9 Ribonucleoprotein Delivery Enhanced by Lipo-Xenopeptide Carriers and Homology-Directed Repair Modulators: Insights from Reporter Cell Lines
by Xianjin Luo, Eric Weidinger, Tobias Burghardt, Miriam Höhn and Ernst Wagner
Int. J. Mol. Sci. 2025, 26(9), 4361; https://doi.org/10.3390/ijms26094361 - 3 May 2025
Viewed by 2641
Abstract
CRISPR-Cas9 genome editing is a versatile platform for studying and treating various diseases. Homology-directed repair (HDR) with DNA donor templates serves as the primary pathway for gene correction in therapeutic applications, but its efficiency remains a significant challenge. This study investigates strategies to [...] Read more.
CRISPR-Cas9 genome editing is a versatile platform for studying and treating various diseases. Homology-directed repair (HDR) with DNA donor templates serves as the primary pathway for gene correction in therapeutic applications, but its efficiency remains a significant challenge. This study investigates strategies to enhance gene correction efficiency using a T-shaped lipo-xenopeptide (XP)-based Cas9 RNP/ssDNA delivery system combined with various HDR enhancers. Nu7441, a known DNA-PKcs inhibitor, was found to be most effective in enhancing HDR-mediated gene correction. An over 10-fold increase in HDR efficiency was achieved by Nu7441 in HeLa-eGFPd2 cells, with a peak HDR efficiency of 53% at a 5 nM RNP concentration and up to 61% efficiency confirmed by Sanger sequencing. Surprisingly, the total gene editing efficiency including non-homologous end joining (NHEJ) was also improved. For example, Nu7441 boosted exon skipping via NHEJ-mediated splice site destruction by 30-fold in a DMD reporter cell model. Nu7441 modulated the cell cycle by reducing cells in the G1 phase and extending the S and G2/M phases without compromising cellular uptake or endosomal escape. The enhancement in genome editing by Nu7441 was widely applicable across several cell lines, several Cas9 RNP/ssDNA carriers (LAF-XPs), and also Cas9 mRNA/sgRNA/ssDNA polyplexes. These findings highlight a novel and counterintuitive role for Nu7441 as an enhancer of both HDR and total gene editing efficiency, presenting a promising strategy for Cas9 RNP-based gene therapy. Full article
(This article belongs to the Special Issue CRISPR-Cas Systems and Genome Editing—2nd Edition)
Show Figures

Figure 1

12 pages, 2478 KiB  
Article
FDX1 Regulates the Phosphorylation of ATM, DNA-PKcs Akt, and EGFR and Affects Radioresistance Under Severe Hypoxia in the Glioblastoma Cell Line T98G
by Takuma Hashimoto, Kazuki Tsubota, Khaled Hatabi and Yoshio Hosoi
Int. J. Mol. Sci. 2025, 26(7), 3378; https://doi.org/10.3390/ijms26073378 - 4 Apr 2025
Cited by 1 | Viewed by 697
Abstract
Hypoxic cells exhibit radioresistance, which is associated with poor prognosis in cancer patients. Understanding the molecular mechanisms underlying radioresistance in hypoxic tumor cells is crucial for improving radiotherapy efficacy. In this study, we examined the role of FDX1 in regulating cellular responses to [...] Read more.
Hypoxic cells exhibit radioresistance, which is associated with poor prognosis in cancer patients. Understanding the molecular mechanisms underlying radioresistance in hypoxic tumor cells is crucial for improving radiotherapy efficacy. In this study, we examined the role of FDX1 in regulating cellular responses to severe hypoxia in glioblastoma cell lines T98G and A172. We found that FDX1 expression was upregulated under severe hypoxia, and its knockdown reduced the hypoxia-induced activation of key radioresistance factors and cellular survival mechanisms, including ATM, DNA-PKcs, Akt, and EGFR. FDX1 knockdown also sensitized T98G cells to radiation under severe hypoxia. Furthermore, FDX1 was found to regulate HIF-1α protein level, while HIF-1α did not regulate FDX1 expression. These results suggest that FDX1 may be a novel therapeutic target to overcome radioresistance in glioblastoma under severe hypoxia. Full article
(This article belongs to the Special Issue Molecular Biology of Hypoxia)
Show Figures

