Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (653)

Search Parameters:
Keywords = Coulomb efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7307 KB  
Article
Conic Programming Approach to Limit Analysis of Plane Rigid-Plastic Problems
by Artur Zbiciak, Adam Kasprzak and Kazimierz Józefiak
Appl. Sci. 2025, 15(19), 10729; https://doi.org/10.3390/app151910729 (registering DOI) - 5 Oct 2025
Abstract
This paper presents the application of conic programming methods to the limit analysis of plane rigid-plastic problems in structural and geotechnical engineering. The approach is based on the formulation of yield criteria as second-order cone constraints and on the dual optimization problem, which [...] Read more.
This paper presents the application of conic programming methods to the limit analysis of plane rigid-plastic problems in structural and geotechnical engineering. The approach is based on the formulation of yield criteria as second-order cone constraints and on the dual optimization problem, which directly provides collapse mechanisms and limit loads. Two benchmark examples are investigated. The first concerns a deep beam under uniform top pressure, analyzed with linear and quadratic finite elements. The results confirm the ability of the method to reproduce realistic collapse mechanisms and demonstrate the effect of mesh refinement and element type on convergence. The second example addresses the ultimate bearing capacity of a strip footing on cohesive-frictional soil. The numerical implementation was carried out in MATLAB using CVX with MOSEK as the solver, which ensures practical applicability and efficient computations. Different soil models are considered, including Mohr–Coulomb and two Drucker–Prager variants, and the results are compared with the classical Terzaghi solution. Additional elastoplastic FEM simulations carried out in a commercial program are also presented. The comparison highlights the differences between rigid-plastic optimization and incremental elastoplastic analyses, showing that both conservative and liberal estimates of bearing capacity can be obtained. The study shows that conic programming is an efficient and flexible framework for limit analysis of plane rigid-plastic problems, providing engineers with complementary tools for assessing ultimate loads, while also ensuring good computational efficiency. Full article
Show Figures

Figure 1

19 pages, 2759 KB  
Article
Lanthanum-Doped Co3O4 Nanocubes Synthesized via Hydrothermal Method for High-Performance Supercapacitors
by Boddu Haritha, Mudda Deepak, Merum Dhananjaya, Obili M. Hussain and Christian M. Julien
Nanomaterials 2025, 15(19), 1515; https://doi.org/10.3390/nano15191515 - 3 Oct 2025
Abstract
The development of high-performance supercapacitor electrodes is crucial to meet the increasing demand for efficient and sustainable energy storage systems. Cobalt oxide (Co3O4), with its high theoretical capacitance, is a promising electrode material, but its practical application is hindered [...] Read more.
The development of high-performance supercapacitor electrodes is crucial to meet the increasing demand for efficient and sustainable energy storage systems. Cobalt oxide (Co3O4), with its high theoretical capacitance, is a promising electrode material, but its practical application is hindered by poor conductivity limitations and structural instability during cycling. In this work, lanthanum La3+-doped Co3O4 nanocubes were synthesized via a hydrothermal approach to tailor their structural and electrochemical properties. Different doping concentrations (1, 3, and 5%) were introduced to investigate their influence systematically. X-ray diffraction confirmed the retention of the spinel phase with clear evidence of La3+ incorporation into the Co3O4 lattice. Also, Raman spectroscopy validated the structural integrity through characteristic Co-O vibrational modes. Scanning electron microscopy analysis revealed uniform cubic morphologies across all samples. The formation of the cubic spinel structure of 1% La3+-doped Co3O4 are confirmed from XPS and TEM studies. Electrochemical evaluation in a 3 M KOH electrolyte demonstrated that 1% La3+-doped Co3O4 nanocubes delivered the highest performance, achieving a specific capacitance of 1312 F g−1 at 1 A g−1 and maintaining a 79.8% capacitance retention and a 97.12% Coulombic efficiency over 10,000 cycles at 5 Ag−1. It can be demonstrated that La3+ doping is an effective strategy to enhance the charge storage capability and cycling stability of Co3O4, offering valuable insights for the rational design of next-generation supercapacitor electrodes. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

