Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = Curcuma zedoaria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2042 KiB  
Article
Microbial Population in Curcuma Species at Different Growth Stages
by Neptu Islamy Raharja, Mohammad Amzad Hossain and Hikaru Akamine
Agriculture 2025, 15(10), 1092; https://doi.org/10.3390/agriculture15101092 - 19 May 2025
Viewed by 412
Abstract
Turmeric (Curcuma spp.) is widely cultivated in tropical regions for its use in traditional medicine and culinary purposes. This study investigated the bacterial populations in the rhizosphere, stems, and leaves of the Curcuma species and strains at different growth stages. Bacterial population [...] Read more.
Turmeric (Curcuma spp.) is widely cultivated in tropical regions for its use in traditional medicine and culinary purposes. This study investigated the bacterial populations in the rhizosphere, stems, and leaves of the Curcuma species and strains at different growth stages. Bacterial population cultivated in the field and plastic house showed variations across growth stages. The rhizosphere possessed the highest bacterial populations in both experiments (1.8 to 11.9 × 106 CFU/g and 1.7 to 24.3 × 106 CFU/g, respectively), with C. amada and Ryudai gold as the highest. Endophytic bacteria in stems and leaves also peaked at the middle growth stage. Principal Component Analysis (PCA) revealed distinct separations among Curcuma species planted in the field and plastic house at different growth stages. C. aromatica and C. longa strain L2 clustered differently under field conditions, while C. zedoaria and C. xanthorrhiza were distinct under plastic house conditions. Combined PCA revealed a clear separation between the field and plastic house, with tighter clustering observed in the plastic house. Leaf-associated bacterial populations were compositionally distinct from those in the rhizosphere and stems. These findings suggest that the Curcuma growth stage and species significantly affect bacterial community structure, supporting the development of targeted cultivation strategies and microbial applications to enhance productivity and sustainability in turmeric farming. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

15 pages, 41414 KiB  
Article
A Theoretical Study of the Interaction of PARP-1 with Natural and Synthetic Inhibitors: Advances in the Therapy of Triple-Negative Breast Cancer
by Albert Gabriel Turpo-Peqqueña, Emily Katherine Leiva-Flores, Sebastián Luna-Prado and Badhin Gómez
Curr. Issues Mol. Biol. 2024, 46(9), 9415-9429; https://doi.org/10.3390/cimb46090558 - 27 Aug 2024
Viewed by 2224
Abstract
In the current study, we have investigated the secondary metabolites present in ethnomedical plants used for medicinal purposes—Astilbe chinensis (EK1), Scutellaria barbata D. Don (EK2), Uncaria rhynchophylla (EK3), Fallugia paradoxa (EK4), and Curcuma zedoaria (Christm.) Thread (EK5)—and we have compared them with five [...] Read more.
In the current study, we have investigated the secondary metabolites present in ethnomedical plants used for medicinal purposes—Astilbe chinensis (EK1), Scutellaria barbata D. Don (EK2), Uncaria rhynchophylla (EK3), Fallugia paradoxa (EK4), and Curcuma zedoaria (Christm.) Thread (EK5)—and we have compared them with five compounds of synthetic origin for the inhibition of PARP-1, which is linked to abnormal DNA replication, generating carcinogenic cells. We have studied these interactions through molecular dynamics simulations of each interacting system under physiological conditions (pH, temperature, and pressure) and determined that the compounds of natural origin have a capacity to inhibit PARP-1 (Poly(ADP-ribose) Polymerase 1) in all the cases inspected in this investigation. However, it is essential to mention that their interaction energy is relatively lower compared to that of compounds of synthetic origin. Given that binding energy is mandatory for the generation of a scale or classification of which is the best interacting agent, we can say that we assume that compounds of natural origin, having a complexation affinity with PARP-1, induce cell apoptosis, a potential route for the prevention of the proliferation of carcinogenic cells. Full article
(This article belongs to the Collection Bioinformatics Approaches to Biomedicine)
Show Figures