Figure 1

16 pages, 1106 KiB  
Article
Cryoprotective Potential of Theobromine in the Improvement of the Post-Thaw Quality of Bovine Spermatozoa
by Filip Benko, Štefan Baňas, Michal Ďuračka, Miroslava Kačániová and Eva Tvrdá
Cells 2024, 13(20), 1710; https://doi.org/10.3390/cells13201710 - 16 Oct 2024
Viewed by 1289
Abstract
Theobromine (TBR) is a methylxanthine known for its bronchodilatory and stimulatory effects. This research evaluated the vitality, capacitation patterns, oxidative characteristics, microbial profile and expression of capacitation-associated proteins (CatSper1/2, sodium bicarbonate cotransporter [NBC], protein kinases A [PKA] and C [PKC] and adenylate cyclase [...] Read more.
Theobromine (TBR) is a methylxanthine known for its bronchodilatory and stimulatory effects. This research evaluated the vitality, capacitation patterns, oxidative characteristics, microbial profile and expression of capacitation-associated proteins (CatSper1/2, sodium bicarbonate cotransporter [NBC], protein kinases A [PKA] and C [PKC] and adenylate cyclase 10 [ADCY10]) in cryopreserved bovine spermatozoa (n = 30) in the absence (cryopreserved control [CtrlC]) or presence of different TBR concentrations (12.5, 25, and 50 µM) in egg yolk extender. Fresh ejaculate served as a negative control (CtrlN). Significant post-thaw maintenance of the sperm motility, membrane and DNA integrity and mitochondrial activity (p < 0.001) were recorded following the administration of 25 μM and 50 μM TBR, then compared to CtrlC. All groups supplemented with TBR exhibited a significantly lower percentage of prematurely capacitated spermatozoa (p < 0.001) than CtrlC. Significantly decreased levels of global reactive oxygen species (ROS), hydrogen peroxide and hydroxyl radicals were observed in the presence of 25 μM and 50 μM TBR (p < 0.01). Western blot analysis revealed that supplementation with 50 μM TBR significantly prevented the loss of NBC and ADCY10 (p < 0.01), while all TBR doses stabilized the levels of PKC (p < 0.05 at 50 μM TBR; p < 0.001 at 12.5 μM and 25 μM TBR). In summary, we suggest that TBR is effective in protecting the spermatozoa during the cryopreservation process through its potential to stimulate energy synthesis while preventing ROS overproduction and the loss of proteins involved in the sperm activation process. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Figure 1

17 pages, 4898 KiB  
Article
Epigenetic Modifications Are Involved in Transgenerational Inheritance of Cadmium Reproductive Toxicity in Mouse Oocytes
by Jiaqiao Zhu, Shuai Guo, Jiangqin Cao, Hangbin Zhao, Yonggang Ma, Hui Zou, Huiming Ju, Zongping Liu and Junwei Li
Int. J. Mol. Sci. 2024, 25(20), 10996; https://doi.org/10.3390/ijms252010996 - 12 Oct 2024
Cited by 1 | Viewed by 1643
Abstract
Maternal cadmium exposure during pregnancy has been demonstrated to have detrimental effects on offspring development. However, the impact of maternal cadmium exposure on offspring oocytes remains largely unknown, and the underlying mechanisms are not fully understood. In this study, we found that maternal [...] Read more.
Maternal cadmium exposure during pregnancy has been demonstrated to have detrimental effects on offspring development. However, the impact of maternal cadmium exposure on offspring oocytes remains largely unknown, and the underlying mechanisms are not fully understood. In this study, we found that maternal cadmium exposure during pregnancy resulted in selective alteration in epigenetic modifications of mouse oocytes in offspring, including a decrease in H3K4me2 and H4K12ac, as well as an increase in DNA methylation of H19. Although ROS levels and mitochondrial activity remain at normal levels, the DNA damage marker γH2AX was significantly increased and the DNA repair marker DNA-PKcs was remarkably decreased in offspring oocytes from maternal cadmium exposure. These alterations are responsible for the decrease in the quality of mouse oocytes in offspring induced by maternal cadmium exposure. As a result, the meiotic maturation of oocytes and subsequent early embryonic development are influenced by maternal cadmium exposure. RNA-seq results showed that maternal cadmium exposure elicits modifications in the expression of genes associated with metabolism, signal transduction, and endocrine regulation in offspring ovaries, which also contribute to the disorders of oocyte maturation and failures in early embryonic development. Our research provides direct evidence of transgenerational epigenetic inheritance of cadmium reproductive toxicity in mouse germ cells. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

