Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (319)

Search Parameters:
Keywords = Cu–Au deposits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 7932 KiB  
Article
Element Mobility in a Metasomatic System with IOCG Mineralization Metamorphosed at Granulite Facies: The Bondy Gneiss Complex, Grenville Province, Canada
by Olivier Blein and Louise Corriveau
Minerals 2025, 15(8), 803; https://doi.org/10.3390/min15080803 - 30 Jul 2025
Viewed by 155
Abstract
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the [...] Read more.
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the southwestern Grenville Province of Canada which consists of 1.39–1.35 Ga volcanic and plutonic rocks metamorphosed under granulite facies conditions at 1.19 Ga. Iron oxide–apatite and Cu-Ag-Au mineral occurrences occur among gneisses rich in biotite, cordierite, garnet, K-feldspar, orthopyroxene and/or sillimanite-rich gneisses, plagioclase-cordierite-orthopyroxene white gneisses, magnetite-garnet-rich gneisses, garnetites, hyperaluminous sillimanite-pyrite-quartz gneisses, phlogopite-sillimanite gneisses, and tourmalinites. Petrological and geochemical studies indicate that the precursors of these gneisses are altered volcanic and volcaniclastic rocks with attributes of pre-metamorphic Na, Ca-Fe, K-Fe, K, chloritic, argillic, phyllic, advanced argillic and skarn alteration. The nature of these hydrothermal rocks and the ore deposit model that best represents them are further investigated herein through lithogeochemistry. The lithofacies mineralized in Cu (±Au, Ag, Zn) are distinguished by the presence of garnet, magnetite and zircon, and exhibit pronounced enrichment in Fe, Mg, HREE and Zr relative to the least-altered rocks. In discrimination diagrams, the metamorphosed mineral system is demonstrated to exhibit the diagnostic attributes of, and is interpreted as, a metasomatic iron and alkali-calcic (MIAC) mineral system with iron oxide–apatite (IOA) and iron oxide copper–gold (IOCG) mineralization that evolves toward an epithermal cap. This contribution demonstrates that alteration facies diagnostic of MIAC systems and their IOCG and IOA mineralization remain diagnostic even after high-grade metamorphism. Exploration strategies can thus use the lithogeochemical footprint and the distribution and types of alteration facies observed as pathfinders for the facies-specific deposit types of MIAC systems. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

24 pages, 7393 KiB  
Article
Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet
by Shaoying Zhang, Wenyan He, Huaqing Wang and Yiwu Xiao
Minerals 2025, 15(8), 780; https://doi.org/10.3390/min15080780 - 25 Jul 2025
Viewed by 323
Abstract
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration [...] Read more.
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration overprinting and metal precipitation. The modeling results suggest that the ore-forming fluid related to potassic alteration was initially oxidized (ΔFMQ = +3.54~+3.26) with a near-neutral pH (pH = 5.0~7.0). Continued fluid–rock interactions, combined with the input of reduced groundwater, resulted in a decrease in both pH (4.8~6.1) and redox potential (ΔFMQ~+1), leading to the precipitation of propylitic alteration minerals and pyrrhotite. As temperature further decreased, fluids associated with phyllic alteration showed a slight increase in pH (5.8~6.0) and redox potential (ΔFMQ = +2). The intense superposition of propylitic and phyllic alteration on the potassic alteration zone is attributed to the rapid temperature decline in the magmatic–hydrothermal system, triggering fluid collapse and reflux. Mo, mainly transported as HMoO4 and MoO4−2, precipitated in the high-temperature range; Cu, carried primarily by CuCl complexes (CuCl4−3, CuCl2, CuCl), precipitated over intermediate to high temperatures; and Au, transported as Au-S complexes (Au(HS)2, AuHS), precipitated from intermediate to low temperatures. This study demonstrates that fluid–rock interactions alone can account for the observed sequence of alteration and mineralization in porphyry systems. Full article
Show Figures

