Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Cot DNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1590 KiB  
Article
Dietary Supplementation of Novel Aflatoxin Oxidase CotA Alleviates Aflatoxin B1-Induced Oxidative Stress, Lipid Metabolism Disorder, and Apoptosis in the Liver of Japanese Quails
by Hao Lv, Zhiyong Rao, Yuting Li, Wei Zhang, Lihong Zhao, Zhixiang Wang and Yongpeng Guo
Animals 2025, 15(11), 1555; https://doi.org/10.3390/ani15111555 - 26 May 2025
Viewed by 416
Abstract
This research explored the role of aflatoxin oxidase CotA in mitigating aflatoxin B1 (AFB1)-induced hepatotoxicity in Japanese quails. A total of 225 female Japanese quails, aged two weeks, were randomly assigned to three dietary groups: a control diet, an AFB [...] Read more.
This research explored the role of aflatoxin oxidase CotA in mitigating aflatoxin B1 (AFB1)-induced hepatotoxicity in Japanese quails. A total of 225 female Japanese quails, aged two weeks, were randomly assigned to three dietary groups: a control diet, an AFB1-contaminated diet, and an AFB1-contaminated diet supplemented with aflatoxin oxidase CotA for three weeks. The results indicate that quails receiving the AFB1-contaminated diet exhibited reduced body weight gain, pronounced vacuolar degeneration within hepatocytes, and inflammatory cell infiltration. Additionally, the AFB1 group demonstrated an increased liver index and elevated serum liver enzyme activities (ALT, AST, and ALP). Supplementation with CotA improved body weight gain and conferred protection against AFB1-induced liver injury. Furthermore, the addition of CotA significantly enhanced liver antioxidant enzyme activities (T-AOC, GST, GSH-Px, POD, and CAT), reduced hepatic H2O2 and MDA levels, and upregulated the mRNA expression levels of genes in the Nrf2 pathway in quails exposed to AFB1. AFB1 exposure led to lipid droplet accumulation in liver tissues and elevated serum TG and LDL-C levels. However, the introduction of CotA mitigated AFB1-induced alterations in lipid metabolism. Furthermore, dietary supplementation with CotA inhibited AFB1-induced hepatocyte apoptosis and decreased the mRNA expression of apoptosis-related genes, including Bax, caspase-9, and caspase-3. Notably, the AFB1+CotA group exhibited a significant reduction in AFB1 residues and AFB1-DNA adducts in quail liver tissues compared to the AFB1 group. These findings indicate that aflatoxin oxidase CotA holds promise as a feed additive to alleviate AFB1-induced hepatotoxicity. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