16 pages, 2818 KiB  
Article
Impact of Optimized Ku–DNA Binding Inhibitors on the Cellular and In Vivo DNA Damage Response
by Pamela L. Mendoza-Munoz, Narva Deshwar Kushwaha, Dineshsinha Chauhan, Karim Ben Ali Gacem, Joy E. Garrett, Joseph R. Dynlacht, Jean-Baptiste Charbonnier, Navnath S. Gavande and John J. Turchi
Cancers 2024, 16(19), 3286; https://doi.org/10.3390/cancers16193286 - 26 Sep 2024
Cited by 1 | Viewed by 1972
Abstract
Background: DNA-dependent protein kinase (DNA-PK) is a validated cancer therapeutic target involved in DNA damage response (DDR) and non-homologous end-joining (NHEJ) repair of DNA double-strand breaks (DSBs). Ku serves as a sensor of DSBs by binding to DNA ends and activating DNA-PK. [...] Read more.
Background: DNA-dependent protein kinase (DNA-PK) is a validated cancer therapeutic target involved in DNA damage response (DDR) and non-homologous end-joining (NHEJ) repair of DNA double-strand breaks (DSBs). Ku serves as a sensor of DSBs by binding to DNA ends and activating DNA-PK. Inhibition of DNA-PK is a common strategy to block DSB repair and improve efficacy of ionizing radiation (IR) therapy and radiomimetic drug therapies. We have previously developed Ku–DNA binding inhibitors (Ku-DBis) that block in vitro and cellular NHEJ activity, abrogate DNA-PK autophosphorylation, and potentiate cellular sensitivity to IR. Results and Conclusions: Here we report the discovery of oxindole Ku-DBis with improved cellular uptake and retained potent Ku-inhibitory activity. Variable monotherapy activity was observed in a panel of non-small cell lung cancer (NSCLC) cell lines, with ATM-null cells being the most sensitive and showing synergy with IR. BRCA1-deficient cells were resistant to single-agent treatment and antagonistic when combined with DSB-generating therapies. In vivo studies in an NSCLC xenograft model demonstrated that the Ku-DBi treatment blocked IR-dependent DNA-PKcs autophosphorylation, modulated DDR, and reduced tumor cell proliferation. This represents the first in vivo demonstration of a Ku-targeted DNA-binding inhibitor impacting IR response and highlights the potential therapeutic utility of Ku-DBis for cancer treatment. Full article
Show Figures