Figure 1

19 pages, 4100 KiB  
Article
Impact of Intercropping Five Medicinal Plants on Soil Nutrients, Enzyme Activity, and Microbial Community Structure in Camellia oleifera Plantations
by Azuo Bajiu, Kai Gao, Guangyu Zeng and Yuanhao He
Microorganisms 2024, 12(8), 1616; https://doi.org/10.3390/microorganisms12081616 - 8 Aug 2024
Cited by 3 | Viewed by 1567
Abstract
Intercropping medicinal plants plays an important role in agroforestry that can improve the physical, chemical, and biological fertility of soil. However, the influence of intercropping medicinal plants on the Camellia oleifera soil properties and bacterial communities remains elusive. In this study, five intercropping [...] Read more.
Intercropping medicinal plants plays an important role in agroforestry that can improve the physical, chemical, and biological fertility of soil. However, the influence of intercropping medicinal plants on the Camellia oleifera soil properties and bacterial communities remains elusive. In this study, five intercropping treatment groups were set as follows: Curcuma zedoaria/C. oleifera (EZ), Curcuma longa/C. oleifera (JH), Clinacanthus nutans/C. oleifera (YDC), Fructus Galangae/C. oleifera (HDK), and Ficus simplicissima/C. oleifera (WZMT). The soil chemical properties, enzyme activities, and bacterial communities were measured and analyzed to evaluate the effects of different intercropping systems. The results indicated that, compared to the C. oleifera monoculture group, YDC and EZ showed noticeable impacts on the soil chemical properties with a significant increase in total nitrogen (TN), nitrate nitrogen (NN), available nitrogen (AN), available phosphorus (AP), and available potassium (AK). Among them, the content of TN and AK in the rhizosphere soil of Camellia oleifera in the YDC intercropping system was the highest, which was 7.82 g/kg and 21.94 mg/kg higher than CK. Similarly, in the EZ intercropping system, the content of NN and OM in the rhizosphere soil of Camellia oleifera was the highest, which was higher than that of CK at 722.33 mg/kg and 2.36 g/kg, respectively. Curcuma longa/C. oleifera (JH) and Clinacanthus nutans/C. oleifera (YDC) had the most effect on soil enzyme activities. Furthermore, YDC extensively increased the activities of hydrogen peroxide and acid phosphatase enzymes; the increase was 2.27 mg/g and 3.21 mg/g, respectively. While JH obviously increased the urease activity, the diversity of bacterial populations in the rhizosphere soil of the intercropping plants decreased, especially the Shannon index of YDC and HDK. Compared with the monoculture group, the bacterial community abundance and structure of JH and YDC were quite different. The relative abundance of Actinobacteriota and Firmicutes was increased in YDC, and that of Acidobacteriota and Myxococcota was increased in JH. According to the redundancy analysis (RDA), pH, total potassium, and soil catalase activity were identified as the main factors influencing the microbial community structure of the intercropping systems. In conclusion, intercropping with JH and YDC increased the relative abundance of the dominant bacterial communities, improved the microbial community structure, and enhanced the soil nutrients and enzyme activities. Therefore, in the future, these two medicinal plants can be used for intercropping with C. oleifera. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

27 pages, 2480 KiB  
Review
The Extraction, Determination, and Bioactivity of Curcumenol: A Comprehensive Review
by Jie Li, Yitian Sun, Guohua Li, Chunsong Cheng, Xinbing Sui and Qibiao Wu
Molecules 2024, 29(3), 656; https://doi.org/10.3390/molecules29030656 - 30 Jan 2024
Cited by 8 | Viewed by 3939
Abstract
Curcuma wenyujin is a member of the Curcuma zedoaria (zedoary, Zingiberaceae) family, which has a long history in traditional Chinese medicine (TCM) due to its abundant biologically active constituents. Curcumenol, a component of Curcuma wenyujin, has several biological activities. At present, despite [...] Read more.
Curcuma wenyujin is a member of the Curcuma zedoaria (zedoary, Zingiberaceae) family, which has a long history in traditional Chinese medicine (TCM) due to its abundant biologically active constituents. Curcumenol, a component of Curcuma wenyujin, has several biological activities. At present, despite different pharmacological activities being reported, the clinical usage of curcumenol remains under investigation. To further determine the characteristics of curcumenol, the extraction, determination, and bioactivity of the compound are summarized in this review. Existing research has reported that curcumenol exerts different pharmacological effects in regard to a variety of diseases, including anti-inflammatory, anti-oxidant, anti-bactericidal, anti-diabetic, and anti-cancer activity, and also ameliorates osteoporosis. This review of curcumenol provides a theoretical basis for further research and clinical applications. Full article
(This article belongs to the Special Issue Advances in Plant-Sourced Natural Compounds as Anticancer Agents)
Show Figures