Figure 1

23 pages, 12729 KiB  
Article
Genetic Mineralogical Characteristics of Pyrite and Quartz from the Qiubudong Silver Deposit, Central North China Craton: Implications for Ore Genesis and Exploration
by Wenyan Sun, Jianling Xue, Zhiqiang Tong, Xueyi Zhang, Jun Wang, Shengrong Li and Min Wang
Minerals 2025, 15(8), 769; https://doi.org/10.3390/min15080769 - 22 Jul 2025
Viewed by 273
Abstract
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and [...] Read more.
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and further exploration. Previous studies on this deposit have not addressed its genetic mineralogical characteristics. This study focuses on pyrite and quartz to investigate their typomorphic features, such as crystal morphology, trace element composition, thermoelectric properties, and luminescence characteristics, and their implications for ore-forming processes. Pyrite crystals are predominantly cubic in early stages, while pentagonal dodecahedral and cubic–dodecahedral combinations peak during the main mineralization stage. The pyrite is sulfur-deficient and iron-rich, enriched in Au, and relatively high in Ag, Cu, Pb, and Bi contents during the main ore-forming stage. Rare earth element (REE) concentrations are low, with weak LREE-HREE fractionation and a strong negative Eu anomaly. The thermoelectric coefficient of pyrite ranges from −328.9 to +335.6 μV/°C, with a mean of +197.63 μV/°C; P-type conduction dominates, with an occurrence rate of 58%–100% and an average of 88.78%. A weak–low temperature and a strong–high temperature peak characterize quartz thermoluminescence during the main mineralization stage. Fluid inclusions in quartz include liquid-rich, vapor-rich, and two-phase types, with salinities ranging from 10.11% to 12.62% NaCl equiv. (average 11.16%) and densities from 0.91 to 0.95 g/cm3 (average 0.90 g/cm3). The ore-forming fluids are interpreted as F-rich, low-salinity, low-density hydrothermal fluids of volcanic origin at medium–low temperatures. The abundance of pentagonal dodecahedral pyrite, low Co/Ni ratios, high Cu contents, and complex quartz thermoluminescence signatures are key mineralogical indicators for deep prospecting. Combined with thermoelectric data and morphological analysis, the depth interval around 800 m between drill holes ZK3204 and ZK3201 has high mineralization potential. This study fills a research gap on the genetic mineralogy of the Qiubudong deposit and provides a scientific basis for deep exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

32 pages, 32586 KiB  
Article
Magmatic Evolution at the Saindak Cu-Au Deposit: Implications for the Formation of Giant Porphyry Deposits
by Jun Hong, Yasir Shaheen Khalil, Asad Ali Narejo, Xiaoyong Yang, Tahseenullah Khan, Zhihua Wang, Huan Tang, Haidi Zhang, Bo Yang and Wenyuan Li
Minerals 2025, 15(8), 768; https://doi.org/10.3390/min15080768 - 22 Jul 2025
Viewed by 1259
Abstract
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these [...] Read more.
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these giant deposits remain poorly understood. Mafic microgranular enclaves (MMEs), mafic dikes, and multiple porphyries have been documented in the Saindak mining area. This work examines both the ore-rich and non-ore intrusions in the Saindak porphyry Cu-Au deposit, using methods like molybdenite Re-Os dating, U-Pb zircon ages, Hf isotopes, and bulk-rock geochemical data. Geochronological results indicate that ore-fertile and barren porphyries yield ages of 22.15 ± 0.22 Ma and 22.21 ± 0.33 Ma, respectively. Both MMEs and mafic dikes have zircons with nearly identical 206Pb/238U weighted mean ages (21.21 ± 0.18 Ma and 21.21 ± 0.16 Ma, respectively), corresponding to the age of the host rock. Geochemical and Sr–Nd–Hf isotopic evidence indicates that the Saindak adakites were generated by the subduction of the Arabian oceanic lithosphere under the Eurasian plate, rather than through continental collision. The adakites were mainly formed by the partial melting of a metasomatized mantle wedge, induced by fluids from the dehydrating subducting slab, with minor input from subducted sediments and later crust–mantle interactions during magma ascent. We conclude that shallow subduction of the Arabian plate during the Oligocene–Miocene may have increased the flow of subducted fluids into the sub-arc mantle source of the Chagai arc. This process may have facilitated the widespread deposition of porphyry copper and copper–gold mineralization in the region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