22 pages, 2852 KiB  
Article
Modification of Cotton with Chitosan: Deposition of Copper(II) Sulfate by Complexation Copper Ions
by Małgorzata Świerczyńska, Zdzisława Mrozińska, Michał Juszczak, Katarzyna Woźniak and Marcin H. Kudzin
Processes 2024, 12(12), 2772; https://doi.org/10.3390/pr12122772 - 5 Dec 2024
Viewed by 1443
Abstract
This study introduces a novel approach for enhancing the functional properties of cotton fibers through complexation of copper sulfate, and subsequent combination with chitosan (COT-CuSO4-CTS). Our preliminary investigations focused on the development composites as candidate materials for functional coatings with antimicrobial [...] Read more.
This study introduces a novel approach for enhancing the functional properties of cotton fibers through complexation of copper sulfate, and subsequent combination with chitosan (COT-CuSO4-CTS). Our preliminary investigations focused on the development composites as candidate materials for functional coatings with antimicrobial properties. The materials were thoroughly characterized via scanning electron microscopy (SEM) and optical microscopy, providing insights into their structural features and composition. The findings show that the modified cotton materials exhibit potent antimicrobial activity. Specifically, the COT-CuSO4 and COT-CuSO4-CTS samples demonstrated zones of inhibition against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, confirming their ability to reduce microbial growth significantly. The incorporation of a chitosan layer significantly enhanced the Ultraviolet Protection Factor (UPF) of the cotton fabric from 3.37 to over 50, indicating exceptional UV shielding capabilities, while copper(II) oxide treatment provided a moderate UPF value of 14.56. Blood compatibility studies further revealed that COT-CuSO4 and COT-CuSO4-CTS fabrics influence coagulation parameters, with a marked prolongation in activated partial thromboplastin time (aPTT) and prothrombin time (PT) compared to untreated cotton. This anticoagulant effect is primarily linked to the presence of copper, although the addition of chitosan modulates this response, slightly reducing clotting times compared to COT-CuSO4 alone. Cytotoxicity and genotoxicity assessments using Peripheral Blood Mononuclear (PBM) cells indicated that untreated cotton was non-toxic and non-genotoxic. However, COT-CuSO4 and COT-CuSO4-CTS fabrics displayed a reduction in cell viability and induced DNA damage, highlighting their potential cytotoxic and genotoxic effects. Notably, COT-CuSO4-CTS showed lower cytotoxicity and genotoxicity than COT-CuSO4-CTS, suggesting that chitosan reduces the overall cytotoxic and genotoxic potential of the composite. Furthermore, plasmid DNA relaxation assays indicated that COT-CuSO4 and COT-CuSO4-CTS interact with DNA, with COT-CuSO4 exhibiting a stronger interaction than COT-CuSO4-CTS, consistent with the findings on PBM cells. Full article
(This article belongs to the Special Issue Biomaterial Applications in Polymer Processing and Drug Design)
Show Figures

Figure 1

13 pages, 2639 KiB  
Article
An Optimized Active Sampling Procedure for Aerobiological DNA Studies
by Jyothi Basapathi Raghavendra, Thasshwin Mathanlal, Maria-Paz Zorzano and Javier Martin-Torres
Sensors 2023, 23(5), 2836; https://doi.org/10.3390/s23052836 - 5 Mar 2023
Cited by 4 | Viewed by 3834
Abstract
The Earth’s atmosphere plays a critical role in transporting and dispersing biological aerosols. Nevertheless, the amount of microbial biomass in suspension in the air is so low that it is extremely difficult to monitor the changes over time in these communities. Real-time genomic [...] Read more.
The Earth’s atmosphere plays a critical role in transporting and dispersing biological aerosols. Nevertheless, the amount of microbial biomass in suspension in the air is so low that it is extremely difficult to monitor the changes over time in these communities. Real-time genomic studies can provide a sensitive and rapid method for monitoring changes in the composition of bioaerosols. However, the low abundance of deoxyribose nucleic acid (DNA) and proteins in the atmosphere, which is of the order of the contamination produced by operators and instruments, poses a challenge for the sampling process and the analyte extraction. In this study, we designed an optimized, portable, closed bioaerosol sampler based on membrane filters using commercial off-the-shelf components, demonstrating its end-to-end operation. This sampler can operate autonomously outdoors for a prolonged time, capturing ambient bioaerosols and avoiding user contamination. We first performed a comparative analysis in a controlled environment to select the optimal active membrane filter based on its ability to capture and extract DNA. We have designed a bioaerosol chamber for this purpose and tested three commercial DNA extraction kits. The bioaerosol sampler was tested outdoors in a representative environment and run for 24 h at 150 L/min. Our methodology suggests that a 0.22-µm polyether sulfone (PES) membrane filter can recover up to 4 ng of DNA in this period, sufficient for genomic applications. This system, along with the robust extraction protocol, can be automated for continuous environmental monitoring to gain insights into the time evolution of microbial communities within the air. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