Graphical abstract

14 pages, 2521 KiB  
Article
Molecular Docking Simulation of Phenolics towards Tyrosinase, Phenolic Content, and Radical Scavenging Activity of Some Zingiberaceae Plant Extracts
by Mutakin, Nyi Mekar Saptarini, Riezki Amalia, Sri Adi Sumiwi, Sandra Megantara, Febrina Amelia Saputri and Jutti Levita
Cosmetics 2023, 10(6), 149; https://doi.org/10.3390/cosmetics10060149 - 31 Oct 2023
Cited by 9 | Viewed by 3247
Abstract
In Indonesia, plants have been indigenously used to treat various diseases and as cosmetics. It is always challenging to explore the molecular interactions of phenolic compounds towards the levels of constituents that contribute to the biological activities of plants. This study aimed to [...] Read more.
In Indonesia, plants have been indigenously used to treat various diseases and as cosmetics. It is always challenging to explore the molecular interactions of phenolic compounds towards the levels of constituents that contribute to the biological activities of plants. This study aimed to select a plant of the Zingiberaceae family with the highest phenolics and flavonoids, the strongest radical scavenging activity, and the best interaction towards tyrosinase in terms of docking score and binding mode. Initially, the total phenolics and radical scavenging capacity of Zingiberaceae plants, namely, Hedychium coronarium, Curcuma zedoaria, Curcuma heyneana, and Alpinia galanga, were determined using the Folin–Ciocâlteu method and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The main phytoconstituents of plants with the highest phenolic levels were docked to the binding site of tyrosinase. Three anti-melanogenesis agents commonly used in cosmetics, namely, arbutin, hydroquinone, and kojic acid, were used as the standard. Our study revealed that all the tested plants contain polyphenolic compounds in the range of 17.92 (C. zedoaria rhizome extract) to 252.36 (A. galanga rhizome extract) mg GAE/g and have radical scavenging capacity, with IC50 values in the range of 66.67 (A. galanga rhizome extract) to 320.0 (C. heyneana rhizome extract) μg/mL. A molecular docking simulation demonstrated that four constituents, i.e., kaempferol, galangin, ethyl p-methoxycinnamate, and 6-gingerol, could occupy the binding site of tyrosinase with prominent affinity and interact with essential residues of the enzyme. This study confirms that Alpinia galanga possesses the potential to be further developed as a cosmetic with a radical scavenging and tyrosinase inhibitory activity. However, it may be interesting to carry out further studies of how the plant extract affects the melanogenesis signaling pathway. Full article
Show Figures

Figure 1

23 pages, 2648 KiB  
Review
Anti-Aging Potential of Plants of the Anak Dalam Tribe, Jambi, Indonesia
by Uce Lestari, Muhaimin Muhaimin, Anis Yohana Chaerunisaa and Wawan Sujarwo
Pharmaceuticals 2023, 16(9), 1300; https://doi.org/10.3390/ph16091300 - 14 Sep 2023
Cited by 10 | Viewed by 4777
Abstract
The process of skin aging is a physiological phenomenon that can not be avoided. According to global population data, the rate of aging increases by approximately 13% every year. The impact of skin aging has become a significant concern and challenge for developed [...] Read more.
The process of skin aging is a physiological phenomenon that can not be avoided. According to global population data, the rate of aging increases by approximately 13% every year. The impact of skin aging has become a significant concern and challenge for developed countries. Consequently, there has been a search for potential new anti-aging agents. This review aims to provide an overview of the current research status of plants of the Anak Dalam Tribe (Indonesian: Suku Anak Dalam [SAD]; referred to as SAD henceforth) in Jambi Province, Indonesia, for the development of potential new anti-aging agents. One such discovery is a product derived from natural ingredients with the ability to prevent premature aging. These new anti-aging plants have been used for centuries by the Anak Dalam tribe, for treating skin diseases and maintaining skin health through traditional remedies. Recent research on herbal formulations used by the SAD community in Indonesia for skin beauty treatments, reported by Research on Medicinal Plants and Herbs or RISTOJA, indicates that 64 plant species are used for skin care. Among these plants, Toona sinensis, Curcuma heyneana, Curcuma zedoaria, Curcuma longa, and Kaempferia rotunda are the most commonly used medicinal plants with anti-aging properties. T. sinensis is a tree, while the others are herbs. T. sinensis shows the highest potential for development as an anti-aging agent, with its extracts, active fractions, and bioactive quercetin isolates known to possess strong anti-aging activities both in vitro and in vivo. Furthermore, C. heyneana, C. longa, C. zedoaria, and K. rotunda also show potential for further research, and three of them have demonstrated good potential for in vivo anti-aging activities. Only K. rotunda demonstrates relatively weaker antioxidant activity compared to T. sinensis, C. heyneana, C. longa, and C. zedoaria. Nevertheless, K. rotunda can still be developed to search for potential opportunities as agents with other activities, while T. sinensis, C. heyneana, C. longa, and C. zedoaria in the findings could be an opportunity to explore the potential of new anti-aging agents. In conclusion, of the five medicinal plants traditionally used by the SAD in Jambi, Indonesia, C. longa has received the most extensive research and shows potential for the development of anti-aging solutions. C. zedoaria, C. heyneana and K. rotunda show good potential for in vivo anti-aging activity. T. sinensis is the least-studied medicinal plant. Nevertheless, it has potential for development, as it is widely used by the SAD community for both traditional medicine and skin care. Full article
(This article belongs to the Special Issue Bioactive Substances, Oxidative Stress, and Inflammation)
Show Figures