57 pages, 42873 KiB  
Article
The Mazenod–Sue–Dianne IOCG District of the Great Bear Magmatic Zone Northwest Territories, Canada
by A. Hamid Mumin and Mark Hamilton
Minerals 2025, 15(7), 726; https://doi.org/10.3390/min15070726 - 11 Jul 2025
Viewed by 192
Abstract
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, [...] Read more.
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, the relationships between geology, structure, alteration, and mineralization in this well exposed iron-oxide–copper–gold (IOCG) mineral system. Mazenod geology comprises rhyodacite to basaltic-andesite ignimbrite sheets with interlayered volcaniclastic sedimentary rocks dominated by fine-grained laminated tuff sequences. Much of the intermediate to mafic nature of volcanic rocks is masked by low-intensity but pervasive metasomatism. The region is affected by a series of coalescing magmatic–hydrothermal systems that host the Sue–Dianne magnetite–hematite IOCG deposit and several related showings including magnetite, skarn, and iron oxide apatite (IOA) styles of alteration ± mineralization. The mid to upper levels of these systems are exposed at surface, with underlying batholith, pluton and stocks exposed along the periphery, as well as locally within volcanic rocks associated with more intense alteration and mineralization. Widespread alteration includes potassic and sodic metasomatism, and silicification with structurally controlled giant quartz complexes. Localized tourmaline, skarn, magnetite–actinolite, and iron-oxide alteration occur within structural breccias, and where most intense formed the Sue–Dianne Cu-Ag-Au diatreme-like breccia deposit. Magmatism, volcanism, hydrothermal alteration, and mineralization formed during a negative tectonic inversion within the Wopmay Orogen. This generated a series of oblique offset rifted basins with continental style arc magmatism and extensional structures unique to GBMZ rifting. All significant hydrothermal centers in the Mazenod region occur along and at the intersections of crustal faults either unique to or put under tension during the GBMZ inversion. Full article
Show Figures

Figure 1

24 pages, 40890 KiB  
Article
Contrasts in Two-Stage Superimposed Magmatism of the Shizhuzi Magmatic Complex-Mo-Cu-Au System, Liaodong Peninsula, North China Craton
by Jinjian Wu, Jinzhong Yang, Jinhui Yang and Qingdong Zeng
Minerals 2025, 15(6), 631; https://doi.org/10.3390/min15060631 - 10 Jun 2025
Viewed by 415
Abstract
The North China Craton (NCC) experienced extensive destruction and modification of its subcontinental lithospheric mantle during the Mesozoic, a period marked by intensive tectonism, magmatism, and mineralization. Among the key manifestations of this event are the Shizhuzi magmatic complex (SMC) and related Mo-Cu-Au [...] Read more.
The North China Craton (NCC) experienced extensive destruction and modification of its subcontinental lithospheric mantle during the Mesozoic, a period marked by intensive tectonism, magmatism, and mineralization. Among the key manifestations of this event are the Shizhuzi magmatic complex (SMC) and related Mo-Cu-Au deposits in the Liaodong Peninsula. This study presents new zircon U-Pb ages and Hf isotope data, along with whole-rock major and trace element geochemical data. Meanwhile, by incorporating published datasets, the magmatism and mineralization of the SMC are discussed. Two-stage magmatic activity is identified in the SMC as follows: (1) Stage I (130–126 Ma) associated with mineralization, and (2) Stage II (121–117 Ma), both corresponding to the peak destruction of the NCC. The mineralized granitoids exhibit I-type affinities and formed in an extension setting. Quartz diorites within this suite were derived from the partial melting of an enriched mantle source, and the high-temperature thermal underplating associated with this process subsequently triggered partial melting of the basaltic lower crust, leading to the generation of granodiorites and monzonitic granites. These rocks experienced limited fractional crystallization (dominated by plagioclase + biotite) and are linked to Mo-Cu-Au mineralization. In contrast, the non-mineralized granitoids are high-K calc-alkaline, peraluminous A-type granites, which developed in an extremely extensional tectonic setting. They were derived from partial melting of ancient lower crust and display characteristics of highly fractionated granites, having undergone extensive crystallization differentiation involving plagioclase + K-feldspar during magmatic evolution. The mineralized and non-mineralized granitoids exhibit distinct differences in lithology, major/trace element characteristics, Hf isotopes, and degree of fractional crystallization. Our proposed two-stage magmatic model—coupled with a mineralization phase—provides significant insights into both magmatic processes and metallogenesis in the Liaodong Peninsula. It further offers key perspectives into the Early Cretaceous decratonization of the NCC in terms of its tectonic–magmatic–mineralization evolution. Full article
Show Figures