13 pages, 1846 KB  
Article
Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries
by Seonhui Choi, Inchan Yang, Byeongheon Lee, Tae Hun Kim, Sei-Min Park and Jung-Chul An
Batteries 2025, 11(10), 365; https://doi.org/10.3390/batteries11100365 - 2 Oct 2025
Abstract
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular [...] Read more.
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular particle morphology, which limits its direct application in batteries. We employed a multi-step, additive-free refinement process—including jet milling, spheroidization, and high-temperature graphitization—to enhance carbon purity and structural properties. The processed Pit-derived graphite showed a much-improved particle size distribution (D50 reduced from 25.3 μm to 14.8 μm & Span reduced from 1.72 to 1.23), increased tap density (from 0.54 to 0.80 g/cm3), and reduced BET surface area, making it suitable for high-performance lithium-ion batteries anodes. Structural characterization by XRD and TEM confirmed dramatically enhanced crystallinity after graphitization (graphitization degree increasing from ~13 for raw Pit to 95.7% for graphitized Pit at 3000 °C). The fully processed graphite (denoted S_Pit3000) delivered a reversible discharge capacity of 346.7 mAh/g with an initial Coulombic efficiency of 93.5% in half-cell tests—comparable to commercial artificial graphite. Furthermore, when composited with silicon oxide to form a hybrid anode, the material achieved an even higher capacity of 418.0 mAh/g under high mass loading conditions. These results highlight the feasibility of transforming industrial coke waste into value-added electrode materials through environmentally friendly physical processes. The upcycled graphite anode meets industrial performance standards, demonstrating a promising route toward circular economy solutions in both the steel and battery industries. Full article
Show Figures

Figure 1

46 pages, 1449 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
28 pages, 27078 KB  
Article
Effect of Friction Model Type on Tool Wear Prediction in Machining
by Michael Storchak, Oleksandr Melnyk, Yaroslav Stepchyn, Oksana Shyshkova, Andrii Golubovskyi and Oleksandr Vozniy
Machines 2025, 13(10), 904; https://doi.org/10.3390/machines13100904 - 2 Oct 2025
Abstract
One of the key measures of cutting tool efficiency in machining processes is tool wear. In recent decades, numerical modeling of this phenomenon—primarily through finite element cutting models—has gained increasing importance. A crucial requirement for the reliable application of such models is the [...] Read more.
One of the key measures of cutting tool efficiency in machining processes is tool wear. In recent decades, numerical modeling of this phenomenon—primarily through finite element cutting models—has gained increasing importance. A crucial requirement for the reliable application of such models is the selection of an appropriate friction model, which strongly affects the accuracy of wear predictions. However, choosing the friction model type and its parameters remains a nontrivial challenge. This paper examines the effect of different friction model types and their parameters on the Archard and Usui wear model indicators, as well as on the main cutting process characteristics: cutting force components, temperature in the primary cutting zone, contact length between the tool rake face and the chip, shear angle, and chip compression ratio. To evaluate their impact on predicted tool wear—expressed qualitatively through the wear indicators of the aforementioned models—several widely used friction models implemented in commercial FEM software were applied: the shear friction model, Coulomb friction model, hybrid friction model, and constant tau model. The simulated values of these cutting process characteristics were then compared with experimental results. Full article
(This article belongs to the Special Issue Tool Wear in Machining, 2nd Edition)
Show Figures

Figure 1

13 pages, 3844 KB  
Article
Atypical Analysis of a Graphite-Based Anode Prepared Using Aqueous Processes
by Kuan-Yi Liao, Chia-Chin Chang, Yuh-Lang Lee and Ten-Chin Wen
Molecules 2025, 30(19), 3947; https://doi.org/10.3390/molecules30193947 - 1 Oct 2025
Abstract
In order to form a solid electrolyte interphase (SEI) layer using aqueous processes, a graphite anode called MG-AQP was designed by wrapping and crosslinking graphite particles with aqueous composites (AQCs), which contained zwitterionic polymer, zwitterion molecules, and lithium salts. First, MG-AQP was used [...] Read more.
In order to form a solid electrolyte interphase (SEI) layer using aqueous processes, a graphite anode called MG-AQP was designed by wrapping and crosslinking graphite particles with aqueous composites (AQCs), which contained zwitterionic polymer, zwitterion molecules, and lithium salts. First, MG-AQP was used to fabricate a full lithium-ion battery (LIB) cell with Li[Ni0.8Mn0.1Co0.1]O2 (NMC811) as the cathode, denoted as LIB-MG-AQP//NMC811, to demonstrate its performance via a 0.5 C-rate break-in and 1 C-rate cycling. Accordingly, this showed that LIB-MG-AQP exhibits outstanding cyclic stability. To evaluate its electrochemical performance, MG-AQP and lithium metal were used to fabricate a half cell named LIBs-MG-AQP. According to the initial cyclic voltammetry curve, almost no surface reaction for forming an SEI layer exists in LIBs-MG-AQP, illustrating its high initial coulombic efficiency of 92% at a 0.5 C-rate break-in. These outstanding results are due to the fact that the AQC has fewer cracks, thus blocking solvent molecules from passing from the electrolyte into the graphite anode. This study provides new insights to optimize graphite anodes via 0.5 C-rate break-in rather than conventional SEI formation to save time and energy. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Figure 1