Figure 1

16 pages, 4206 KiB  
Article
Integration of Two-Dimensional Liquid Chromatography-Mass Spectrometry and Molecular Docking to Characterize and Predict Polar Active Compounds in Curcuma kwangsiensis
by Kaijing Xiang, Weijia Zhou, Tao Hou, Long Yu, Han Zhou, Liangliang Zhou, Yanfang Liu, Jixia Wang, Zhimou Guo and Xinmiao Liang
Molecules 2022, 27(22), 7715; https://doi.org/10.3390/molecules27227715 - 9 Nov 2022
Cited by 2 | Viewed by 2761
Abstract
Curcuma kwangsiensis, one species of Curcumae zedoaria Ros. c, is a commonly used traditional Chinese medicine (TCM) for treating cardiovascular disease, cancer, asthma and inflammation. Polar compounds are abundant in water decoction, which would be responsible for critical pharmacological effects. However, [...] Read more.
Curcuma kwangsiensis, one species of Curcumae zedoaria Ros. c, is a commonly used traditional Chinese medicine (TCM) for treating cardiovascular disease, cancer, asthma and inflammation. Polar compounds are abundant in water decoction, which would be responsible for critical pharmacological effects. However, current research on polar compounds in Curcumae zedoaria Ros. c remains scarce. In this study, the polar fraction from Curcuma kwangsiensis was firstly profiled on G protein-coupled receptor 109A (GPR109A), β2-adrenergic receptor (β2-AR), neurotensin receptor (NTSR), muscarinic-3 acetylcholine receptor (M3) and G protein-coupled receptor 35 (GPR35), which were involved in its clinical indications and exhibited excellent β2-AR and GPR109A receptor activities. Then, an offline two-dimensional reversed-phase liquid chromatography (RPLC) coupled with the hydrophilic interaction chromatography (HILIC) method was developed to separate polar compounds. By the combination of a polar-copolymerized XAqua C18 column and an amide-bonded XAmide column, an orthogonality of 47.6% was achieved. As a result of coupling with the mass spectrometry (MS), a four-dimensional data plot was presented in which 373 mass peaks were detected and 22 polar compounds tentatively identified, including the GPR109A agonist niacin. Finally, molecular docking of these 22 identified compounds to β2-AR, M3, GPR35 and GPR109A receptors was performed to predict potential active ingredients, and compound 9 was predicted to have a similar interaction to the β2-AR partial agonist salmeterol. These results were supplementary to the material basis of Curcuma kwangsiensis and facilitated the bioactivity research of polar compounds. The integration of RPLC×HILIC-MS and molecular docking can be a powerful tool for characterizing and predicting polar active components in TCM. Full article
(This article belongs to the Special Issue Natural Compounds: A Lead for Drug Discovery and Development)
Show Figures