Figure 1

18 pages, 8700 KiB  
Article
The Application of Integrated Geochemical and Geophysical Exploration for Prospecting Potential Prediction of Copper and Gold Polymetallic Deposits in the Fudiyingzi–Bacheli Area, Heilongjiang Province
by Liang Chen, Huiyan Wang, Chengye Sun, Xiaopeng Chang and Weizhong Ding
Minerals 2025, 15(6), 597; https://doi.org/10.3390/min15060597 - 2 Jun 2025
Viewed by 486
Abstract
The Duobaoshan mineralization area in Heilongjiang Province is a key copper–molybdenum–gold polymetallic region in China. Its southeastern Fudiyingzi–Bacheli area, located at the intersection of the NW-trending copper and NE-trending gold belts, exhibits favorable mineralization conditions. Despite over 70 years of placer gold mining [...] Read more.
The Duobaoshan mineralization area in Heilongjiang Province is a key copper–molybdenum–gold polymetallic region in China. Its southeastern Fudiyingzi–Bacheli area, located at the intersection of the NW-trending copper and NE-trending gold belts, exhibits favorable mineralization conditions. Despite over 70 years of placer gold mining and the discovery of one small copper deposit and one gold deposit, the area remains underexplored with significant peripheral exploration potential. This study integrates 1:50,000 geological mapping, high-precision magnetic surveys, phase-induced polarization, and soil geochemistry through multi-source data fusion for comprehensive mineral prediction. Key steps include delineating Cu, Au, and Mo anomalies and analyzing their associations with Zn, Cd, Ag, As, etc.; inferring NE-, NW-, and near-EW-trending linear structures via magnetic boundary enhancement; dividing high/low resistivity zones and identifying nine significant and six weak phase anomalies using phase-induced polarization; establishing a mineralization model based on typical deposits; and delineating four priority exploration targets. These results provide a scientific basis for further exploration in shallow coverage areas. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

19 pages, 6091 KiB  
Article
Investigation of Gas Sensing Performance of CuO/Cu2O Thin Films as a Function of Au-NP Size for CO, CO2, and Hydrocarbons Mixtures
by Christian Maier, Larissa Egger, Anton Köck, Sören Becker, Jan Steffen Niehaus and Klaus Reichmann
Nanomaterials 2025, 15(10), 705; https://doi.org/10.3390/nano15100705 - 8 May 2025
Viewed by 583
Abstract
This study examines the impact of Au nanoparticles (Au-NPs) on the chemoresistive gas sensing properties as a function of particle size. The sensing material is composed of ultrathin CuO/Cu2O films, which are fabricated by either thermal deposition technology or spray pyrolysis. [...] Read more.
This study examines the impact of Au nanoparticles (Au-NPs) on the chemoresistive gas sensing properties as a function of particle size. The sensing material is composed of ultrathin CuO/Cu2O films, which are fabricated by either thermal deposition technology or spray pyrolysis. These are used on a silicon nitride (Si3N4) micro hotplate (µh) chip with Pt electrodes and heaters. The gas sensing material is then functionalised with Au-NP of varying sizes (12, 20, and 40 nm, checked by transmission electron microscopy) using drop coating technology. The finalised sensors are tested by measuring the electrical resistance against various target gases, including carbon monoxide (CO), carbon dioxide (CO2), and a mixture of hydrocarbons (HCMix), in order to evaluate any cross-sensitivity issues. While the sensor response is markedly contingent on the structural surface, our findings indicate that the dimensions of the Au-NPs exert a discernible influence on the sensor’s behaviour in response to varying target gases. The 50 nm thermally evaporated CuO/Cu2O layers exhibited the highest sensor response of 78% against 2000 ppm CO2. In order to gain further insight into the surface of the sensors, a scanning electron microscope (SEM) was employed, and to gain information about the composition, Raman spectroscopy was also utilised. Full article
(This article belongs to the Special Issue Nanostructured Materials in Gas Sensing Applications)
Show Figures

