Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Cs0.5H0.5PW12O40

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 10433 KiB  
Article
Mesoporous Ce-Ti Catalysts Modified by Phosphotungstic Acid and Chitosan for the Synergistic Catalysis of CVOCs and NOx
by Mingyang Ma, Ruhan Zhang, Yanan Shen, Xin Zhou, Yumeng Zhai, Yumeng Han, Dan Wang, Longjin Zhang, Xinru Song, De Fang and Pijun Gong
Catalysts 2025, 15(2), 119; https://doi.org/10.3390/catal15020119 - 26 Jan 2025
Cited by 3 | Viewed by 892 | Correction
Abstract
Nitrogen oxides (NOx) and chlorinated volatile organic compounds (CVOCs) are major environmental pollutants, posing severe risks to human health and ecosystems. Traditional single-component catalysts often fail to remove both pollutants efficiently, making synergistic catalytic technologies a critical research focus. In this study, a [...] Read more.
Nitrogen oxides (NOx) and chlorinated volatile organic compounds (CVOCs) are major environmental pollutants, posing severe risks to human health and ecosystems. Traditional single-component catalysts often fail to remove both pollutants efficiently, making synergistic catalytic technologies a critical research focus. In this study, a mesoporous HPW-CS-Ce-Ti oxide catalyst, modified with H3PW12O40 (HPW) and chitosan (CS), was synthesized via self-assembly. The optimized 10HPW-CS-Ce0.3-Ti catalyst achieved nearly 100% NO conversion at 167–288 °C and a T90 of 291 °C for CVOC conversion, demonstrating superior dual-pollutant removal. HPW and chitosan facilitated mesoporous structure formation, enhancing mass transfer and active site availability. HPW doping also modulated the Ce4+/Ce3+ ratio, boosting redox capacity and surface-active oxygen species, while increasing acidity to promote NH3 and CVOC adsorption. This study presents a novel catalyst and synthesis method with significant potential for environmental protection and human health. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Figure 1

7 pages, 980 KiB  
Communication
Biodiesel Production from Edible Oil Using Heteropoly Acid Catalysts at Room Temperature
by Noah L. Fioravante, Guoqiang Cao and Nan Yi
Reactions 2024, 5(3), 587-593; https://doi.org/10.3390/reactions5030028 - 1 Sep 2024
Viewed by 1336
Abstract
Edible oils are one of the renewable sources that enable the possibility of producing biodiesel sustainably. The transesterification of canola oil with methanol using cesium-modified phosphotungstic acid (Cs2.5H0.5PW12O40) as a heterogeneous catalyst was studied. Reaction [...] Read more.
Edible oils are one of the renewable sources that enable the possibility of producing biodiesel sustainably. The transesterification of canola oil with methanol using cesium-modified phosphotungstic acid (Cs2.5H0.5PW12O40) as a heterogeneous catalyst was studied. Reaction conditions, specifically reaction time, catalyst loading, and the ratio of methanol to canola oil, were systematically explored. The canola oil conversion reached 55% at room temperature after 24 h. The reusability tests showed that the conversion of canola oil to biodiesel was maintained. Full article
Show Figures