Figure 1

12 pages, 614 KiB  
Article
Analysis of Volatile Constituents in Curcuma Species, viz. C. aeruginosa, C. zedoaria, and C. longa, from Nepal
by Darbin Kumar Poudel, Pawan Kumar Ojha, Anil Rokaya, Rakesh Satyal, Prabodh Satyal and William N. Setzer
Plants 2022, 11(15), 1932; https://doi.org/10.3390/plants11151932 - 26 Jul 2022
Cited by 26 | Viewed by 4156
Abstract
The genus Curcuma, composed of 93 species mainly originating from Asia, Australia, and South America, has been used for medicinal purposes, aromatic, and nutritional values as well as cosmetic. It plays a vital role in flavoring and coloring as well as exhibiting [...] Read more.
The genus Curcuma, composed of 93 species mainly originating from Asia, Australia, and South America, has been used for medicinal purposes, aromatic, and nutritional values as well as cosmetic. It plays a vital role in flavoring and coloring as well as exhibiting therapeutic agents against different diseases. Nepalese farmers are unaware of the essential oil compositions of Curcuma species, viz. C. aeruginosa, C. zedoaria, and C. longa. The investigation of these three essential oils provides insight into their potential as cash crops and earns a reasonable return from their production. The essential oils were obtained from the rhizomes of each plant by hydrodistillation and subjected to Gas Chromatography/Mass Spectrometry (GC–MS) analysis to identify its volatile chemical constituents as well as chiral GC-MS to identify the enantiomeric distribution of chiral terpenoids. The order of extraction yields were C. longa (0.89%) > C. zedoaria (0.74%) > C. aeruginosa (0.37%). In total, the presence of 65, 98, and 84 compounds were identified in C. longa, C. zedoaria, and C. aeruginosa, representing 95.82%, 81.55%, and 92.59% of the total oil, respectively. The most abundant compounds in C. longa essential oils were ar-turmerone (25.5%), α-turmerone (24.4%), β-turmerone (14.0%), terpinolene (7.2%), β-sesquiphellandrene (5.1%), α-zingiberene (4.8%), β-caryophyllene (2.9%), ar-curcumene (1.6%) and 1,8-cineole (1.3%). The most dominant compounds in C. zedoaria were curzerenone (21.5%), 1,8-cineole (19.6%), curzerene (6.2%), trans-β-Elemene (5.1%), camphor (2.6%), and germacrone (2.3%). The major components in C. aeruginosa were curzerenone (59.6%), germacrone (5.3%), curzerene (4.7%), camphor (3.6%), trans-β-Elemene (2.6%), and β-eudesmol (1.6%). C. zedoaria, and C. aeruginosa essential oil from Nepal for the very first time. This study reports for the first time chiral terpenoids from C. aeruginosa, C. zedoaria, and C. longa essential oil. A chemical blueprint of these essential oils could also be used as a tool for identification and quality assessment. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 2970 KiB  
Article
Essential Oil Chemotypes of Four Vietnamese Curcuma Species Cultivated in North Alabama
by Lam Duong, Srinivasa Rao Mentreddy, Rakesh Satyal, Prabodh Satyal and William N. Setzer
Horticulturae 2022, 8(5), 360; https://doi.org/10.3390/horticulturae8050360 - 21 Apr 2022
Cited by 11 | Viewed by 5721
Abstract
Curcuma (turmeric) species are important culinary and medicinal plants, and the essential oils of Curcuma rhizomes have demonstrated promising pharmacological properties. The essential oils (EOs) of Curcuma species possess a wide variety of pharmacological properties, including anti-inflammatory, anticancerous, antiproliferative, hypocholesterolemic, antidiabetic, antirheumatic, hypotensive, [...] Read more.
Curcuma (turmeric) species are important culinary and medicinal plants, and the essential oils of Curcuma rhizomes have demonstrated promising pharmacological properties. The essential oils (EOs) of Curcuma species possess a wide variety of pharmacological properties, including anti-inflammatory, anticancerous, antiproliferative, hypocholesterolemic, antidiabetic, antirheumatic, hypotensive, antioxidant, antimicrobial, antiviral, antithrombotic, antityrosinase, and cyclooxygenase-1 (COX-1) inhibitory activities, among others. Curcuma oils are also known to enhance immune function, promote blood circulation, accelerate toxin elimination, and stimulate digestion. C. longa (turmeric) and C. zedoaria (zedoary) are the most extensively studied species of Curcuma due to their high commercial value. There is some interest in expanding the cultivation of Curcuma species to the southern regions in North America where the climate is favorable. The purpose of this work was to examine the rhizome essential oil composition of four species of Curcuma (C. aromatica, C. caesia, C. longa, C. zanthorrhiza) that were obtained from Vietnam and cultivated in North Alabama. The rhizome essential oils were obtained by hydrodistillation and analyzed by gas chromatographic techniques. The essential oils of C. aromatica were dominated by curzerenone (14.7–18.6%), germacrone (10.7–14.7%), 1,8-cineole (5.2–11.7%), and an unidentified component (8.7–11.0%). The major components in C. longa rhizome oil were ar-turmerone (8.3–36.1%), α-turmerone (12.7–15.2%), β-turmerone (5.0–15.4%), α-zingiberene (4.6–13.9%), and β-sesquiphellandrene (4.6–10.0%). The essential oils of C. caesia and C. zanthorrhiza were rich in curzerenone, curdione, and germacrone. These adapted turmeric varieties in North Alabama have potential use for medical purposes and medicinal plant oil market demands in the U.S. Full article
Show Figures