Graphical abstract

29 pages, 5916 KiB  
Article
Metal Fingerprints of Eocene Rhyolite Magmas Coincident with Carlin-Type Gold Deposition in Nevada USA
by Celestine N. Mercer, Hannah R. Babel, Cameron M. Mercer and Albert H. Hofstra
Minerals 2025, 15(5), 479; https://doi.org/10.3390/min15050479 - 4 May 2025
Viewed by 577
Abstract
Eocene magmatic systems contemporaneous with world-class Carlin-type Au deposits in Nevada (USA) have been proposed by some researchers as a key ingredient for Au mineralization, though evidence conclusively demonstrating their genetic relationship remains tenuous. This study provides the first direct evidence of the [...] Read more.
Eocene magmatic systems contemporaneous with world-class Carlin-type Au deposits in Nevada (USA) have been proposed by some researchers as a key ingredient for Au mineralization, though evidence conclusively demonstrating their genetic relationship remains tenuous. This study provides the first direct evidence of the pre-eruptive metal budget of volatile- and metal-charged silicic magmas coincident in time (~41 to 34 Ma) and space (within 5 km) with Carlin-type Au deposits. We characterize the pre-eruptive metal fingerprints of these diverse magmatic systems to assess their potential as sources of metals for Carlin-type Au mineralization. Metal abundances from quartz-hosted melt inclusions (Au, Te, Ag, Sb, Tl, Mo, W, Sn, As, Pb, Co, Cu, Ni, and Zn) characterized in situ by SHRIMP-RG and LA-ICP-MS represent our best (and only) estimates for the pre-eruptive metal budget in these systems. Median metal concentrations are generally within one order of magnitude of average upper crust and average continental rhyolite values. But there are two notable exceptions, with median Au contents extending >1 order of magnitude higher than average upper crust and median Cu contents ranging >1 order of magnitude lower than upper crust. Despite this, melts contain lower Au/Cu (<0.1), Au/Ag (<5), and Au/Tl (<0.3) than most ore-grade Carlin-type rock samples and quartz-hosted fluid inclusions, regardless of their age and timing relative to nearby Carlin-type Au mineralization. The metal fingerprints of these magmatic systems, defined both by traditional and multivariate compositional data analysis techniques, are distinct from one another. Yet none are particularly specialized, e.g., high Au/Cu, in terms of being ideal ingredients as postulated by magmatic models for Carlin-type Au mineralization. Magmatic Au contents do not appear to be correlated with rhyolite “flavors” in the way that Cu, Sn, and Nb contents are. Fluid/melt partitioning modeling and magma volume estimates support the idea that a diverse array of non-specialized silicic magmas could feasibly contribute some or potentially all of the Au, Ag, and Cu in Carlin-type systems. The compositional diversity among contemporaneous magmatic systems could possibly contribute to some of the diversity observed across Carlin-type Au districts in Nevada. Full article
Show Figures

Graphical abstract

20 pages, 8368 KiB  
Article
Highly Sensitive Surface Acoustic Wave Sensors for Ammonia Gas Detection at Room Temperature Using Gold Nanoparticles–Cuprous Oxide/Reduced Graphene Oxide/Polypyrrole Hybrid Nanocomposite Film
by Chung-Long Pan, Tien-Tsan Hung, Chi-Yen Shen, Pin-Hong Chen and Chi-Ming Tai
Polymers 2025, 17(8), 1024; https://doi.org/10.3390/polym17081024 - 10 Apr 2025
Viewed by 626
Abstract
Gold nanoparticles–cuprous oxide/reduced graphene oxide/polypyrrole (AuNPs-Cu2O/rGO/PPy) hybrid nanocomposites were synthesized for surface acoustic wave (SAW) sensors, achieving high sensitivity (2 Hz/ppb), selectivity, and fast response (~2 min) at room temperature. The films, deposited via spin-coating, were characterized by SEM, EDS, and [...] Read more.
Gold nanoparticles–cuprous oxide/reduced graphene oxide/polypyrrole (AuNPs-Cu2O/rGO/PPy) hybrid nanocomposites were synthesized for surface acoustic wave (SAW) sensors, achieving high sensitivity (2 Hz/ppb), selectivity, and fast response (~2 min) at room temperature. The films, deposited via spin-coating, were characterized by SEM, EDS, and XRD, revealing a rough, wrinkled morphology beneficial for gas adsorption. The sensor showed significant frequency shifts to NH3, enhanced by AuNPs, Cu2O, rGO, and PPy. It had a 6.4-fold stronger response to NH3 compared to CO2, H2, and CO, confirming excellent selectivity. The linear detection range was 12–1000 ppb, with a limit of detection (LOD) of 8 ppb. Humidity affected performance, causing negative frequency shifts, and sensitivity declined after 30 days due to resistivity changes. Despite this, the sensor demonstrated excellent NH3 selectivity and stability across multiple cycles. In simulated breath tests, it distinguished between healthy and patient-like samples, highlighting its potential as a reliable, non-invasive diagnostic tool. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

