Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Columbiformes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10170 KiB  
Article
Birds and People in Medieval Bulgaria—A Review of the Subfossil Record of Birds During the First and Second Bulgarian Empires
by Zlatozar Boev
Quaternary 2025, 8(3), 36; https://doi.org/10.3390/quat8030036 - 8 Jul 2025
Viewed by 511
Abstract
For the first time, the numerous scattered data on birds (wild and domestic) have been collected based on their medieval bone remains discovered on the modern territory of the Republic of Bulgaria. The collected information is about a total of 37 medieval settlements [...] Read more.
For the first time, the numerous scattered data on birds (wild and domestic) have been collected based on their medieval bone remains discovered on the modern territory of the Republic of Bulgaria. The collected information is about a total of 37 medieval settlements from the time of the First and Second Bulgarian Empires. Among the settlements studied are both the two medieval Bulgarian capitals (Pliska and Veliki Preslav), as well as other cities, smaller settlements, military fortresses, monasteries, and inhabited caves. The data refer to a total of 48 species of wild birds and 6 forms of domestic birds of 11 avian orders: Accipitriformes, Anseriformes, Ciconiiformes, Columbiformes, Falconiformes, Galliformes, Gruiformes, Otidiformes, Passeriformes, Pelecaniformes, and Strigiformes. The established composition of wild birds amounts to over one tenth (to 11.5%) of the modern avifauna in the country. Five of the established species (10.4%) have disappeared from the modern nesting avifauna of the country—the bearded vulture, the great bustard, the little bustard, the gray crane, and the saker falcon (the latter two species have reappeared as nesters in the past few years). First Bulgarian Empire (681–1018): Investigated settlements—22. Period covered—five centuries (7th to 11th c.). Found in total: at least 44 species/forms of birds, of which 39 species of wild birds and 5 forms of poultry. Second Bulgarian Empire (1185–1396): Investigated settlements—15. Period covered—3 centuries (12th to 14th c.). Found in total: at least 39 species/forms of birds, of which 33 species of wild birds and 6 forms of poultry. The groups of raptors, water, woodland, openland, synanthropic and domestic birds were analyzed separately. The conclusion was made that during the two periods of the Middle Ages, birds had an important role in the material and spiritual life of the population of the Bulgarian lands. Birds were mainly used for food (domestic birds), although some were objects of hunting. No traces of processing were found on the bones. Birds were subjects of works of applied and monumental art. Their images decorated jewelry, tableware, walls of buildings and other structures. Full article
(This article belongs to the Special Issue Quaternary Birds of the Planet of First, Ancient and Modern Humans)
Show Figures

Figure 1

17 pages, 1390 KiB  
Article
Avian Haemosporidian Parasites in Three Wild Columbids from Germany
by Yvonne R. Schumm, Celine Frank, Uta Gerz, Hannes Ruß, Benjamin Metzger and Petra Quillfeldt
Microorganisms 2025, 13(6), 1305; https://doi.org/10.3390/microorganisms13061305 - 4 Jun 2025
Viewed by 533
Abstract
Birds are hosts to a diverse assemblage of vector-transmitted haemosporidian parasites. However, the true genetic diversity and many host–parasite interactions are still unknown, particularly in under-represented species groups such as wild doves and pigeons (Columbiformes). In this study, we examined the prevalence and [...] Read more.
Birds are hosts to a diverse assemblage of vector-transmitted haemosporidian parasites. However, the true genetic diversity and many host–parasite interactions are still unknown, particularly in under-represented species groups such as wild doves and pigeons (Columbiformes). In this study, we examined the prevalence and lineage diversity of haemosporidian genera Plasmodium, Leucocytozoon, and Haemoproteus in three species of wild columbids, sampled in Germany. Examinations were performed by applying molecular methods (nested PCR and one-step multiplex PCR) and blood smear examination, and their respective advantages and disadvantages are discussed. In the case of the European Turtle Dove Streptopelia turtur, samples were collected along a west–east gradient throughout Germany, covering migratory birds from the Western and Central-Eastern flyway of this species. Although no infection was detected in the Stock Dove Columba oenas samples, 53% of Turtle Dove and 86% of Common Woodpigeon Columba palumbus harbored a parasite of at least one haemosporidian genus, revealing previously unknown lineage–host interactions. We were not able to demonstrate a correlation between infection status (presence or absence of infection based on PCR results) and parasitemia with condition based on the heterophil to lymphocyte ratio (H/L ratio). Neither lineage occurrence nor prevalence of infection followed any geographically specific patterns. Thus, haemosporidian lineages found in Turtle Doves could not be used as a marker of geographic origin that would allow the tracking of their nonbreeding distribution. Full article
(This article belongs to the Special Issue Detection and Identification of Emerging and Re-Emerging Pathogens)
Show Figures