15 pages, 4373 KiB  
Article
Molecular and Functional Characterization of a Novel Kunitz-Type Toxin-like Peptide in the Giant Triton Snail Charonia tritonis
by Gege Zhang, Huixia Jia, Lei Luo, Yang Zhang, Xitong Cen, Gaoyou Yao, Hua Zhang, Maoxian He and Wenguang Liu
Mar. Drugs 2022, 20(11), 686; https://doi.org/10.3390/md20110686 - 31 Oct 2022
Viewed by 1993
Abstract
It has been reported that the giant triton snail (Charonia tritonis) inserts its large proboscis and then injects venom or acid saliva from its salivary gland into its prey, the crown-of-thorns starfish Acanthaster planci (COTS), paralyzing it. A full-length cDNA sequence [...] Read more.
It has been reported that the giant triton snail (Charonia tritonis) inserts its large proboscis and then injects venom or acid saliva from its salivary gland into its prey, the crown-of-thorns starfish Acanthaster planci (COTS), paralyzing it. A full-length cDNA sequence of the C. tritonis Ct-kunitzin gene was obtained by RACE PCR based on a transcriptomic database constructed by our laboratory (data not published), which contains an open reading frame (ORF) sequence with a length of 384 bp including a 1–32aa Kunitz domain. The Ct-kunitzin peptide was synthesized by solid-phase polypeptide methods according to its conserved amino acid sequence, with a molecular weight of 3746.0 as well as two disulfide bonds. Renatured Ct-kunitzin was injected into mice ventricles to evaluate its potential function. Compared with the normal control group (physiological saline), the spontaneous locomotor activity of the Ct-kunitzin group decreased significantly. There was a significant effect on Ct-kunitzin on mice grip strength in the grip strength test. In addition, Ct-kunitzin exhibited remarkable biological activity in suppressing pain in the pain thresholds test. There were no significant differences between the Ct-kunitzin group and the normal control group in terms of various hematological indexes and histopathological observations. When tested in COTS, the most significant histological change was the destruction, disorganization, and significant reduction in the amount of COTS tube feet tissues. Altogether, the potential paralyzing effect on mice suggests that Ct-kunitzin is a possible agent for novel drug development. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Figure 1

11 pages, 3893 KiB  
Article
Repetitive Sequence Barcode Probe for Karyotype Analysis in Tripidium arundinaceum
by Jin Chai, Ling Luo, Zehuai Yu, Jiawei Lei, Muqing Zhang and Zuhu Deng
Int. J. Mol. Sci. 2022, 23(12), 6726; https://doi.org/10.3390/ijms23126726 - 16 Jun 2022
Cited by 2 | Viewed by 2299
Abstract
The barcode probe is a convenient and efficient tool for molecular cytogenetics. Tripidium arundinaceum, as a polyploid wild allied genus of Saccharum, is a useful genetic resource that confers biotic and abiotic stress resistance for sugarcane breeding. Unfortunately, the basic cytogenetic [...] Read more.
The barcode probe is a convenient and efficient tool for molecular cytogenetics. Tripidium arundinaceum, as a polyploid wild allied genus of Saccharum, is a useful genetic resource that confers biotic and abiotic stress resistance for sugarcane breeding. Unfortunately, the basic cytogenetic information is still unclear due to the complex genome. We constructed the Cot-20 library for screening moderately and highly repetitive sequences from T. arundinaceum, and the chromosomal distribution of these repetitive sequences was explored. We used the barcode of repetitive sequence probes to distinguish the ten chromosome types of T. arundinaceum by fluorescence in situ hybridization (FISH) with Ea-0907, Ea-0098, and 45S rDNA. Furthermore, the distinction among homology chromosomes based on repetitive sequences was constructed in T. arundinaceum by the repeated FISH using the barcode probes including Ea-0663, Ea-0267, EaCent, 5S rDNA, Ea-0265, Ea-0070, and 45S rDNA. We combined these probes to distinguish 37 different chromosome types, suggesting that the repetitive sequences may have different distributions on homologous chromosomes of T. arundinaceum. In summary, this method provide a basis for the development of similar applications for cytogenetic analysis in other species. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 1790 KiB  
Article
Comparative Distribution of Repetitive Sequences in the Karyotypes of Xenopus tropicalis and Xenopus laevis (Anura, Pipidae)
by Álvaro S. Roco, Thomas Liehr, Adrián Ruiz-García, Kateryna Guzmán and Mónica Bullejos
Genes 2021, 12(5), 617; https://doi.org/10.3390/genes12050617 - 21 Apr 2021
Cited by 8 | Viewed by 2949
Abstract
Xenopus laevis and its diploid relative, Xenopus tropicalis, are the most used amphibian models. Their genomes have been sequenced, and they are emerging as model organisms for research into disease mechanisms. Despite the growing knowledge on their genomes based on data obtained [...] Read more.
Xenopus laevis and its diploid relative, Xenopus tropicalis, are the most used amphibian models. Their genomes have been sequenced, and they are emerging as model organisms for research into disease mechanisms. Despite the growing knowledge on their genomes based on data obtained from massive genome sequencing, basic research on repetitive sequences in these species is lacking. This study conducted a comparative analysis of repetitive sequences in X. laevis and X. tropicalis. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) with Cot DNA of both species revealed a conserved enrichment of repetitive sequences at the ends of the chromosomes in these Xenopus species. The repeated sequences located on the short arm of chromosome 3 from X. tropicalis were not related to the sequences on the short arm of chromosomes 3L and 3S from X. laevis, although these chromosomes were homoeologous, indicating that these regions evolved independently in these species. Furthermore, all the other repetitive sequences in X. tropicalis and X. laevis may be species-specific, as they were not revealed in cross-species hybridizations. Painting experiments in X. laevis with chromosome 7 from X. tropicalis revealed shared sequences with the short arm of chromosome 3L. These regions could be related by the presence of the nucleolus organizer region (NOR) in both chromosomes, although the region revealed by chromosome painting in the short arm of chromosome 3L in X. laevis did not correspond to 18S + 28S rDNA sequences, as they did not colocalize. The identification of these repeated sequences is of interest as they provide an explanation to some problems already described in the genome assemblies of these species. Furthermore, the distribution of repetitive DNA in the genomes of X. laevis and X. tropicalis might be a valuable marker to assist us in understanding the genome evolution in a group characterized by numerous polyploidization events coupled with hybridizations. Full article
Show Figures