48 pages, 12213 KiB  
Review
Metasomatic Mineral Systems with IOA, IOCG, and Affiliated Critical and Precious Metal Deposits: A Review from a Field Geology Perspective
by Louise Corriveau and Jean-François Montreuil
Minerals 2025, 15(4), 365; https://doi.org/10.3390/min15040365 - 31 Mar 2025
Cited by 2 | Viewed by 1450
Abstract
Worldwide, a growing list of critical (Bi, Co, Cu, F, Fe, Mo, Ni, P, PGE, REE, W, U, and Zn) and precious metal (Ag and Au) resources have been identified in mineral systems forming Fe-oxide-copper-gold (IOCG) deposits; Fe-oxide-apatite (IOA); Fe-sulfide Cu-Au (ISCG); and [...] Read more.
Worldwide, a growing list of critical (Bi, Co, Cu, F, Fe, Mo, Ni, P, PGE, REE, W, U, and Zn) and precious metal (Ag and Au) resources have been identified in mineral systems forming Fe-oxide-copper-gold (IOCG) deposits; Fe-oxide-apatite (IOA); Fe-sulfide Cu-Au (ISCG); and affiliated W skarn; Fe-rich Au-Co-Bi or Ni; albitite-hosted U or Au ± Co; and five-element (Ag, As, Co, Ni, and U) vein deposits. This paper frames the genesis of this metallogenic diversity by defining the Metasomatic Iron and Alkali-Calcic (MIAC) mineral system and classifying its spectrum of Fe-rich-to-Fe-poor and alkali-calcic deposits. The metasomatic footprint of MIAC systems consists of six main alteration facies, each recording a distinct stage of mineralization as systems have evolved. The fluid flow pathways and the thermal and chemical gradients inferred from the space–time distribution of the alteration facies within a system are best explained by the ascent and lateral propagation of a voluminous hypersaline fluid plume. The primary fluid plume evolves, chemically and physically, as metasomatism progresses and through periodic ingresses of secondary fluids into the plume. Exploration strategies can take advantage of the predictability and the expanded range of exploration targets that the MIAC system framework offers, the building blocks of which are the alteration facies as mappable prospectivity criteria for the facies-specific critical and precious metal deposits the systems generate. Global case studies demonstrate that these criteria are applicable to MIAC systems worldwide. Full article
Show Figures

Figure 1

31 pages, 42821 KiB  
Article
Compositional Evolution of Fahlores in the Zijinshan Porphyry–Epithermal Cu-Au-Mo-Ag Ore Field, China, and Implications for Prospecting
by Hua Long, Wenyuan Liu, Jingwen Chen, Jianhuan Qiu, Jieyi Li, Hui Chen and Xiaodan Lai
Minerals 2025, 15(4), 362; https://doi.org/10.3390/min15040362 - 31 Mar 2025
Viewed by 454
Abstract
There are a large number of fahlores recognized in the Zijinshan ore field, including tetrahedrite, tennantite, Zn-rich tetrahedrite, goldfieldite, Bi-rich tetrahedrite, etc. The changes in their mineral composition have significance for the evolution of the ore-forming environment. This article presents a detailed study [...] Read more.
There are a large number of fahlores recognized in the Zijinshan ore field, including tetrahedrite, tennantite, Zn-rich tetrahedrite, goldfieldite, Bi-rich tetrahedrite, etc. The changes in their mineral composition have significance for the evolution of the ore-forming environment. This article presents a detailed study of the fahlores using electron probe analysis. The results indicate that in the Zijinshan Au-Cu deposit, fahlores are Te-rich in shallow zones and Zn-rich in deep zones. The Zijinshan Xi’nan deposit is generally Zn-rich, with a Bi-rich in middle levels. The Longjiangting deposit is Sb- and Zn-rich in shallow zones and As- and Bi-rich in deep zones, whereas the Yueyang deposit is Sb- and Zn-rich in shallow zones and Bi-rich in deep zones. The fahlores in the Zijinshan ore field often show zoning in backscattered images due to As and Sb variations. From the porphyry to high-sulfidation stages, fahlores evolve from Fe-rich to Zn-, Bi-, and Sb-rich, and finally to Te-rich. From the porphyry to low-sulfidation stages, fahlores transition from Bi-rich to Zn-rich and eventually to Ag-rich compositions. The discovered mineral assemblages of the fahlores are of great significance for understanding the framework of complex porphyry shallow hydrothermal environments and prospecting for underlying porphyry ore bodies in the Zijinshan ore field. Full article
Show Figures