Figure 1

10 pages, 956 KiB  
Review
Salmonella and Salmonellosis in Wild Birds
by Paul Wigley
Animals 2024, 14(23), 3533; https://doi.org/10.3390/ani14233533 - 6 Dec 2024
Cited by 2 | Viewed by 2640
Abstract
Salmonella enterica is an important bacterial pathogen in humans and warm-blooded animals. Wild bird species represent both a potential reservoir for zoonotic infection and as a susceptible host to infection by host-adapted variants. Historically, wild birds were considered to be a major source [...] Read more.
Salmonella enterica is an important bacterial pathogen in humans and warm-blooded animals. Wild bird species represent both a potential reservoir for zoonotic infection and as a susceptible host to infection by host-adapted variants. Historically, wild birds were considered to be a major source of Salmonella infection in livestock, but in recent years, it has been more apparent that birds are more likely to act as a reservoir for recycling infection on farms rather than as the primary source of infection. Birds may also transmit infection to humans directly from feces or indirectly through fecal contamination of foods, including peanut butter. While many bird species can be infected with Salmonella, the rates of infection are variable, and most cases lead to intestinal carriage rather than disease. In this case, fecal shedding of Salmonella bacteria from birds can represent a risk for transmission to humans. As such, care is needed when in contact with fecal material such as that found on bird tables or feeders. In recent years, there have been emergences of Salmonella Typhimurium genotypes associated with high mortality in songbirds or passerine birds, resulting in ‘die offs’ in Europe, Israel, New Zealand and the US. Additionally, S. typhimurium DT2 and other variant Copenhagen genotypes are associated with high mortality disease in pigeons. These genotypes show evidence of evolution towards adaptation to specific hosts, with pseudogenes leading to loss of functional metabolic pathways and specific virulence factors. These ‘signatures of adaptation’ are common in host-adapted Salmonella serovars and suggest these S. typhimurium isolates are evolving to adapt to specific avian hosts. Full article
Show Figures

Figure 1

16 pages, 1932 KiB  
Article
Molecular Detection and Genotyping of Chlamydia psittaci in Birds in Buenos Aires City, Argentina
by María Julia Madariaga, Diego Alfredo Caraballo, María Luisa Teijeiro, Eduardo Jorge Boeri and María Estela Cadario
Animals 2024, 14(22), 3286; https://doi.org/10.3390/ani14223286 - 14 Nov 2024
Viewed by 905
Abstract
Chlamydia psittaci is a bacterium that infects several species of birds and mammals. It is the causal agent of avian chlamydiosis and psittacosis in humans and it is globally distributed. Chlamydia psittaci is one of the main zoonotic pathogens transmitted by birds. In [...] Read more.
Chlamydia psittaci is a bacterium that infects several species of birds and mammals. It is the causal agent of avian chlamydiosis and psittacosis in humans and it is globally distributed. Chlamydia psittaci is one of the main zoonotic pathogens transmitted by birds. In Argentina, there has been limited research on the prevalence and genetic variability of C. psittaci. The aim of this study was to detect and genotype C. psittaci using molecular techniques in birds living in Buenos Aires City, Argentina, during the period 2012–2015. A descriptive, observational, retrospective and cross-sectional study was carried out. A total of 983 bird samples submitted for diagnosis of avian chlamydiosis were analyzed. The frequency of C. psittaci was 12.54% and 7.89% in Psittaciformes and Columbiformes, respectively. A 348 bp region of the ompA gene was sequenced in positive samples. Molecular genotyping was performed through a Bayesian phylogenetic analysis. Of the 983 bird samples, 83 were positive for C. psittaci and 44 could be sequenced. The genotypes found were A, B, and E. Despite the high levels of host specificity, we found six psittacids with genotype B and one pigeon with genotype A, reflecting the affiliative interaction between Psittaciformes and Columbiformes. This study represents the first survey reporting the presence of C. psittaci in birds within the largest and most populous city in Argentina. Full article
(This article belongs to the Special Issue Chlamydial Diseases in Animals)
Show Figures