Figure 1

10 pages, 800 KiB  
Opinion
Persistent Gaps of Knowledge for Naming and Distinguishing Multiple Species of Crown-of-Thorns-Seastar in the Acanthaster planci Species Complex
by Gerhard Haszprunar, Catherine Vogler and Gert Wörheide
Diversity 2017, 9(2), 22; https://doi.org/10.3390/d9020022 - 12 May 2017
Cited by 63 | Viewed by 9844
Abstract
Nearly a decade ago, DNA barcoding (partial mitochondrial COI gene sequences) showed that there are at least four species in the Indo-Pacific within what was previously conceived to be a single Crown-of-Thorns-Seastar (COTS) species, Acanthaster planci. Two of these species—A. planci [...] Read more.
Nearly a decade ago, DNA barcoding (partial mitochondrial COI gene sequences) showed that there are at least four species in the Indo-Pacific within what was previously conceived to be a single Crown-of-Thorns-Seastar (COTS) species, Acanthaster planci. Two of these species—A. planci Linnaeus, 1758, distributed in the North Indian Ocean, and A. mauritiensis de Loriol, 1885, distributed in the South Indian Ocean—have been already unequivocally named. In contrast, the Pacific COTS (proposed name: A. solaris (Schreber, 1795) and the COTS from the Red Sea (still to be named) require further taxonomic work. COI barcoding sequences and Barcode Identification Numbers (BINs) are available for all four COTS species in the global Barcode of Life Database (BOLD). We recommend depositing voucher specimens or tissue samples suitable for DNA analyses when studying any aspect of COTS, and use BINs to identify species, to ensure that no information is lost on species allocation until unequivocal Linnean names are available for the Pacific and Red Sea species as well. We also review the differences between COTS species with respect to morphology, ecology, and toxicity. Future studies should widen the current biogeographic coverage of the different COTS species by strategically sampling neglected areas, especially at the geographic distribution limits of each species, to enhance our understanding of the diversity of this reef coral predator. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Crown-of-Thorns Starfish)
Show Figures

Figure 1

Back to TopTop