Figure 1

16 pages, 3249 KiB  
Article
Characterization, Classification and Authentication of Turmeric and Curry Samples by Targeted LC-HRMS Polyphenolic and Curcuminoid Profiling and Chemometrics
by Nerea Núñez, Oscar Vidal-Casanella, Sonia Sentellas, Javier Saurina and Oscar Núñez
Molecules 2020, 25(12), 2942; https://doi.org/10.3390/molecules25122942 - 26 Jun 2020
Cited by 25 | Viewed by 5677
Abstract
The importance of monitoring bioactive substances as food features to address sample classification and authentication is increasing. In this work, targeted liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) polyphenolic and curcuminoid profiles were evaluated as chemical descriptors to deal with the characterization [...] Read more.
The importance of monitoring bioactive substances as food features to address sample classification and authentication is increasing. In this work, targeted liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) polyphenolic and curcuminoid profiles were evaluated as chemical descriptors to deal with the characterization and classification of turmeric and curry samples. The profiles corresponding to bioactive substances were obtained by TraceFinderTM software using accurate mass databases with 53 and 24 polyphenolic and curcuminoid related compounds, respectively. For that purpose, 21 turmeric and 9 curry samples commercially available were analyzed in triplicate by a simple liquid–solid extraction procedure using dimethyl sulfoxide as extracting solvent. The obtained results demonstrate that the proposed profiles were excellent chemical descriptors for sample characterization and classification by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), achieving 100% classification rates. Curcuminoids and some specific phenolic acids such as trans-cinnamic, ferulic and sinapic acids, helped on the discrimination of turmeric samples; polyphenols, in general, were responsible for the curry sample distinction. Besides, the combination of both polyphenolic and curcuminoid profiles was necessary for the simultaneous characterization and classification of turmeric and curry samples. Discrimination among turmeric species such as Curcuma longa vs. Curcuma zedoaria, as well as among different Curcuma longa varieties (Alleppey, Madras and Erode) was also accomplished. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Figure 1

13 pages, 2663 KiB  
Article
Non-Targeted Ultra-High Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) Fingerprints for the Chemometric Characterization and Classification of Turmeric and Curry Samples
by Nerea Núñez, Oscar Vidal-Casanella, Sonia Sentellas, Javier Saurina and Oscar Núñez
Separations 2020, 7(2), 32; https://doi.org/10.3390/separations7020032 - 10 Jun 2020
Cited by 5 | Viewed by 5019
Abstract
In this work, non-targeted ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) fingerprints obtained by C18 reversed-phase chromatography were proposed as sample chemical descriptors for the characterization and classification of turmeric and curry samples. A total of 21 turmeric and 9 curry commercially available [...] Read more.
In this work, non-targeted ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) fingerprints obtained by C18 reversed-phase chromatography were proposed as sample chemical descriptors for the characterization and classification of turmeric and curry samples. A total of 21 turmeric and 9 curry commercially available samples were analyzed in triplicate after extraction with dimethyl sulfoxide (DMSO). The results demonstrated the feasibility of non-targeted UHPLC-HRMS fingerprints for sample classification, showing very good classification capabilities by partial least squares regression-discriminant analysis (PLS-DA), with 100% classification rates being obtained by PLS-DA when randomly selected samples were processed as “unknown” ones. Besides, turmeric curcuma species (Curcuma longa vs. Curcuma zedoaria) and turmeric Curcuma longa varieties (Madras, Erodes, and Alleppey) discrimination was also observed by PLS-DA when using the proposed fingerprints as chemical descriptors. As a conclusion, non-targeted UHPLC-HRMS fingerprinting is a suitable methodology for the characterization, classification, and authentication of turmeric and curry samples, without the requirement of using commercially available standards for quantification nor the necessity of metabolite identification. Full article
Show Figures