Figure 1

16 pages, 1603 KiB  
Article
Genomic Diversity and Evolutionary Insights of Avian Paramyxovirus-1 in Avian Populations in Pakistan
by Muhammad Zubair Shabbir, Sahar Mahmood, Aziz Ul-Rahman, Ashley C. Banyard and Craig S. Ross
Viruses 2024, 16(9), 1414; https://doi.org/10.3390/v16091414 - 5 Sep 2024
Cited by 1 | Viewed by 1554
Abstract
The virulent form of Avian paramyxovirus-1 (APMV-1), commonly known as Newcastle Disease Virus (NDV), is a pathogen with global implications for avian health, affecting both wild and domestic bird populations. In Pakistan, recurrent Newcastle Disease (caused by NDV) outbreaks have posed significant challenges [...] Read more.
The virulent form of Avian paramyxovirus-1 (APMV-1), commonly known as Newcastle Disease Virus (NDV), is a pathogen with global implications for avian health, affecting both wild and domestic bird populations. In Pakistan, recurrent Newcastle Disease (caused by NDV) outbreaks have posed significant challenges to the poultry industry. Extensive surveillance in Pakistan over 20 years has demonstrated a dynamic genetic diversity among circulating APMV-1 strains, emphasizing the potential necessity for customized vaccination strategies and continuous surveillance. In this study, 13 APMV-1-positive isolates harboring four different APMV-1 genotypes circulating throughout Pakistan were identified. These included the highly virulent genotypes VII and XIII, genotype XXI, commonly associated with Columbiformes, and genotype II, hypothesized to have been detected following vaccination. These findings underscore the intricate interplay of mutational events and host-immune interactions shaping the evolving NDV landscape. This study advances our understanding of the evolutionary dynamics of APMV-1 in Pakistan, highlighting the need for tailored vaccination strategies and continuous surveillance to enable effective APMV-1 management in avian populations, further emphasizing the importance of globally coordinated strategies to tackle APMV-1, given its profound impact on wild and domestic birds. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

13 pages, 15040 KiB  
Article
Mitochondrial Genomes of Streptopelia decaocto: Insights into Columbidae Phylogeny
by Jiangyong Qu, Xiaofei Lu, Xindong Teng, Zhikai Xing, Shuang Wang, Chunyu Feng, Xumin Wang and Lijun Wang
Animals 2024, 14(15), 2220; https://doi.org/10.3390/ani14152220 - 31 Jul 2024
Cited by 1 | Viewed by 1435
Abstract
In this research, the mitochondrial genome of the Streptopelia decaocto was sequenced and examined for the first time to enhance the comprehension of the phylogenetic relationships within the Columbidae. The complete mitochondrial genome of Streptopelia decaocto (17,160 bp) was structurally similar to the [...] Read more.
In this research, the mitochondrial genome of the Streptopelia decaocto was sequenced and examined for the first time to enhance the comprehension of the phylogenetic relationships within the Columbidae. The complete mitochondrial genome of Streptopelia decaocto (17,160 bp) was structurally similar to the recognized members of the Columbidae family, but with minor differences in gene size and arrangement. The structural AT content was 54.12%. Additionally, 150 mitochondrial datasets, representing valid species, were amassed in this investigation. Maximum likelihood (ML) and Bayesian inference (BI) phylogenetic trees and evolutionary time relationships of species were reconstructed based on cytb gene sequences. The findings from the phylogenetic evaluations suggest that the S. decaocto was classified under the Columbinae subfamily, diverging from the Miocene approximately 8.1 million years ago, indicating intricate evolutionary connections with its close relatives, implying a history of species divergence and geographic isolation. The diversification of the Columbidae commenced during the Late Oligocene and extended into the Miocene. This exploration offers crucial molecular data for the S. decaocto, facilitating the systematic taxonomic examination of the Columbidae and Columbiformes, and establishing a scientific foundation for species preservation and genetic resource management. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