Graphical abstract

18 pages, 2579 KiB  
Article
Liquid-Phase Dehydration of Glycerol to Acrolein with ZSM-5-Based Catalysts in the Presence of a Dispersing Agent
by Lin Huang, Bo Wang, Licheng Liu and Armando Borgna
Molecules 2023, 28(8), 3316; https://doi.org/10.3390/molecules28083316 - 8 Apr 2023
Cited by 6 | Viewed by 2386
Abstract
Liquid-phase dehydration of glycerol to acrolein was investigated with solid acid catalysts, including H-ZSM-5, H3PO4-modified H-ZSM-5, H3PW12O40·14H2O and Cs2.5H0.5PW12O40, in the presence of [...] Read more.
Liquid-phase dehydration of glycerol to acrolein was investigated with solid acid catalysts, including H-ZSM-5, H3PO4-modified H-ZSM-5, H3PW12O40·14H2O and Cs2.5H0.5PW12O40, in the presence of sulfolane ((CH2)4SO2) as a dispersing agent under atmospheric pressure N2 in a batch reactor. High weak-acidity H-ZSM-5, high temperatures and high-boiling-point sulfolane improved the activity and selectivity for the production of acrolein through suppressing the formation of polymers and coke and promoting the diffusion of glycerol and products. Brønsted acid sites were soundly demonstrated to be responsible for dehydration of glycerol to acrolein by infrared spectroscopy of pyridine adsorption. Brønsted weak acid sites favored the selectivity to acrolein. Combined catalytic and temperature-programmed desorption of ammonia studies revealed that the selectivity to acrolein increased as the weak-acidity increased over the ZSM-5-based catalysts. The ZSM-5-based catalysts produced a higher selectivity to acrolein, while the heteropolyacids resulted in a higher selectivity to polymers and coke. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis)
Show Figures

Figure 1

17 pages, 15578 KiB  
Article
Heterogenization of Heteropolyacid with Metal-Based Alumina Supports for the Guaiacol Gas-Phase Hydrodeoxygenation
by Rita F. Nunes, Daniel Costa, Ana M. Ferraria, Ana M. Botelho do Rego, Filipa Ribeiro, Ângela Martins and Auguste Fernandes
Molecules 2023, 28(5), 2245; https://doi.org/10.3390/molecules28052245 - 28 Feb 2023
Cited by 9 | Viewed by 2420
Abstract
Because of the global necessity to decrease CO2 emissions, biomass-based fuels have become an interesting option to explore; although, bio-oils need to be upgraded, for example, by catalytic hydrodeoxygenation (HDO), to reduce oxygen content. This reaction generally requires bifunctional catalysts with both [...] Read more.
Because of the global necessity to decrease CO2 emissions, biomass-based fuels have become an interesting option to explore; although, bio-oils need to be upgraded, for example, by catalytic hydrodeoxygenation (HDO), to reduce oxygen content. This reaction generally requires bifunctional catalysts with both metal and acid sites. For that purpose, Pt-Al2O3 and Ni-Al2O3 catalysts containing heteropolyacids (HPA) were prepared. HPAs were added by two different methods: the impregnation of a H3PW12O40 solution onto the support and a physical mixture of the support with Cs2.5H0.5PW12O40. The catalysts were characterized by powder X-ray diffraction, Infrared, UV-Vis, Raman, X-ray photoelectron spectroscopy and NH3-TPD experiments. The presence of H3PW12O40 was confirmed by Raman, UV-Vis and X-ray photoelectron spectroscopy, while the presence of Cs2.5H0.5PW12O40 was confirmed by all of the techniques. However, HPW was shown to strongly interact with the supports, especially in the case of Pt-Al2O3. These catalysts were tested in the HDO of guaiacol, at 300 °C, under H2 and at atmospheric pressure. Ni-based catalysts led to higher conversion and selectivity to deoxygenated compound values, such as benzene. This is attributed to both a higher metal and acidic contents of these catalysts. Among all tested catalysts, HPW/Ni-Al2O3 was shown to be the most promising, although it suffered a more severe deactivation with time-on-stream. Full article
Show Figures

Graphical abstract

9 pages, 2536 KiB  
Article
A {Co9}-Added Polyoxometalate for Efficient Visible-Light-Driven Hydrogen Evolution
by Zhen-Wen Wang and Guo-Yu Yang
Molecules 2023, 28(2), 664; https://doi.org/10.3390/molecules28020664 - 9 Jan 2023
Cited by 9 | Viewed by 2278
Abstract
A polyanion cluster H6Na8Cs3[Co93-OH)3(H2O)6(HPO4)2(B-α-PW9O34)3]Cl·40H2O (1) was made with the guidance of the lacunary [...] Read more.
A polyanion cluster H6Na8Cs3[Co93-OH)3(H2O)6(HPO4)2(B-α-PW9O34)3]Cl·40H2O (1) was made with the guidance of the lacunary directing strategy under hydrothermal conditions. Compound 1 was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and thermogravimetric analysis, respectively. Single-crystal X-ray diffraction analyses showed that 1 consists of three anions [B-α-PW9O34]9− and a cyclic cationic [Co93-OH)3(H2O)6]15+ and two anions HPO42−. Variable-magnetic properties indicate antiferromagnetic interactions in 1. Visible-light-driven hydrogen evolution tests demonstrated that 1 was an efficient water reduction catalyst with an H2 evolution rate of 1217.6 μmol h−1 g−1. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