Figure 1

22 pages, 14282 KiB  
Article
Synergistic Roles of Non-Homologous End Joining and Homologous Recombination in Repair of Ionizing Radiation-Induced DNA Double Strand Breaks in Mouse Embryonic Stem Cells
by Gerarda van de Kamp, Tim Heemskerk, Roland Kanaar and Jeroen Essers
Cells 2024, 13(17), 1462; https://doi.org/10.3390/cells13171462 - 30 Aug 2024
Cited by 3 | Viewed by 1591
Abstract
DNA double strand breaks (DSBs) are critical for the efficacy of radiotherapy as they lead to cell death if not repaired. DSBs caused by ionizing radiation (IR) initiate histone modifications and accumulate DNA repair proteins, including 53BP1, which forms distinct foci at damage [...] Read more.
DNA double strand breaks (DSBs) are critical for the efficacy of radiotherapy as they lead to cell death if not repaired. DSBs caused by ionizing radiation (IR) initiate histone modifications and accumulate DNA repair proteins, including 53BP1, which forms distinct foci at damage sites and serves as a marker for DSBs. DSB repair primarily occurs through Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). NHEJ directly ligates DNA ends, employing proteins such as DNA-PKcs, while HR, involving proteins such as Rad54, uses a sister chromatid template for accurate repair and functions in the S and G2 phases of the cell cycle. Both pathways are crucial, as illustrated by the IR sensitivity in cells lacking DNA-PKcs or Rad54. We generated mouse embryonic stem (mES) cells which are knockout (KO) for DNA-PKcs and Rad54 to explore the combined role of HR and NHEJ in DSB repair. We found that cells lacking both DNA-PKcs and Rad54 are hypersensitive to X-ray radiation, coinciding with impaired 53BP1 focus resolution and a more persistent G2 phase cell cycle block. Additionally, mES cells deficient in DNA-PKcs or both DNA-PKcs and Rad54 exhibit an increased nuclear size approximately 18–24 h post-irradiation. To further explore the role of Rad54 in the absence of DNA-PKcs, we generated DNA-PKcs KO mES cells expressing GFP-tagged wild-type (WT) or ATPase-defective Rad54 to track the Rad54 foci over time post-irradiation. Cells lacking DNA-PKcs and expressing ATPase-defective Rad54 exhibited a similar phenotypic response to IR as those lacking both DNA-PKcs and Rad54. Despite a strong G2 phase arrest, live-cell imaging showed these cells eventually progress through mitosis, forming micronuclei. Additionally, mES cells lacking DNA-PKcs showed increased Rad54 foci over time post-irradiation, indicating an enhanced reliance on HR for DSB repair without DNA-PKcs. Our findings underscore the essential roles of HR and NHEJ in maintaining genomic stability post-IR in mES cells. The interplay between these pathways is crucial for effective DSB repair and cell cycle progression, highlighting potential targets for enhancing radiotherapy outcomes. Full article
Show Figures

Figure 1

20 pages, 5554 KiB  
Article
Identification and Validation of New DNA-PKcs Inhibitors through High-Throughput Virtual Screening and Experimental Verification
by Liujiang Dai, Pengfei Yu, Hongjie Fan, Wei Xia, Yaopeng Zhao, Pengfei Zhang, John Z. H. Zhang, Haiping Zhang and Yang Chen
Int. J. Mol. Sci. 2024, 25(14), 7982; https://doi.org/10.3390/ijms25147982 - 22 Jul 2024
Cited by 3 | Viewed by 2126
Abstract
DNA-PKcs is a crucial protein target involved in DNA repair and response pathways, with its abnormal activity closely associated with the occurrence and progression of various cancers. In this study, we employed a deep learning-based screening and molecular dynamics (MD) simulation-based pipeline, identifying [...] Read more.
DNA-PKcs is a crucial protein target involved in DNA repair and response pathways, with its abnormal activity closely associated with the occurrence and progression of various cancers. In this study, we employed a deep learning-based screening and molecular dynamics (MD) simulation-based pipeline, identifying eight candidates for DNA-PKcs targets. Subsequent experiments revealed the effective inhibition of DNA-PKcs-mediated cell proliferation by three small molecules (5025-0002, M769-1095, and V008-1080). These molecules exhibited anticancer activity with IC50 (inhibitory concentration at 50%) values of 152.6 μM, 30.71 μM, and 74.84 μM, respectively. Notably, V008-1080 enhanced homology-directed repair (HDR) mediated by CRISPR/Cas9 while inhibiting non-homologous end joining (NHEJ) efficiency. Further investigations into the structure-activity relationships unveiled the binding sites and critical interactions between these small molecules and DNA-PKcs. This is the first application of DeepBindGCN_RG in a real drug screening task, and the successful discovery of a novel DNA-PKcs inhibitor demonstrates its efficiency as a core component in the screening pipeline. Moreover, this study provides important insights for exploring novel anticancer therapeutics and advancing the development of gene editing techniques by targeting DNA-PKcs. Full article
Show Figures