7 pages, 1011 KiB  
Communication
Screening for SARS-CoV-2 and Other Coronaviruses in Urban Pigeons (Columbiformes) from the North of Spain under a ‘One Health’ Perspective
by Aránzazu Portillo, Cristina Cervera-Acedo, Ana M. Palomar, Ignacio Ruiz-Arrondo, Paula Santibáñez, Sonia Santibáñez and José A. Oteo
Microorganisms 2024, 12(6), 1143; https://doi.org/10.3390/microorganisms12061143 - 4 Jun 2024
Cited by 1 | Viewed by 1142
Abstract
Coronaviruses have a major impact on human and animal health. The SARS-CoV-2, a beta coronavirus responsible for the COVID-19 pandemic, is a clear example. It continues circulating and causes human deaths, and its high replication rate results in numerous variants. Coronaviruses adapt to [...] Read more.
Coronaviruses have a major impact on human and animal health. The SARS-CoV-2, a beta coronavirus responsible for the COVID-19 pandemic, is a clear example. It continues circulating and causes human deaths, and its high replication rate results in numerous variants. Coronaviruses adapt to birds and mammals and constitute a serious threat, and new viruses are likely to emerge. Urban pigeons (Columbiformes) are synanthropic birds of great interest from a ‘One Health’ perspective, due to their interaction with humans and other animals. Aware that they may act as viral reservoirs and contribute to their spread, we aimed to investigate the possible presence of SARS-CoV-2 and other coronaviruses in Columbiformes in the city of Logroño, Spain. Oropharyngeal and cloacal swabs were tested using real-time (N1 and E genes from SARS-CoV-2) and conventional PCR assays (RdRp gene from all coronaviruses). SARS-CoV-2 was not detected. A total of 13.3% of pigeons harbored coronaviruses closely related to Gamma coronavirus (Igacovirus) from Columbiformes in Finland, Poland and China. Monitoring the emergence of a new variant of SARS-CoV-2 capable of infecting Columbiformes should continue. SARS-CoV-2 is still circulating, the viral RNA of this virus has been detected in avian species (Phasianidae and Anatidae), and other coronaviruses are associated with animals that are in close contact with humans. The presence of Gamma coronavirus in urban pigeons must be considered for the risk of surveillance of human infections. Full article
(This article belongs to the Special Issue State of the Art of Wildlife Infection in Europe)
Show Figures