19 pages, 6040 KB  
Article
Impact of Ion Crossover on Mass Transfer Polarization Regulation in High-Power Vanadium Flow Batteries
by Jianbin Li, Zhengxiang Song and Zihan Li
Energies 2025, 18(19), 5192; https://doi.org/10.3390/en18195192 - 30 Sep 2025
Abstract
In order to solve the problems of mass transfer polarization spatiotemporal distribution variations, uncontrollable regulation error, and accelerated capacity decay caused by ion crossover in high-power vanadium liquid flow batteries (VFBs), a three-dimensional battery model with a flow-type flow field based on the [...] Read more.
In order to solve the problems of mass transfer polarization spatiotemporal distribution variations, uncontrollable regulation error, and accelerated capacity decay caused by ion crossover in high-power vanadium liquid flow batteries (VFBs), a three-dimensional battery model with a flow-type flow field based on the three-dimensional transient COMSOL Multiphysics® 6.1 numerical modeling method was developed in this study. The model combines the ion transmembrane migration equation with the mass transfer polarization theory, constructs an objective function to quantify the regulation error, and is validated by multifluid-field structural simulations. The results indicate the following: (1) Ion crossover induces a 3–5% electrolyte concentration deviation and a current density distribution bias reaching 11%; (2) The intensity of mass transfer polarization exhibits a linear increase with the flow rate difference between the positive and negative electrodes; (3) Ion crossover significantly degrades system performance, causing Coulombic efficiency (CE) and Energy efficiency (EE) to decrease by 1.1% and 1.5%, respectively. This research demonstrates that unlike conventional flow field optimization, our strategy quantifies the regulation error by directly compensating for the ΔQ caused by ion crossing, and further regulation minimizes the effect, providing a theoretical basis for mass transfer intensification and capacity recovery in flow batteries. Full article
Show Figures

Figure 1

15 pages, 1772 KB  
Article
Towards a Porous Zinc Anode Design for Enhanced Durability in Alkaline Zinc–Air Batteries
by Sarmila Dutta, Yasin Emre Durmus, Eunmi Im, Hans Kungl, Hermann Tempel and Rüdiger-A. Eichel
Batteries 2025, 11(10), 359; https://doi.org/10.3390/batteries11100359 - 29 Sep 2025
Abstract
The commercialization of rechargeable alkaline zinc–air batteries has been constrained by critical challenges associated with the zinc electrode, including passivation, dendrite growth, and hydrogen evolution reaction. These issues severely limit the cycle life and pose a major barrier to large-scale industrial deployment. Integration [...] Read more.
The commercialization of rechargeable alkaline zinc–air batteries has been constrained by critical challenges associated with the zinc electrode, including passivation, dendrite growth, and hydrogen evolution reaction. These issues severely limit the cycle life and pose a major barrier to large-scale industrial deployment. Integration of porous anode structures and electrode additives—two widely investigated approaches for mitigating challenges related to zinc anode—shows significant promise. However, effectively combining these approaches remains challenging. This study introduces a method for fabricating zinc anodes that can combine the benefits of a porous structure and electrode additive. The polytetrafluoroethylene (PTFE) polymer binder used in fabricating the anode material resulted in a stable scaffold, providing the desired anode porosity of approximately 60% and effectively anchoring ZnO nanoparticles. The zinc anodes prepared using a nickel mesh current collector without any electrode additives demonstrated stable cycling performance, sustaining 350 cycles at a current density of 60 mA gZn−1 with a coulombic efficiency of approximately 95%. Incorporating 2 wt.% Bi2O3 as an electrode additive further enhanced the cycling performance, achieving 200 stable cycles with 100% coulombic efficiency under an increased current density of 120 mA gZn−1, signifying the effectiveness of the proposed fabrication strategy. Full article
Show Figures