Figure 1

16 pages, 4260 KiB  
Article
The Spatial Distribution of Trace Elements and Rare-Earth Elements in the Stream Sediments Around the Ikuno Mine Area in Hyogo Prefecture, Southwest Japan
by Ainun Mardiyah, Muhammad Rio Syahputra, Qiang Tang, Satoki Okabyashi and Motohiro Tsuboi
Sustainability 2025, 17(6), 2777; https://doi.org/10.3390/su17062777 - 20 Mar 2025
Viewed by 386
Abstract
In the present study, major oxide, trace, and rare-earth element (REE) contents in the stream sediments of the Ikuno and surrounding areas of the central part of Hyogo Prefecture in the Kinki district in southwestern Japan were analyzed. Several abandoned mines that contain [...] Read more.
In the present study, major oxide, trace, and rare-earth element (REE) contents in the stream sediments of the Ikuno and surrounding areas of the central part of Hyogo Prefecture in the Kinki district in southwestern Japan were analyzed. Several abandoned mines that contain Au, Ag, Cu, Pb, Zn, Fe, W, and As exist in these areas, including the Ikuno and Akenobe mines, which are famous historical mines. A total of 156 stream sediments over approximately 1300 km2 in these areas were analyzed using X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS). The spatial distribution patterns of elemental concentrations in the stream sediments in the Ikuno area were determined by three primary factors: the surface geology, the localized deposition of ore minerals, and the influence of the sedimentation of heavy minerals in the basin on local distribution. The mean value of the spatial distributions of the ore deposits was greater than the median, primarily due to the presence of concentrated regions near the mining sites. A Kolmogorov–Smirnov test indicated abnormal distribution patterns of Pb, Zn, Cu, Cr, and Ni due to the presence of exceptionally high concentrations of these elements at the mine sites. The stream sediments showed higher levels of light REEs, mainly La, Ce, and Nd, in comparison with the heavy REEs. This pattern, deviating from the global abundance, suggests the dominating influence of mining sites on local REE distributions. These findings are essential for assessing the environmental impacts of historical mining and developing strategies for responsible resource management in the region. By understanding the geochemical signatures of mining-affected areas, these data could contribute to future environmental monitoring and mitigation efforts, enhancing our understanding of environmental sustainability and responsible resource utilization. Full article
Show Figures