Figure 1

15 pages, 1178 KiB  
Article
Exploring the Prevalence and Resistance of Campylobacter in Urban Bird Populations
by Aida Mencía-Gutiérrez, Francisco Javier García-Peña, Fernando González, Natalia Pastor-Tiburón, Iratxe Pérez-Cobo, María Marín and Bárbara Martín-Maldonado
Vet. Sci. 2024, 11(5), 210; https://doi.org/10.3390/vetsci11050210 - 11 May 2024
Cited by 2 | Viewed by 2030
Abstract
The increasing urbanization of ecosystems has had a significant impact on wildlife over the last few years. Species that find an unlimited supply of food and shelter in urban areas have thrived under human presence. Wild birds have been identified as amplifying hosts [...] Read more.
The increasing urbanization of ecosystems has had a significant impact on wildlife over the last few years. Species that find an unlimited supply of food and shelter in urban areas have thrived under human presence. Wild birds have been identified as amplifying hosts and reservoirs of Campylobacter worldwide, but the information about its transmission and epidemiology is still limited. This study assessed the prevalence of Campylobacter in 137 urban birds admitted at a wildlife rescue center, with 18.8% of individuals showing positive. C. jejuni was the most frequent species (82.6%), followed by C. coli and C. lari (4.3% each). The order Passeriformes (33.3%) showed significant higher presence of Campylobacter when compared to orders Columbiformes (0%) and Ciconiiformes (17.6%), as well as in samples collected during the summer season (31.9%), from omnivorous species (36.8%) and young individuals (26.8%). Globally, Campylobacter displayed a remarkable resistance to ciprofloxacin (70.6%), tetracycline (64.7%), and nalidixic acid (52.9%). In contrast, resistance to streptomycin was low (5.8%), and all the isolates showed susceptibility to erythromycin and gentamycin. The results underline the importance of urban birds as reservoirs of thermophilic antimicrobial-resistant Campylobacter and contribute to enhancing the knowledge of its distribution in urban and peri-urban ecosystems. Full article
(This article belongs to the Special Issue Wild Birds as Sentinels of the Health Status of the Environment)
Show Figures

Figure 1

13 pages, 8585 KiB  
Article
Genetic Characterization, Pathogenicity, and Epidemiology Analysis of Three Sub-Genotype Pigeon Newcastle Disease Virus Strains in China
by Zeren Wang, Zhengyang Geng, Hongbo Zhou, Pengju Chen, Jing Qian and Aizhen Guo
Microorganisms 2024, 12(4), 738; https://doi.org/10.3390/microorganisms12040738 - 4 Apr 2024
Cited by 5 | Viewed by 2331
Abstract
Pigeon Newcastle disease (ND) is a serious infectious illness caused by the pigeon Newcastle disease virus (NDV) or Paramyxovirus type 1 (PPMV-1). Genotype VI NDV is a primary factor in ND among Columbiformes (such as pigeons and doves). In a recent study, eight [...] Read more.
Pigeon Newcastle disease (ND) is a serious infectious illness caused by the pigeon Newcastle disease virus (NDV) or Paramyxovirus type 1 (PPMV-1). Genotype VI NDV is a primary factor in ND among Columbiformes (such as pigeons and doves). In a recent study, eight pigeon NDV strains were discovered in various provinces in China. These viruses exhibited mesogenic characteristics based on their MDT and ICPI values. The complete genome sequences of these eight strains showed a 90.40% to 99.19% identity match with reference strains of genotype VI, and a 77.86% to 80.45% identity match with the genotype II vaccine strain. Additionally, analysis of the F gene sequence revealed that these NDV strains were closely associated with sub-genotypes VI.2.2.2, VI.2.1.1.2.1, and VI.2.1.1.2.2. The amino acid sequence at the cleavage site of the F protein indicated virulent characteristics, with the sequences 112KRQKRF117 and 112RRQKRF117 observed. Pigeons infected with these sub-genotype strains had a low survival rate of only 20% to 30%, along with lesions in multiple tissues, highlighting the strong spread and high pathogenicity of these pigeon NDV strains. Molecular epidemiology data from the GenBank database revealed that sub-genotype VI.2.1.1.2.2 strains have been prevalent since 2011. In summary, the findings demonstrate that the prevalence of genotype VI NDV is due to strains from diverse sub-genotypes, with the sub-genotype VI.2.1.1.2.2 strain emerging as the current epidemic strain, highlighting the significance of monitoring pigeon NDV in China. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases)
Show Figures