Figure 1

18 pages, 1808 KiB  
Review
Cell Proliferation and Apoptosis—Key Players in the Lung Aging Process
by Jesús Ancer-Rodríguez, Yareth Gopar-Cuevas, Karol García-Aguilar, María-de-Lourdes Chávez-Briones, Ivett Miranda-Maldonado, Adriana Ancer-Arellano, Marta Ortega-Martínez and Gilberto Jaramillo-Rangel
Int. J. Mol. Sci. 2024, 25(14), 7867; https://doi.org/10.3390/ijms25147867 - 18 Jul 2024
Cited by 5 | Viewed by 2641
Abstract
Currently, the global lifespan has increased, resulting in a higher proportion of the population over 65 years. Changes that occur in the lung during aging increase the risk of developing acute and chronic lung diseases, such as acute respiratory distress syndrome, chronic obstructive [...] Read more.
Currently, the global lifespan has increased, resulting in a higher proportion of the population over 65 years. Changes that occur in the lung during aging increase the risk of developing acute and chronic lung diseases, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung cancer. During normal tissue homeostasis, cell proliferation and apoptosis create a dynamic balance that constitutes the physiological cell turnover. In basal conditions, the lungs have a low rate of cell turnover compared to other organs. During aging, changes in the rate of cell turnover in the lung are observed. In this work, we review the literature that evaluates the role of molecules involved in cell proliferation and apoptosis in lung aging and in the development of age-related lung diseases. The list of molecules that regulate cell proliferation, apoptosis, or both processes in lung aging includes TNC, FOXM1, DNA-PKcs, MicroRNAs, BCL-W, BCL-XL, TCF21, p16, NOX4, NRF2, MDM4, RPIA, DHEA, and MMP28. However, despite the studies carried out to date, the complete signaling pathways that regulate cell turnover in lung aging are still unknown. More research is needed to understand the changes that lead to the development of age-related lung diseases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 929 KiB  
Review
Potential Benefits of Combining Proton or Carbon Ion Therapy with DNA Damage Repair Inhibitors
by Gro Elise Rødland, Mihaela Temelie, Adrian Eek Mariampillai, Sissel Hauge, Antoine Gilbert, François Chevalier, Diana I. Savu and Randi G. Syljuåsen
Cells 2024, 13(12), 1058; https://doi.org/10.3390/cells13121058 - 19 Jun 2024
Cited by 8 | Viewed by 2646
Abstract
The use of charged particle radiotherapy is currently increasing, but combination therapy with DNA repair inhibitors remains to be exploited in the clinic. The high-linear energy transfer (LET) radiation delivered by charged particles causes clustered DNA damage, which is particularly effective in destroying [...] Read more.
The use of charged particle radiotherapy is currently increasing, but combination therapy with DNA repair inhibitors remains to be exploited in the clinic. The high-linear energy transfer (LET) radiation delivered by charged particles causes clustered DNA damage, which is particularly effective in destroying cancer cells. Whether the DNA damage response to this type of damage is different from that elicited in response to low-LET radiation, and if and how it can be targeted to increase treatment efficacy, is not fully understood. Although several preclinical studies have reported radiosensitizing effects when proton or carbon ion irradiation is combined with inhibitors of, e.g., PARP, ATR, ATM, or DNA-PKcs, further exploration is required to determine the most effective treatments. Here, we examine what is known about repair pathway choice in response to high- versus low-LET irradiation, and we discuss the effects of inhibitors of these pathways when combined with protons and carbon ions. Additionally, we explore the potential effects of DNA repair inhibitors on antitumor immune signaling upon proton and carbon ion irradiation. Due to the reduced effect on healthy tissue and better immune preservation, particle therapy may be particularly well suited for combination with DNA repair inhibitors. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