Figure 1

16 pages, 2916 KB  
Article
Synergistic Regulation of Solvation Shell and Anode Interface by Bifunctional Additives for Stable Aqueous Zinc-Ion Batteries
by Luo Zhang, Die Chen, Chenxia Zhao, Haibo Tian, Gaoda Li, Xiaohong He, Gengpei Xia, Yafan Luo and Dingyu Yang
Nanomaterials 2025, 15(19), 1482; https://doi.org/10.3390/nano15191482 - 28 Sep 2025
Abstract
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention for large-scale energy storage owing to their high safety, low cost, and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution, and corrosion at the zinc anode severely limit their cycling stability. In this [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention for large-scale energy storage owing to their high safety, low cost, and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution, and corrosion at the zinc anode severely limit their cycling stability. In this study, a “synergistic solvation shell–interfacial adsorption regulation” strategy is proposed, employing potassium gluconate (KG) and dimethyl sulfoxide (DMSO) as composite additives to achieve highly reversible zinc anodes. DMSO integrates into the Zn2+ solvation shell, weakening Zn2+-H2O interactions and suppressing the activity of free water, while gluconate anions preferentially adsorb onto the zinc anode surface, inducing the formation of a robust solid electrolyte interphase (SEI) enriched in Zn(OH)2 and ZnCO3. Nuclear magnetic resonance(NMR), Raman, and Fourier transform infrared spectroscopy(FTIR) analyses confirm the reconstruction of the solvation structure and reduction in water activity, and X-ray photoelectron spectroscopy(XPS) verifies the formation of the SEI layer. Benefiting from this strategy, Zn||Zn symmetric cells exhibit stable cycling for over 1800 h at 1 mA cm−2 and 1 mAh cm−2, and Zn||Cu cells achieve an average coulombic efficiency of 96.39%, along with pronounced suppression of the hydrogen evolution reaction. This work provides a new paradigm for the design of low-cost and high-performance electrolyte additives. Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Figure 1

20 pages, 9180 KB  
Article
Theaflavins as Electrolyte Additives for Inhibiting Zinc Dendrites and Hydrogen Evolution in Aqueous Zinc-Ion Batteries
by Xiao Zhang, Ting Cheng, Chen Chen, Fuqiang Liu, Fei Wu, Li Song, Baoxuan Hou, Yuan Tian, Xin Zhao, Safi Ullah and Rui Li
Int. J. Mol. Sci. 2025, 26(19), 9399; https://doi.org/10.3390/ijms26199399 - 26 Sep 2025
Abstract
The cycling stability and widespread practical implementation of aqueous zinc ion batteries (AZIBs) are impeded by dendrite growth and the hydrogen evolution reaction (HER). Herein, theaflavins, a low-cost organic bio-compounds and a major component of tea, were innovatively introduced as an electrolyte additive [...] Read more.
The cycling stability and widespread practical implementation of aqueous zinc ion batteries (AZIBs) are impeded by dendrite growth and the hydrogen evolution reaction (HER). Herein, theaflavins, a low-cost organic bio-compounds and a major component of tea, were innovatively introduced as an electrolyte additive for AZIBs to address these challenges. When added into the electrolyte, theaflavins, with their strong de-solvation capability, facilitated the more uniform and stable diffusion of zinc ions, effectively suppressing dendrite formation and HER. This, in turn, significantly enhanced the coulombic efficiency (>95% in Zn/Cu system) and the stability of the zinc deposition/stripping process in Zn/Zn system. The Zn/Zn symmetric battery system stably cycled for approximately 3000 h at current densities of 1 mA/cm2. Compared with H2O molecules, theaflavins exhibited a narrower LUMO and HOMO gap and higher adsorption energy on zinc surfaces. These properties enabled theaflavins to be preferentially adsorbed onto zinc anode surfaces, forming a protective layer that minimized direct contact between water molecules and the zinc surface. This layer also promoted the electron transfer associated with zinc ions, thereby greatly enhancing interfacial stability and significantly mitigating HER. When 10 mmol/L of theaflavins was present in the electrolyte, the system exhibited lower impedance activation energy, a smoother zinc ion deposition process, reduced corrosion current, and higher HER overpotential. Furthermore, incorporating theaflavins into the electrolyte enhanced the vanadium redox reaction and accelerated zinc ion diffusion, thereby significantly improving battery performance. This work explores the design of a cost-effective electrolyte additive, providing essential insights for the progress of practical AZIBs. Full article
Show Figures