Figure 1

13 pages, 2641 KiB  
Article
Australasian Pigeon Circoviruses Demonstrate Natural Spillover Infection
by Babu Kanti Nath, Tridip Das, Andrew Peters, Suman Das Gupta, Subir Sarker, Jade K. Forwood, Shane R. Raidal and Shubhagata Das
Viruses 2023, 15(10), 2025; https://doi.org/10.3390/v15102025 - 29 Sep 2023
Cited by 4 | Viewed by 2476
Abstract
Pigeon circovirus (PiCV) is considered to be genetically diverse, with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Australasia is known to be the origin of diverse species [...] Read more.
Pigeon circovirus (PiCV) is considered to be genetically diverse, with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Australasia is known to be the origin of diverse species of the Order Columbiformes, but limited data on the PiCV genome sequence has hindered phylogeographic studies in this species. To fill this gap, this study was conducted to investigate PiCV in 118 characteristic samples from different birds across Australia using PCR and sequencing. Eighteen partial PiCV Rep sequences and one complete PiCV genome sequence were recovered from reservoir and aberrant hosts. Phylogenetic analyses revealed that PiCV circulating in Australia was scattered across three different subclades. Importantly, one subclade dominated within the PiCV sequenced from Australia and Poland, whereas other PiCV sequenced in this study were more closely related to the PiCV sequenced from China, USA and Japan. In addition, PiCV Rep sequences obtained from clinically affected plumed whistling duck, blue billed duck and Australian magpie demonstrated natural spillover of PiCV unveiled host generalist characteristics of the pigeon circovirus. These findings indicate that PiCV genomes circulating in Australia lack host adapted population structure but demonstrate natural spillover infection. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

29 pages, 3505 KiB  
Article
Global Studies of the Host-Parasite Relationships between Ectoparasitic Mites of the Family Syringophilidae and Birds of the Order Columbiformes
by Katarzyna Kaszewska-Gilas, Jakub Ziemowit Kosicki, Martin Hromada and Maciej Skoracki
Animals 2021, 11(12), 3392; https://doi.org/10.3390/ani11123392 - 27 Nov 2021
Cited by 11 | Viewed by 3683
Abstract
The quill mites belonging to the family Syringophilidae (Acari: Prostigmata: Cheyletoidea) are obligate ectoparasites of birds. They inhabit different types of the quills, where they spend their whole life cycle. In this paper, we conducted a global study of syringophilid mites associated with [...] Read more.
The quill mites belonging to the family Syringophilidae (Acari: Prostigmata: Cheyletoidea) are obligate ectoparasites of birds. They inhabit different types of the quills, where they spend their whole life cycle. In this paper, we conducted a global study of syringophilid mites associated with columbiform birds. We examined 772 pigeon and dove individuals belonging to 112 species (35% world fauna) from all zoogeographical regions (except Madagascan) where Columbiformes occur. We measured the prevalence (IP) and the confidence interval (CI) for all infested host species. IP ranges between 4.2 and 66.7 (CI 0.2–100). We applied a bipartite analysis to determine host–parasite interaction, network indices, and host specificity on species and whole network levels. The Syringophilidae–Columbiformes network was composed of 25 mite species and 65 host species. The bipartite network was characterized by a high network level specialization H2′ = 0.93, high nestedness N = 0.908, connectance C = 0.90, and high modularity Q = 0.83, with 20 modules. Moreover, we reconstructed the phylogeny of the quill mites associated with columbiform birds on the generic level. Analysis shows two distinct clades: Meitingsunes + Psittaciphilus, and Peristerophila + Terratosyringophilus. Full article
(This article belongs to the Special Issue Parasitic and Pathogenic Mites in Animals)
Show Figures