16 pages, 7106 KiB  
Article
DNA-PKcs Inhibition Sensitizes Human Chondrosarcoma Cells to Carbon Ion Irradiation via Cell Cycle Arrest and Telomere Capping Disruption
by Birgit Lohberger, Sandra Barna, Dietmar Glänzer, Nicole Eck, Andreas Leithner and Dietmar Georg
Int. J. Mol. Sci. 2024, 25(11), 6179; https://doi.org/10.3390/ijms25116179 - 4 Jun 2024
Cited by 1 | Viewed by 1350
Abstract
In order to overcome the resistance to radiotherapy in human chondrosarcoma cells, the prevention from efficient DNA repair with a combined treatment with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) inhibitor AZD7648 was explored for carbon ion (C-ion) as well as reference photon [...] Read more.
In order to overcome the resistance to radiotherapy in human chondrosarcoma cells, the prevention from efficient DNA repair with a combined treatment with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) inhibitor AZD7648 was explored for carbon ion (C-ion) as well as reference photon (X-ray) irradiation (IR) using gene expression analysis, flow cytometry, protein phosphorylation, and telomere length shortening. Proliferation markers and cell cycle distribution changed significantly after combined treatment, revealing a prominent G2/M arrest. The expression of the G2/M checkpoint genes cyclin B, CDK1, and WEE1 was significantly reduced by IR alone and the combined treatment. While IR alone showed no effects, additional AZD7648 treatment resulted in a dose-dependent reduction in AKT phosphorylation and an increase in Chk2 phosphorylation. Twenty-four hours after IR, the key genes of DNA repair mechanisms were reduced by the combined treatment, which led to impaired DNA repair and increased radiosensitivity. A time-dependent shortening of telomere length was observed in both cell lines after combined treatment with AZD7648 and 8 Gy X-ray/C-ion IR. Our data suggest that the inhibition of DNA-PKcs may increase sensitivity to X-rays and C-ion IR by impairing its functional role in DNA repair mechanisms and telomere end protection. Full article
(This article belongs to the Special Issue New Insights into Radiation Oncology)
Show Figures

Figure 1

19 pages, 5357 KiB  
Article
The Role of Insulin-like Growth Factor Binding Protein (IGFBP)-2 in DNA Repair and Chemoresistance in Breast Cancer Cells
by Alaa Mohammedali, Kalina Biernacka, Rachel M. Barker, Jeff M. P. Holly and Claire M. Perks
Cancers 2024, 16(11), 2113; https://doi.org/10.3390/cancers16112113 - 31 May 2024
Cited by 1 | Viewed by 1528
Abstract
The role if insulin-like growth factor binding protein-2 (IGFBP-2) in mediating chemoresistance in breast cancer cells has been demonstrated, but the mechanism of action is unclear. This study aimed to further investigate the role of IGFBP-2 in the DNA damage response induced by [...] Read more.
The role if insulin-like growth factor binding protein-2 (IGFBP-2) in mediating chemoresistance in breast cancer cells has been demonstrated, but the mechanism of action is unclear. This study aimed to further investigate the role of IGFBP-2 in the DNA damage response induced by etoposide in MCF-7, T47D (ER+ve), and MDA-MB-231 (ER-ve) breast cancer cell lines. In the presence or absence of etoposide, IGFBP-2 was silenced using siRNA in the ER-positive cell lines, or exogenous IGFBP-2 was added to the ER-negative MDA-MB-231 cells. Cell number and death were assessed using trypan blue dye exclusion assay, changes in abundance of proteins were monitored using Western blotting of whole cell lysates, and localization and abundance were determined using immunofluorescence and cell fractionation. Results from ER-positive cell lines demonstrated that upon exposure to etoposide, loss of IGFBP-2 enhanced cell death, and this was associated with a reduction in P-DNA-PKcs and an increase in γH2AX. Conversely, with ER-negative cells, the addition of IGFBP-2 in the presence of etoposide resulted in cell survival, an increase in P-DNA-PKcs, and a reduction in γH2AX. In summary, IGFBP-2 is a survival factor for breast cancer cells that is associated with enhancement of the DNA repair mechanism. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