Graphical abstract

15 pages, 2425 KB  
Article
Promising Pre-Lithiation Agent Li2C2O4@KB for High-Performance NCM622 Cell
by Boqun Xia, Guangwan Zhang, Feng Tao and Meng Huang
Materials 2025, 18(19), 4467; https://doi.org/10.3390/ma18194467 - 25 Sep 2025
Abstract
In conventional lithium-ion batteries (LIBs), active lithium loss during solid electrolyte interphase (SEI) formation reduces coulombic efficiency and energy density. Cathode pre-lithiation can effectively compensate for this irreversible lithium consumption. To address limitations of conventional pre-lithiation agents—such as complex synthesis and air instability—a [...] Read more.
In conventional lithium-ion batteries (LIBs), active lithium loss during solid electrolyte interphase (SEI) formation reduces coulombic efficiency and energy density. Cathode pre-lithiation can effectively compensate for this irreversible lithium consumption. To address limitations of conventional pre-lithiation agents—such as complex synthesis and air instability—a Ketjen black-coated lithium oxalate nanocomposite (Li2C2O4@KB) using high-energy ball milling and spray drying was developed. This composite leverages the advantages of Li2C2O4, including a mild decomposition potential (4.26 V vs. Li+/Li), high theoretical lithium compensation capacity (525 mAh·g−1), and environmentally benign decomposition products, and significantly improves electronic conductivity and reduces particle size. When incorporated in NCM622 full cells, the initial capacity is increased by 18.21 mAh·g−1 at 0.3 C, with a 29.22% enhancement in capacity retention after 50 cycles at 0.3 C. At 1 C, the initial capacity is higher by 15.79 mAh·g−1, accompanied with a 7.72% improvement in retention after 100 cycles. The Li2C2O4@KB composite exhibits great promise as a practical and efficient cathode pre-lithiation additive for next-generation high-energy-density LIBs. Full article
Show Figures

Figure 1

21 pages, 4000 KB  
Review
Beyond Theoretical Limits: Extra Capacity in Conversion Reaction of Transition Metal Oxide Anodes for Lithium-Ion Batteries
by Mohammad Behzadnia, Rania Ramadan, Xuefeng Jiao, Ahmed M. Hashem and Likun Zhu
Crystals 2025, 15(10), 832; https://doi.org/10.3390/cryst15100832 - 24 Sep 2025
Viewed by 67
Abstract
Conversion-type transition metal oxides (TMOs) have emerged as promising anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacities and low cost. Intriguingly, many TMOs exhibit extra capacity that surpasses the limits predicted by conversion reaction mechanisms, challenging traditional electrochemical models [...] Read more.
Conversion-type transition metal oxides (TMOs) have emerged as promising anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacities and low cost. Intriguingly, many TMOs exhibit extra capacity that surpasses the limits predicted by conversion reaction mechanisms, challenging traditional electrochemical models and offering opportunities for next-generation high-energy storage. This review highlights the phenomenon of extra capacity in TMO anodes, emphasizing its mechanistic origins and practical implications. While these materials face well-known challenges such as low initial coulombic efficiency, solid electrolyte interphase (SEI) instability, and severe structural degradation due to large volume changes, they offer promising opportunities for achieving high energy density. Special emphasis is placed on understanding the underlying mechanisms that contribute to this anomalous capacity, including the role of reversible SEI formation, lithium-rich phases, reversible formation of LiOH, and interfacial storage phenomena. By clarifying these mechanisms and performance-enhancement approaches, this paper aims to guide future research toward the practical application of high-capacity conversion-type TMO anodes in next-generation LIBs. Full article
(This article belongs to the Special Issue Advances in Materials for Energy Conversion and Storage)
Show Figures

Figure 1

18 pages, 3433 KB  
Article
Mathematical Modelling of Electrode Geometries in Electrostatic Fog Harvesters
by Egils Ginters and Patriks Voldemars Ginters
Symmetry 2025, 17(9), 1578; https://doi.org/10.3390/sym17091578 - 21 Sep 2025
Viewed by 246
Abstract
This paper presents a comparative mathematical analysis of electrode configurations used in active fog water harvesting systems based on electrostatic ionization. The study begins with a brief overview of fog formation and typology. It also addresses the global relevance of fog as a [...] Read more.
This paper presents a comparative mathematical analysis of electrode configurations used in active fog water harvesting systems based on electrostatic ionization. The study begins with a brief overview of fog formation and typology. It also addresses the global relevance of fog as a decentralized water resource. It also outlines the main methods and collector designs currently employed for fog water capture, both passive and active. The core of the work involves solving the Laplace equation for various electrode geometries to compute electrostatic field distributions and analyze field line density patterns as a proxy for potential water collection efficiency. The evaluated configurations include centered rod–cylinder, symmetric parallel multi-rod, and asymmetric wire–plate layouts, with emphasis on identifying spatial regions of high field line convergence. These regions are interpreted as likely trajectories of charged droplets under Coulombic force influence. The modeling approach enables preliminary assessment of design efficiency without relying on time-consuming droplet-level simulations. The results serve as a theoretical foundation prior to the construction of electrode layouts in the portable HygroCatch experimental harvester and provide insight into how field structure correlates with fog water harvesting performance. Full article
(This article belongs to the Special Issue Mathematics: Feature Papers 2025)
Show Figures