Figure 1

19 pages, 3433 KiB  
Article
Diversity of Coronaviruses in Wild Representatives of the Aves Class in Poland
by Katarzyna Domańska-Blicharz, Justyna Miłek-Krupa and Anna Pikuła
Viruses 2021, 13(8), 1497; https://doi.org/10.3390/v13081497 - 29 Jul 2021
Cited by 19 | Viewed by 3033
Abstract
The revealed prevalence of coronaviruses in wild bird populations in Poland was 4.15% and the main reservoirs were birds from orders Anseriformes and Charadriiformes, with a prevalence of 3.51% and 5.59%, respectively. Gammacoronaviruses were detected more often than deltacoronaviruses, with detection rates [...] Read more.
The revealed prevalence of coronaviruses in wild bird populations in Poland was 4.15% and the main reservoirs were birds from orders Anseriformes and Charadriiformes, with a prevalence of 3.51% and 5.59%, respectively. Gammacoronaviruses were detected more often than deltacoronaviruses, with detection rates of 3.5% and 0.7%, respectively. Gammacoronaviruses were detected in birds belonging to six orders, including Anseriformes, Charadriiformes, Columbiformes, Galliformes, Gruiformes, and Passeriformes, indicating a relatively wide host range. Interestingly, this was the only coronavirus detected in Anseriformes (3.51%), while in Charadriiformes, the prevalence was 3.1%. The identified gammacoronaviruses belonged to the Igacovirus and Brangacovirus subgeneras. Most of these were igacoviruses and formed a common phylogenetic group with a Duck Coronavirus 2714 and two with an Avian Coronavirus/Avian Coronavirus9203, while the viruses from the pigeons formed a distinct “pigeon-like” group, not yet officially represented. The presence of deltacoronaviruses was detected in birds belonging to three orders, Charadriiformes, Galliformes, and Suliformes indicating a narrower host range. Most identified deltacoronaviruses belonged to the Buldecovirus subgenus, while only one belonged to Herdecovirus. Interestingly, the majority of buldecoviruses were identified in gulls, and they formed a distinct phylogenetic lineage not represented by any officially ratified virus species. Another separate group of buldecoviruses, also not represented by the official species, was formed by a virus identified in a common snipe. Only one identified buldecovirus (from common pheasant) formed a group with the ratified species Coronavirus HKU15. The results obtained indicate the high diversity of detected coronaviruses, and thus also the need to update their taxonomy (establishing new representative virus species). The serological studies performed revealed antibodies against an infectious bronchitis virus in the sera of white storks and mallards. Full article
(This article belongs to the Special Issue State-of-the-Art Animal Virus Research in Poland)
Show Figures

Figure 1

11 pages, 671 KiB  
Article
West Nile and Usutu Viruses’ Surveillance in Birds of the Province of Ferrara, Italy, from 2015 to 2019
by Alessandra Lauriano, Arianna Rossi, Giorgio Galletti, Gabriele Casadei, Annalisa Santi, Silva Rubini, Elena Carra, Davide Lelli, Mattia Calzolari and Marco Tamba
Viruses 2021, 13(7), 1367; https://doi.org/10.3390/v13071367 - 14 Jul 2021
Cited by 12 | Viewed by 3274
Abstract
West Nile (WNV) and Usutu (USUV) viruses are mosquito-borne flaviviruses. Thanks to their importance as zoonotic diseases, a regional plan for surveillance of Arboviruses was implemented in Emilia-Romagna in 2009. The province of Ferrara belongs to the Emilia-Romagna region, and it is an [...] Read more.
West Nile (WNV) and Usutu (USUV) viruses are mosquito-borne flaviviruses. Thanks to their importance as zoonotic diseases, a regional plan for surveillance of Arboviruses was implemented in Emilia-Romagna in 2009. The province of Ferrara belongs to the Emilia-Romagna region, and it is an endemic territory for these viruses, with favorable ecological conditions for abundance of mosquitoes and wild birds. From 2015 to 2019, we collected 1842 dead-found birds at a wildlife rehabilitation center, which were analysed by three different PCRs for the detection of WNV and USUV genomes. August was characterized by the highest infection rate for both viruses. Columbiformes scored the highest USUV prevalence (8%), while Galliformes and Strigiformes reported the highest prevalence for WNV (13%). Among Passeriformes (the most populated Order), Turdus merula was the most abundant species and scored the highest prevalence for both viruses. To optimize passive surveillance plans, monitoring should be focused on the summer and towards the avian species more prone to infection by both viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