20 pages, 3846 KiB  
Article
Effective Radiosensitization of HNSCC Cell Lines by DNA-PKcs Inhibitor AZD7648 and PARP Inhibitors Talazoparib and Niraparib
by Jacob Mentzel, Laura S. Hildebrand, Lukas Kuhlmann, Rainer Fietkau and Luitpold V. Distel
Int. J. Mol. Sci. 2024, 25(11), 5629; https://doi.org/10.3390/ijms25115629 - 22 May 2024
Cited by 3 | Viewed by 1815
Abstract
(1) Head and neck squamous cell carcinoma (HNSCC) is common, while treatment is difficult, and mortality is high. Kinase inhibitors are promising to enhance the effects of radiotherapy. We compared the effects of the PARP inhibitors talazoparib and niraparib and that of the [...] Read more.
(1) Head and neck squamous cell carcinoma (HNSCC) is common, while treatment is difficult, and mortality is high. Kinase inhibitors are promising to enhance the effects of radiotherapy. We compared the effects of the PARP inhibitors talazoparib and niraparib and that of the DNA-PKcs inhibitor AZD7648, combined with ionizing radiation. (2) Seven HNSCC cell lines, including Cal33, CLS-354, Detroit 562, HSC4, RPMI2650 (HPV-negative), UD-SCC-2 and UM-SCC-47 (HPV-positive), and two healthy fibroblast cell lines, SBLF8 and SBLF9, were studied. Flow cytometry was used to analyze apoptosis and necrosis induction (AnnexinV/7AAD) and cell cycle distribution (Hoechst). Cell inactivation was studied by the colony-forming assay. (3) AZD7648 had the strongest effects, radiosensitizing all HNSCC cell lines, almost always in a supra-additive manner. Talazoparib and niraparib were effective in both HPV-positive cell lines but only consistently in one and two HPV-negative cell lines, respectively. Healthy fibroblasts were not affected by any combined treatment in apoptosis and necrosis induction or G2/M-phase arrest. AZD7648 alone was not toxic to healthy fibroblasts, while the combination with ionizing radiation reduced clonogenicity. (4) In conclusion, talazoparib, niraparib and, most potently, AZD7648 could improve radiation therapy in HNSCC. Healthy fibroblasts tolerated AZD7648 alone extremely well, but irradiation-induced effects might occur. Our results justify in vivo studies. Full article
(This article belongs to the Special Issue Pathogenesis and Treatments of Head and Neck Cancer)
Show Figures

Figure 1

17 pages, 2774 KiB  
Article
In Vitro Identification of Phosphorylation Sites on TcPolβ by Protein Kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 and Effect of Phorbol Ester on Activation by TcPKC of TcPolβ in Trypanosoma cruzi Epimastigotes
by Edio Maldonado, Paz Canobra, Matías Oyarce, Fabiola Urbina, Vicente J. Miralles, Julio C. Tapia, Christian Castillo and Aldo Solari
Microorganisms 2024, 12(5), 907; https://doi.org/10.3390/microorganisms12050907 - 30 Apr 2024
Viewed by 1848
Abstract
Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite’s growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could [...] Read more.
Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite’s growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could help to develop new drugs to treat the disease caused by these protozoa. In the present work, we have demonstrated that Fetal Calf Serum (FCS) can quickly increase the levels of both phosphorylated and unphosphorylated forms of T. cruzi DNA polymerase beta (TcPolβ) in tissue-cultured trypomastigotes. The in vitro phosphorylation sites on TcPolβ by protein kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 have been identified by Mass Spectrometry (MS) analysis and with antibodies against phosphor Ser-Thr-Tyr. MS analysis indicated that these protein kinases can phosphorylate Ser and Thr residues on several sites on TcPolβ. Unexpectedly, it was found that TcCK1 and TcPKC1 can phosphorylate a different Tyr residue on TcPolβ. By using a specific anti-phosphor Tyr monoclonal antibody, it was determined that TcCK1 can be in vitro autophosphorylated on Tyr residues. In vitro and in vivo studies showed that phorbol 12-myristate 13-acetate (PMA) can activate the PKC to stimulate the TcPolβ phosphorylation and enzymatic activity in T. cruzi epimastigotes. Full article
(This article belongs to the Special Issue Advances in Trypanosoma Infection)
Show Figures