Figure 1

13 pages, 2282 KiB  
Article
Root Bark of Paeonia suffruticosa Extract and Its Component Methyl Gallate Possess Peroxynitrite Scavenging Activity and Anti-Inflammatory Properties through NF-κB Inhibition in LPS-treated Mice
by Dong Jin Park, Hee Jin Jung, Chan Hum Park, Takako Yokozawa and Ji-Cheon Jeong
Molecules 2019, 24(19), 3483; https://doi.org/10.3390/molecules24193483 - 25 Sep 2019
Cited by 18 | Viewed by 3918
Abstract
A peroxynitrite (ONOO)-generating system induced by 3-morpholinosydnonimine, was used to evaluate the ONOO scavenging properties of plants that have been widely used as traditional medicine in Korea for the treatment of several diseases. The most effective medicinal plants were Paeonia [...] Read more.
A peroxynitrite (ONOO)-generating system induced by 3-morpholinosydnonimine, was used to evaluate the ONOO scavenging properties of plants that have been widely used as traditional medicine in Korea for the treatment of several diseases. The most effective medicinal plants were Paeonia suffruticosa Andrew, followed in order by Lonicera japonica Thunb., Curcuma zedoaria (Christm.) Roscoe, and Pueraria thunbergiana Benth. In addition, root bark of P. suffruticosa was partitioned with organic solvents of different polarities, and the ethyl acetate (EtOAc) fraction showed the strongest ONOO scavenging activity. Methyl gallate, a plant-derived phenolic compound identified from the EtOAc fraction, exerted strong ONOO scavenging activity. The in vivo therapeutic potential of methyl gallate was investigated using lipopolysaccharide-treated mice. Oral administration of methyl gallate protected against acute renal injury and exhibited potential anti-inflammatory properties through an increase in antioxidant activity and decrease in nuclear factor-kappa B activity. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

16 pages, 5728 KiB  
Article
Identification of a Quality Marker of Vinegar-Processed Curcuma Zedoaria on Oxidative Liver Injury
by Herong Cui, Beibei Zhang, Guoping Li, Lei Li, Hongshan Chen, Jinchai Qi, Wenxue Liu, Jing Chen, Penglong Wang and Haimin Lei
Molecules 2019, 24(11), 2073; https://doi.org/10.3390/molecules24112073 - 31 May 2019
Cited by 24 | Viewed by 3895
Abstract
Curcuma zedoaria (dry stenophora of Curcuma phaeocaulis Val., Curcuma kwangsiensis S. G. Lee et C. F. Liang, or Curcuma wenyujin Y. H. Chen et C.Ling) is a representative herb with clinical effects on liver diseases after being vinegar-processed. The crude Curcuma zedoaria and [...] Read more.
Curcuma zedoaria (dry stenophora of Curcuma phaeocaulis Val., Curcuma kwangsiensis S. G. Lee et C. F. Liang, or Curcuma wenyujin Y. H. Chen et C.Ling) is a representative herb with clinical effects on liver diseases after being vinegar-processed. The crude Curcuma zedoaria and the processed Curcuma zedoaria (vinegar-boil) have been widely used as mixtures, but their equivalence has not been fully investigated. In this manuscript, quality markers of processed (vinegar-boil) Curcuma zedoaria were investigated by comparison of the compounds and hepatoprotective activities with the crude (three spices) ones. First, GC-MS-based untargeted metabolomics were applied to reveal the discriminatory components and discover potential markers. As a result, a total of six components were identified as potential markers. Then, the hepatoprotective activities were evaluated by dual cell damage models induced by a certain concentration of H2O2 or tertbutyl hydfroperoxide (t-BHP) (55 μM H2O2 or 40 μM t-BHP), which highlighted the potential of the processed Curcuma zedoaria on oxidative stress. Finally, epicurzerenone was identified as its quality marker on oxidative liver injury based on the above results and the cell-based biological assay. Overall, vinegar-processed Curcuma zedoaria was more suitable for the treatment of oxidative liver diseases, and epicurzerenone could be considered as its quality marker. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