13 pages, 3230 KiB  
Article
Investigation of Lethal Concurrent Outbreak of Chlamydiosis and Pigeon Circovirus in a Zoo
by Wei-Tao Chen, Chin-Ann Teng, Cheng-Hsin Shih, Wei-Hsiang Huang, Yi-Fan Jiang, Hui-Wen Chang, Chian-Ren Jeng, Yen-Hsueh Lai, Jun-Cheng Guo, Pao-Jung Wang, Chiu-Hung Cheng and Yen-Chen Chang
Animals 2021, 11(6), 1654; https://doi.org/10.3390/ani11061654 - 2 Jun 2021
Cited by 1 | Viewed by 4650
Abstract
During the spring, an outbreak of sudden death involving 58 birds occurred in a zoo. Histopathological examinations revealed variable numbers of intracytoplasmic basophilic microorganisms in the macrophages, hepatocytes, and renal epithelium of most birds, along with occasional botryoid intracytoplasmic inclusion bodies within histiocytes [...] Read more.
During the spring, an outbreak of sudden death involving 58 birds occurred in a zoo. Histopathological examinations revealed variable numbers of intracytoplasmic basophilic microorganisms in the macrophages, hepatocytes, and renal epithelium of most birds, along with occasional botryoid intracytoplasmic inclusion bodies within histiocytes in the bursa of Fabricius. Based on the results of histopathological examinations, immunohistochemical staining, transmission electron microscopy, and polymerase chain reactions, genotype B Chlamydia psittaci infection concurrent with pigeon circovirus (PiCV) was diagnosed. A retrospective survey, including two years before the outbreak and the outbreak year, of C. psittaci and PiCV infections of dead birds in the aviaries, revealed that the outbreak was an independent episode. The findings of this study indicate that concurrent infection with C. psittaci and PiCV might lead to lethal outbreaks of chlamydiosis, particularly Streptopelia orientalis. In addition, persistently monitoring both pathogens and identifying potential PiCV carriers or transmitters might also help prevent lethal disease outbreaks. Full article
(This article belongs to the Section Zoo Animals)
Show Figures

Figure 1

12 pages, 2444 KiB  
Article
Endoparasitic Mites (Rhinonyssidae) on Urban Pigeons and Doves: Updating Morphological and Epidemiological Information
by Jesús Veiga, Ivan Dimov and Manuel de Rojas
Diversity 2021, 13(1), 11; https://doi.org/10.3390/d13010011 - 31 Dec 2020
Cited by 2 | Viewed by 4185
Abstract
Rhynonyssidae is a family of endoparasitic hematophagous mites, which are still largely unknown even though they could act as vector or reservoir of different pathogens like dermanyssids. Sampling requirements have prevented deeper analysis. Rhinonyssids have been explored in a few host specimens per [...] Read more.
Rhynonyssidae is a family of endoparasitic hematophagous mites, which are still largely unknown even though they could act as vector or reservoir of different pathogens like dermanyssids. Sampling requirements have prevented deeper analysis. Rhinonyssids have been explored in a few host specimens per species, leading to undetailed morphological descriptions and inaccurate epidemiology. We explore the relationships established between these parasites in two Columbiformes urban birds (domestic pigeon (Columba livia domestica) and Eurasian collared dove (Streptopelia decaocto)), assesing 250 individuals of each type in Seville (Spain). As expected, Mesonyssus melloi (Castro, 1948) and Mesonyssus columbae (Crossley, 1950) were found in domestic pigeons, and Mesonyssus streptopeliae (Fain, 1962) in Eurasian collared doves. However, M. columbae was found for the first time in Eurasian collared doves. This relationship could be common in nature, but sampling methodology or host switching could also account for this result. An additional unknown specimen was found in a Eurasian collared dove, which could be a new species or an aberrant individual. We also provide an epidemiological survey of the three mite species, with M. melloi being the most common one followed by M. streptopeliae and M. columbae. High variation between previous epidemiological measurements and ours highlights the importance of developing deeper studies to uncover the factors regulating mite prevalence and intensities of infection. Full article
(This article belongs to the Special Issue Bird Parasites)
Show Figures

Figure 1

Back to TopTop