Figure 1

17 pages, 5135 KiB  
Article
Kaempferol as an Alternative Cryosupplement for Bovine Spermatozoa: Cytoprotective and Membrane-Stabilizing Effects
by Štefan Baňas, Eva Tvrdá, Filip Benko, Michal Ďuračka, Natália Čmiková, Norbert Lukáč and Miroslava Kačániová
Int. J. Mol. Sci. 2024, 25(7), 4129; https://doi.org/10.3390/ijms25074129 - 8 Apr 2024
Cited by 4 | Viewed by 2195
Abstract
Kaempferol (KAE) is a natural flavonoid with powerful reactive oxygen species (ROS) scavenging properties and beneficial effects on ex vivo sperm functionality. In this paper, we studied the ability of KAE to prevent or ameliorate structural, functional or oxidative damage to frozen–thawed bovine [...] Read more.
Kaempferol (KAE) is a natural flavonoid with powerful reactive oxygen species (ROS) scavenging properties and beneficial effects on ex vivo sperm functionality. In this paper, we studied the ability of KAE to prevent or ameliorate structural, functional or oxidative damage to frozen–thawed bovine spermatozoa. The analysis focused on conventional sperm quality characteristics prior to or following thermoresistance tests, namely the oxidative profile of semen alongside sperm capacitation patterns, and the levels of key proteins involved in capacitation signaling. Semen samples obtained from 30 stud bulls were frozen in the presence of 12.5, 25 or 50 μM KAE and compared to native ejaculates (negative control—CtrlN) as well as semen samples cryopreserved in the absence of KAE (positive control—CtrlC). A significant post-thermoresistance test maintenance of the sperm motility (p < 0.001), membrane (p < 0.001) and acrosome integrity (p < 0.001), mitochondrial activity (p < 0.001) and DNA integrity (p < 0.001) was observed following supplementation with all KAE doses in comparison to CtrlC. Experimental groups supplemented with all KAE doses presented a significantly lower proportion of prematurely capacitated spermatozoa (p < 0.001) when compared with CtrlC. A significant decrease in the levels of the superoxide radical was recorded following administration of 12.5 (p < 0.05) and 25 μM KAE (p < 0.01). At the same time, supplementation with 25 μM KAE in the cryopreservation medium led to a significant stabilization of the activity of Mg2+-ATPase (p < 0.05) and Na+/K+-ATPase (p < 0.0001) in comparison to CtrlC. Western blot analysis revealed that supplementation with 25 μM KAE in the cryopreservation medium prevented the loss of the protein kinase A (PKA) and protein kinase C (PKC), which are intricately involved in the process of sperm activation. In conclusion, we may speculate that KAE is particularly efficient in the protection of sperm metabolism during the cryopreservation process through its ability to promote energy synthesis while quenching excessive ROS and to protect enzymes involved in the process of sperm capacitation and hyperactivation. These properties may provide supplementary protection to spermatozoa undergoing the freeze–thaw process. Full article
(This article belongs to the Special Issue A Molecular Perspective on Reproductive Health)
Show Figures

Figure 1

Back to TopTop