15 pages, 4381 KiB  
Article
Thermogravimetry Applied for Investigation of Coke Formation in Ethanol Conversion over Heteropoly Tungstate Catalysts
by Orsina Verdeş, Alexandru Popa, Silvana Borcănescu, Mariana Suba and Viorel Sasca
Catalysts 2022, 12(9), 1059; https://doi.org/10.3390/catal12091059 - 16 Sep 2022
Cited by 7 | Viewed by 3355
Abstract
Thermogravimetric analysis (TGA) was used to evaluate the thermal stability and the amount of coke deposition resulting from the deactivation of catalysts during ethanol dehydration reaction in a fixed bed continuous flow reactor. In this study, a series of catalysts containing 30% of [...] Read more.
Thermogravimetric analysis (TGA) was used to evaluate the thermal stability and the amount of coke deposition resulting from the deactivation of catalysts during ethanol dehydration reaction in a fixed bed continuous flow reactor. In this study, a series of catalysts containing 30% of Pd doped and pure 12-tungstophosphoric acid and its insoluble Cs2.5H0.5PW12O40 salt supported on SBA-15 were prepared. The catalytic efficiency of ethanol dehydration reaction was also evaluated. Two types of coke are identified from the TPO (Temperature programmed oxidation) profiles and assigned to the coke precursor and hard coke, respectively. The results indicate that cesium salts reduced the formation of hard coke. The amount of total coke formed was significantly reduced by supporting the catalysts on mesoporous SBA-15 molecular sieves. Full article
Show Figures

Graphical abstract

16 pages, 8452 KiB  
Article
Solvent-Free Benzylation of Glycerol by Benzyl Alcohol Using Heteropoly Acid Impregnated on K-10 Clay as Catalyst
by Devendra P. Tekale, Ganapati D. Yadav and Ajay K. Dalai
Catalysts 2021, 11(1), 34; https://doi.org/10.3390/catal11010034 - 30 Dec 2020
Cited by 9 | Viewed by 5046
Abstract
Value addition to glycerol, the sole co-product in biodiesel production, will lead to reform of the overall biodiesel economy. Different valuable chemicals can be produced from glycerol using heterogeneous catalysis and these valuable chemicals are useful in industries such as cosmetics, pharmaceuticals, fuels, [...] Read more.
Value addition to glycerol, the sole co-product in biodiesel production, will lead to reform of the overall biodiesel economy. Different valuable chemicals can be produced from glycerol using heterogeneous catalysis and these valuable chemicals are useful in industries such as cosmetics, pharmaceuticals, fuels, soap, paints, and fine chemicals. Therefore, the conversion of glycerol to valuable chemicals using heterogeneous catalysis is a noteworthy area of research. Etherification of glycerol with alkenes or alcohols is an important reaction in converting glycerol to various value-added chemicals. This article describes reaction of glycerol with benzyl alcohol in solvent-free medium by using a clay supported modified heteropolyacid (HPA), Cs2.5H0.5PW12O40/K-10 (Cs-DTP/K-10) as solid catalyst and its comparison with other catalysts in a batch reactor. Mono-Benzyl glycerol ether (MBGE) was the major product formed in the reaction along with formation of di-benzyl glycerol ether (DBGE). The effects of different parameters were studied to optimize the reaction parameters. This work provides an insight into characterization of Cs2.5H0.5PW12O40/K-10 catalyst by advanced techniques such as surface area measurement, X-ray analysis, ICP-MS, FT-IR, and SEM. Reaction products were characterized and confirmed by using the GCMS method. The kinetic model was developed from an insight into the reaction mechanism. The apparent energy of activation was found to be 18.84 kcal/mol. Full article
Show Figures