Figure 1

21 pages, 8306 KiB  
Article
Magmatic–Hydrothermal Processes of the Pulang Giant Porphyry Cu (–Mo–Au) Deposit, Western Yunnan: A Perspective from Different Generations of Titanite
by Mengmeng Li, Xue Gao, Guohui Gu and Sheng Guan
Minerals 2025, 15(3), 263; https://doi.org/10.3390/min15030263 - 3 Mar 2025
Viewed by 772
Abstract
The Yidun island arc was formed in response to the Late Triassic westward subduction of the Ganzi–Litang oceanic plate, a branch of the Paleo-Tethys Ocean. The Zhongdian arc, located in the south of the Yidun island arc, has relatively large number of porphyry [...] Read more.
The Yidun island arc was formed in response to the Late Triassic westward subduction of the Ganzi–Litang oceanic plate, a branch of the Paleo-Tethys Ocean. The Zhongdian arc, located in the south of the Yidun island arc, has relatively large number of porphyry (skarn) type Cu–Mo ± Au polymetallic deposits, the largest of which is the Pulang Cu (–Mo–Au) deposit with proven Cu reserves of 5.11 Mt, Au reserves of 113 t, and 0.17 Mt of molybdenum. However, the relationship between mineralization and the potassic alteration zone, phyllic zone, and propylitic zone of the Pulang porphyry deposit is still controversial and needs further study. Titanite (CaTiSiO5) is a common accessory mineral in acidic, intermediate, and alkaline igneous rocks. It is widely developed in various types of metamorphic rocks, hydrothermally altered rocks, and a few sedimentary rocks. It is a dominant Mo-bearing phase in igneous rocks and contains abundant rare earth elements and high-field-strength elements. As an effective geochronometer, thermobarometer, oxybarometer, and metallogenic potential indicator mineral, titanite is ideal to reveal the magmatic–hydrothermal evolution and the mechanism of metal enrichment and precipitation. In this paper, major and trace element contents of the titanite grains from different alteration zones were obtained using electron probe microanalysis (EPMA) and laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to define the changes in physicochemical conditions and the behavior of these elements during the process of hydrothermal alteration at Pulang. Titanite in the potassic alteration zone is usually shaped like an envelope. It occurs discretely or is enclosed by feldspar, with lower contents of CaO, Al, Sr, Zr and Hf; a low Nb/Ta ratio; high ∑REE + Y, U, Th, Ta, Nb, and Ga content; and high FeO/Al2O3 and LREE/HREE ratios. This is consistent with the characteristics of magmatic titanite from fresh quartz monzonite porphyry in Pulang and other porphyry Cu deposits. Titanite in the potassium silicate alteration zone has more negative Eu anomaly and a higher U content and Th/U ratio, indicating that the oxygen fugacity decreased during the transformation to phyllic alteration and propylitic alteration in Pulang. High oxygen fugacity is favorable for the enrichment of copper, gold, and other metallogenic elements. Therefore, the enrichment of copper is more closely related to the potassium silicate alteration. The molybdenum content of titanite in the potassium silicate alteration zone is 102–104 times that of the phyllic alteration zone and propylitic alteration zone, while the copper content is indistinctive, indicating that molybdenum was dissolved into the fluid or deposited in the form of sulfide before the medium- to low-temperature hydrothermal alteration, which may lead to the further separation and deposition of copper and molybdenum. Full article
Show Figures

Figure 1

51 pages, 28157 KiB  
Article
Alteration Lithogeochemistry of an Archean Porphyry-Type Au(-Cu) Setting: The World-Class Côté Gold Deposit, Canada
by Laura R. Katz, Daniel J. Kontak and Benoit Dubé
Minerals 2025, 15(3), 256; https://doi.org/10.3390/min15030256 - 28 Feb 2025
Viewed by 1027
Abstract
Characterizing alteration and its geochemical signature provides critical information relevant to ore-deposit genesis and its related footprint; for porphyry-type deposits, zoned potassic-phyllic-propylitic alteration and metal enrichment are critical features. Here we integrate earlier lithological and mineralogical studies of the (10+ Moz Au) Archean [...] Read more.
Characterizing alteration and its geochemical signature provides critical information relevant to ore-deposit genesis and its related footprint; for porphyry-type deposits, zoned potassic-phyllic-propylitic alteration and metal enrichment are critical features. Here we integrate earlier lithological and mineralogical studies of the (10+ Moz Au) Archean Côté Gold porphyry-type Au(-Cu) deposit (Ontario, Canada) with identified alteration types to provide exploration vectors. The ca. 2740 tonalite-quartz diorite-diorite intrusive complex and co-temporal Au(-Cu) mineralization as disseminations, breccias and veins are co-spatial with ore-related alteration types (amphibole, biotite, muscovite). An early, locally developed amphibole event coring the deposit is followed by emplacement of a Au(-Cu) mineralized biotite-rich magmatic-hydrothermal breccia body and broad halo of disseminated biotite and quartz veining. These rocks record gains via mass balance calculations of K, Fe, Mg, LILE, and LREE with Au, Cu, Mo, Ag, Se and Bi. Later muscovite alteration is enriched in K, Rb, Cs, Ba, CO2, and LOI with varied Au, Cu, Mo, Te, As, and Bi values. A strong albite overprint records extreme Na gains with the loss of most other elements, including ore metals (i.e., Au, Cu). Together these data define an Au-Cu-Mo-Ag-Te-Bi-Se core co-spatial with biotite breccia versus a peripheral stockwork and sheeted vein zone with a Te-Se-Zn-Pb-As association. These features further support the posited porphyry-type model for the Côté Gold Au(-Cu) deposit. Full article
Show Figures

Figure 1

Back to TopTop