15 pages, 6699 KiB  
Article
Detection of Additives and Chemical Contaminants in Turmeric Powder Using FT-IR Spectroscopy
by Sagar Dhakal, Walter F. Schmidt, Moon Kim, Xiuying Tang, Yankun Peng and Kuanglin Chao
Foods 2019, 8(5), 143; https://doi.org/10.3390/foods8050143 - 26 Apr 2019
Cited by 49 | Viewed by 10332
Abstract
Yellow turmeric (Curcuma longa) is widely used for culinary and medicinal purposes, and as a dietary supplement. Due to the commercial popularity of C. longa, economic adulteration and contamination with botanical additives and chemical substances has increased. This study used [...] Read more.
Yellow turmeric (Curcuma longa) is widely used for culinary and medicinal purposes, and as a dietary supplement. Due to the commercial popularity of C. longa, economic adulteration and contamination with botanical additives and chemical substances has increased. This study used FT-IR spectroscopy for identifying and estimating white turmeric (Curcuma zedoaria), and Sudan Red G dye mixed with yellow turmeric powder. Fifty replicates of yellow turmeric—Sudan Red mixed samples (1%, 5%, 10%, 15%, 20%, 25% Sudan Red, w/w) and fifty replicates of yellow turmeric—white turmeric mixed samples (10%, 20%, 30%, 40%, 50% white turmeric, w/w) were prepared. The IR spectra of the pure compounds and mixtures were analyzed. The 748 cm−1 Sudan Red peak and the 1078 cm−1 white turmeric peak were used as spectral fingerprints. A partial least square regression (PLSR) model was developed for each mixture type to estimate adulteration concentrations. The coefficient of determination (R2v) for the Sudan Red mixture model was 0.97 with a root mean square error of prediction (RMSEP) equal to 1.3%. R2v and RMSEP for the white turmeric model were 0.95 and 3.0%, respectively. Our results indicate that the method developed in this study can be used to identify and quantify yellow turmeric powder adulteration. Full article
(This article belongs to the Special Issue Rapid Detection Methods for Food Fraud and Food Contaminants)
Show Figures

Figure 1

13 pages, 1198 KiB  
Article
Evaluation of the Anti-Trypanosomal Activity of Vietnamese Essential Oils, with Emphasis on Curcuma longa L. and Its Components
by Thanh Binh Le, Claire Beaufay, Duc Trong Nghiem, Tuan Anh Pham, Marie-Paule Mingeot-Leclercq and Joëlle Quetin-Leclercq
Molecules 2019, 24(6), 1158; https://doi.org/10.3390/molecules24061158 - 23 Mar 2019
Cited by 29 | Viewed by 5564
Abstract
Human African trypanosomiasis (HAT), known as sleeping sickness and caused by Trypanosoma brucei, is threatening low-income populations in sub-Saharan African countries with 61 million people at risk of infection. In order to discover new natural products against HAT, thirty-seven Vietnamese essential oils [...] Read more.
Human African trypanosomiasis (HAT), known as sleeping sickness and caused by Trypanosoma brucei, is threatening low-income populations in sub-Saharan African countries with 61 million people at risk of infection. In order to discover new natural products against HAT, thirty-seven Vietnamese essential oils (EOs) were screened for their activity in vitro on Trypanosoma brucei brucei (Tbb) and cytotoxicity on mammalian cells (WI38, J774). Based on the selectivity indices (SIs), the more active and selective EOs were analyzed by gas chromatography. The anti-trypanosomal activity and cytotoxicity of some major compounds (isolated or commercial) were also determined. Our results showed for the first time the selective anti-trypanosomal effect of four EOs, extracted from three Zingiberaceae species (Curcuma longa, Curcuma zedoaria, and Zingiber officinale) and one Lauraceae species (Litsea cubeba) with IC50 values of 3.17 ± 0.72, 2.51 ± 1.08, 3.10 ± 0.08, and 2.67 ± 1.12 nL/mL respectively and SI > 10. Identified compounds accounted for more than 85% for each of them. Among the five major components of Curcuma longa EO, curlone is the most promising anti-trypanosomal candidate with an IC50 of 1.38 ± 0.45 µg/mL and SIs of 31.7 and 18.2 compared to WI38 and J774 respectively. Full article
(This article belongs to the Special Issue Biological Activities of Essential Oils)
Show Figures

Figure 1

Back to TopTop