Graphical abstract

10 pages, 2787 KiB  
Article
Liquid Phase Hydrogenation of MIBK over M/CsPW (M = Ag, Ru, Pt, and Pd)
by Abdullah M. Alhanash, Amal A. Atran, Murad Eissa, Mhamed Benaissa and Mohamed S. Hamdy
Catalysts 2019, 9(1), 47; https://doi.org/10.3390/catal9010047 - 6 Jan 2019
Cited by 5 | Viewed by 3927
Abstract
Four different metal nanoparticles (metal = Ag, Ru, Pt, or Rh) were impregnated on the acidic cesium salt of tungstophosphoric acid Cs2.5H0.5PW12O40 (CsPW) with a loading amount of 2 wt%. The prepared catalysts were characterized by [...] Read more.
Four different metal nanoparticles (metal = Ag, Ru, Pt, or Rh) were impregnated on the acidic cesium salt of tungstophosphoric acid Cs2.5H0.5PW12O40 (CsPW) with a loading amount of 2 wt%. The prepared catalysts were characterized by using X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), N2 sorption measurements, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Results confirmed the formation of highly distributed metallic nanoparticle centres over the acidic CsPW. The catalytic activity of the prepared catalysts were evaluated in the liquid phase hydrogenation of methyl isobutyl ketone (MIBK) to 2-methylpentane (2-MP) at 453 K. Pd-CsPW showed the highest activity compared to other catalysts, where 10% conversion was obtained with 91% selectivity after 4 h’s reaction time. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

13 pages, 710 KiB  
Article
Enhancement of Oxygen Reduction and Mitigation of Ionomer Dry-Out Using Insoluble Heteropoly Acids in Intermediate Temperature Polymer-Electrolyte Membrane Fuel Cells
by Alessandro Stassi, Irene Gatto, Ada Saccà, Vincenzo Baglio and Antonino S. Aricò
Energies 2015, 8(8), 7805-7817; https://doi.org/10.3390/en8087805 - 30 Jul 2015
Cited by 4 | Viewed by 5068
Abstract
The use of Cs0.5H0.5PW12O40 insoluble salt as a superacid promoter in the catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC) has been investigated. An increase of performance has been recorded at intermediate temperatures (110–130 [...] Read more.
The use of Cs0.5H0.5PW12O40 insoluble salt as a superacid promoter in the catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC) has been investigated. An increase of performance has been recorded at intermediate temperatures (110–130 °C) and under low relative humidity (R.H.). The promoter appears to mitigate the ionomer dry-out effects in the catalytic layer and produces an increase of the extent of the catalyst-electrolyte interface as demonstrated by cyclic voltammetry analysis. These effects are also corroborated by a significant decrease of polarization resistance at intermediate temperatures. Such characteristics have been demonstrated for a conventional membrane-electrode assembly based on a Pt-Co alloy and a Nafion 115 membrane. Full article
(This article belongs to the Special Issue Polymer Electrolyte Membrane Fuel Cells 2015)
Show Figures