Figure 1

25 pages, 4535 KB  
Article
Numerical Simulation of an Icebreaker Ramming the Ice Ridge
by Wenbo Dong, Jiaming Chen, Yufei Zhang, Shisong Wei, Guangwei He and Fang Li
J. Mar. Sci. Eng. 2025, 13(9), 1815; https://doi.org/10.3390/jmse13091815 - 19 Sep 2025
Viewed by 199
Abstract
During polar navigation, icebreakers frequently encounter ice ridges, which can significantly reduce navigation efficiency and even pose threats to structural safety. Therefore, studying the ramming of ice ridges by the icebreaker is of great importance. In this study, the ice ridge is decoupled [...] Read more.
During polar navigation, icebreakers frequently encounter ice ridges, which can significantly reduce navigation efficiency and even pose threats to structural safety. Therefore, studying the ramming of ice ridges by the icebreaker is of great importance. In this study, the ice ridge is decoupled into the consolidated layer and the keel for modeling. The consolidated layer is simplified as layered ice, and an innovative hybrid empirical–numerical method is used to determine the icebreaking loads. For the keel, a failure model is developed using the Mohr–Coulomb criterion in combination with the effective stress principle, accounting for shear failure in porous media and incorporating both cohesion and internal friction angle. The ship is restricted to surge motion only. A comparative analysis with the model test results was conducted to assess the accuracy of the method, with the predicted ice resistance showing deviation of 9.85% in the consolidated ice area and 10.48% in the keel area. Ablation studies were conducted to investigate the effects of different ice ridge shapes, varying retreat distances, and different ship drafts on the performance of ramming the ice ridge. The proposed method can quickly and accurately calculate ice ridge loads and predict their motion responses, providing a suitable tool for on-site rapid navigability assessment and for the design of icebreakers. Full article
Show Figures

Figure 1

15 pages, 3746 KB  
Article
Enhanced Electrochemical Performance of Carbon-Coated Nano-ZnO as an Anode Material for High-Rate Ni-Zn Batteries
by Wei Cao, Chenhan Xiong, Yanqiu Yu, Xiang Ji, Hao Xu, Ziwei Chen, Jun Chen and Rui Wang
Batteries 2025, 11(9), 342; https://doi.org/10.3390/batteries11090342 - 17 Sep 2025
Viewed by 319
Abstract
Nickel–zinc batteries are promising candidates for safe, cost-effective, and high-power energy storage. However, the poor cycling stability of zinc anodes, mainly caused by dendrite growth and dissolution, remains a major challenge for their practical application. Herein, carbon-coated nano-ZnO (ZnO@C) composites were synthesized via [...] Read more.
Nickel–zinc batteries are promising candidates for safe, cost-effective, and high-power energy storage. However, the poor cycling stability of zinc anodes, mainly caused by dendrite growth and dissolution, remains a major challenge for their practical application. Herein, carbon-coated nano-ZnO (ZnO@C) composites were synthesized via a sol–gel method using polyvinyl alcohol (PVA) and zinc acetate as precursors. By systematically tuning the carbon content, the ZnO@C-6 sample with a carbon-to-ZnO mass ratio of 1:6 exhibited the best structural and electrochemical performance. Characterization confirmed a uniform amorphous carbon layer that enhanced conductivity and inhibited ZnO dissolution. Electrochemical tests demonstrated that ZnO@C-6 exhibited high reversible capacity (500 mAh g−1 at 12 C after 1000 cycles), coulombic efficiency (>80%), and superior rate capability up to 30 C. Post-cycling SEM confirmed that the carbon coating effectively inhibits dendrite formation and preserves electrode morphology. These findings highlight the critical role of carbon coatings in stabilizing ZnO-based anodes and offer a viable pathway toward high-performance Ni-Zn batteries. Full article
Show Figures

Figure 1

Back to TopTop