Figure 1

22 pages, 338 KiB  
Article
Catalytic Upgrading of Bio-Oil by Reacting with Olefins and Alcohols over Solid Acids: Reaction Paths via Model Compound Studies
by Zhijun Zhang, Charles U. Pittman, Shujuan Sui, Jianping Sun and Qingwen Wang
Energies 2013, 6(3), 1568-1589; https://doi.org/10.3390/en6031568 - 11 Mar 2013
Cited by 18 | Viewed by 8243
Abstract
Catalytic refining of bio-oil by reacting with olefin/alcohol over solid acids can convert bio-oil to oxygen-containing fuels. Reactivities of groups of compounds typically present in bio-oil with 1-octene (or 1-butanol) were studied at 120 °C/3 h over Dowex50WX2, Amberlyst15, Amberlyst36, silica sulfuric acid [...] Read more.
Catalytic refining of bio-oil by reacting with olefin/alcohol over solid acids can convert bio-oil to oxygen-containing fuels. Reactivities of groups of compounds typically present in bio-oil with 1-octene (or 1-butanol) were studied at 120 °C/3 h over Dowex50WX2, Amberlyst15, Amberlyst36, silica sulfuric acid (SSA) and Cs2.5H0.5PW12O40 supported on K10 clay (Cs2.5/K10, 30 wt. %). These compounds include phenol, water, acetic acid, acetaldehyde, hydroxyacetone, d-glucose and 2-hydroxymethylfuran. Mechanisms for the overall conversions were proposed. Other olefins (1,7-octadiene, cyclohexene, and 2,4,4-trimethylpentene) and alcohols (iso-butanol) with different activities were also investigated. All the olefins and alcohols used were effective but produced varying product selectivities. A complex model bio-oil, synthesized by mixing all the above-stated model compounds, was refined under similar conditions to test the catalyst’s activity. SSA shows the highest hydrothermal stability. Cs2.5/K10 lost most of its activity. A global reaction pathway is outlined. Simultaneous and competing esterification, etherfication, acetal formation, hydration, isomerization and other equilibria were involved. Synergistic interactions among reactants and products were determined. Acid-catalyzed olefin hydration removed water and drove the esterification and acetal formation equilibria toward ester and acetal products. Full article
Show Figures

Figure 1

18 pages, 466 KiB  
Article
Hydroisomerization of n-Butane over Platinum-Promoted Cesium Hydrogen Salt of 12-Tungstophosphoric Acid
by Yanyong Liu and Makoto Misono
Materials 2009, 2(4), 2319-2336; https://doi.org/10.3390/ma2042319 - 14 Dec 2009
Cited by 22 | Viewed by 14734
Abstract
The hydroisomerization of n-butane was carried out in a fixed-bed gas-flow reactor over Pt-promoted Cs2.5H0.5PW12O40 (denoted as Cs2.5). Two kinds of catalysts, a direct impregnation of Pt on Cs2.5 (denoted as Pt/Cs2.5), as well as a [...] Read more.
The hydroisomerization of n-butane was carried out in a fixed-bed gas-flow reactor over Pt-promoted Cs2.5H0.5PW12O40 (denoted as Cs2.5). Two kinds of catalysts, a direct impregnation of Pt on Cs2.5 (denoted as Pt/Cs2.5), as well as a mechanical mixture of Pt/Al2O3 and Cs2.5 (denoted as Pt/Al2O3+Cs2.5), were used for the hydroisomerization. Pt/Al2O3+Cs2.5 showed a higher stationary activity than Pt/Cs2.5 because the Pt particles supported on Al2O3 were much smaller than those supported on Cs2.5. The initial activity decreased with increasing H2 pressure over Pt/Al2O3+Cs2.5. This indicates that the hydroisomerization of n-butane over Pt/Al2O3+Cs2.5 proceeded through a bifunctional mechanism, in which n-butane was hydrogenated/dehydrogenated on Pt sites and was isomerized on acid sites of Cs2.5. For the hydroisomerization of n-butane over Pt/Al2O3+Cs2.5 the hydrogenation/dehydrogenation on Pt sites is a limiting step at a low Pt loading and the isomerization on solid acid sites is a limiting step at a high Pt loading. During the reaction, hydrogen molecules were dissociated to active hydrogen atoms on Pt sites, and then the formed active hydrogen atoms moved to the solid acid sites of Cs2.5 (spillover effect) to eliminate the carbonaceous deposits and suppress the catalyst deactivation. Because Cs2.5 has suitably strong and uniformly-distributed solid acid sites, Pt/Al2O3+Cs2.5 showed a higher stationary activity than Pt/Al2O3+H-ZSM-5 and Pt/Al2O3+SO4/ZrO2 for the hydroisomerization of n-butane at a low H2 pressure. Full article
(This article belongs to the Special Issue Polyoxometalate Compounds)
Show Figures

Figure 1

Back to TopTop