Exploring the Prevalence and Resistance of Campylobacter in Urban Bird Populations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Campylobacter spp. Isolation and Identification
2.3. Antimicrobial Susceptibility Testing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miranda, A.C. Mechanisms of Behavioural Change in Urban Animals: The Role of Microevolution and Phenotypic Plasticity. In Ecology and Conservation of Birds in Urban Environments; Murgui, E., Hedblom, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 113–132. ISBN 978-3-319-43314-1. [Google Scholar]
- Plaza, P.I.; Lambertucci, S.A. How Are Garbage Dumps Impacting Vertebrate Demography, Health, and Conservation? Glob. Ecol. Conserv. 2017, 12, 9–20. [Google Scholar] [CrossRef]
- Martín-Maldonado, B.; Vega, S.; Mencía-Gutiérrez, A.; Lorenzo-Rebenaque, L.; de Frutos, C.; González, F.; Revuelta, L.; Marin, C. Urban Birds: An Important Source of Antimicrobial Resistant Salmonella Strains in Central Spain. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101519. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, N.I.; Correia, R.A.; Silva, J.P.; Pacheco, C.; Catry, I.; Atkinson, P.W.; Gill, J.A.; Franco, A.M.A. Are White Storks Addicted to Junk Food? Impacts of Landfill Use on the Movement and Behaviour of Resident White Storks (Ciconia ciconia) from a Partially Migratory Population. Mov. Ecol. 2016, 4, 7. [Google Scholar] [CrossRef]
- Plaza, P.I.; Lambertucci, S.A. More Massive but Potentially Less Healthy: Black Vultures Feeding in Rubbish Dumps Differed in Clinical and Biochemical Parameters with Wild Feeding Birds. PeerJ 2018, 6, e4645. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Kang, M.; Jang, H. Genetic Characterization and Epidemiological Implications of Campylobacter Isolates from Wild Birds in South Korea. Transbound. Emerg. Dis. 2019, 66, 56–65. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef] [PubMed]
- Havelaar, A.H.; Ivarsson, S.; Löfdahl, M.; Nauta, M.J. Estimating the True Incidence of Campylobacteriosis and Salmonellosis in the European Union, 2009. Epidemiol. Infect. 2013, 141, 293–302. [Google Scholar] [CrossRef]
- Olvera-Ramírez, A.M.; McEwan, N.R.; Stanley, K.; Nava-Diaz, R.; Aguilar-Tipacamú, G. A Systematic Review on the Role of Wildlife as Carriers and Spreaders of Campylobacter spp. Animals 2023, 13, 1334. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. Eur. Food Saf. Auth. 2022, 20, e07666. [Google Scholar] [CrossRef]
- Okamura, M.; Kaneko, M.; Ojima, S.; Sano, H.; Shindo, J.; Shirafuji, H.; Yamamoto, S.; Tanabe, T.; Yoshikawa, Y.; Hu, D.-L. Differential Distribution of Salmonella Serovars and Campylobacter spp. Isolates in Free-Living Crows and Broiler Chickens in Aomori, Japan. Microbes Environ. 2018, 33, 77–82. [Google Scholar] [CrossRef]
- Maëssar, M.; Tedersoo, T.; Meremäe, K.; Roasto, M. The Source Attribution Analysis Revealed the Prevalent Role of Poultry over Cattle and Wild Birds in Human Campylobacteriosis Cases in the Baltic States. PLoS ONE 2020, 15, e0235841. [Google Scholar] [CrossRef] [PubMed]
- Minias, P. Contrasting Patterns of Campylobacter and Salmonella Distribution in Wild Birds: A Comparative Analysis. J. Avian Biol. 2020, 51, e02426. [Google Scholar] [CrossRef]
- Waldenström, J.; Broman, T.; Carlsson, I.; Hasselquist, D.; Achterberg, R.P.; Wagenaar, J.A.; Olsen, B. Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in Different Ecological Guilds and Taxa of Migrating Birds. Appl. Environ. Microbiol. 2002, 68, 5911–5917. [Google Scholar] [CrossRef] [PubMed]
- Greig, J.; Rajić, A.; Young, I.; Mascarenhas, M.; Waddell, L.; LeJeune, J. A Scoping Review of the Role of Wildlife in the Transmission of Bacterial Pathogens and Antimicrobial Resistance to the Food Chain. Zoonoses Public Health 2015, 62, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-K.; Oh, J.-Y.; Jeong, O.-M.; Moon, O.-K.; Kang, M.-S.; Jung, B.-Y.; An, B.-K.; Youn, S.-Y.; Kim, H.-R.; Jang, I.; et al. Prevalence of Campylobacter Species in Wild Birds of South Korea. Avian Pathol. 2017, 46, 474–480. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Gulhan, T. Campylobacter in Wild Birds: Is It an Animal and Public Health Concern? Front. Microbiol. 2022, 12, 812591. [Google Scholar] [CrossRef] [PubMed]
- French, N.P.; Midwinter, A.; Holland, B.; Collins-Emerson, J.; Pattison, R.; Colles, F.; Carter, P. Molecular Epidemiology of Campylobacter jejuni Isolates from Wild-Bird Fecal Material in Children’s Playgrounds. Appl. Environ. Microbiol. 2009, 75, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Krawiec, M.; Woźniak-Biel, A.; Bednarski, M.; Wieliczko, A. Antimicrobial Susceptibility and Genotypic Characteristic of Campylobacter spp. Isolates from Free-Living Birds in Poland. Vector-Borne Zoonotic Dis. 2017, 17, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Kürekci, C.; Sakin, F.; Epping, L.; Knüver, M.-T.; Semmler, T.; Stingl, K. Characterization of Campylobacter spp. Strains Isolated From Wild Birds in Turkey. Front. Microbiol. 2021, 12, 712106. [Google Scholar] [CrossRef]
- Kim, C.; Holm, M.; Frost, I.; Hasso-Agopsowicz, M.; Abbas, K. Global and Regional Burden of Attributable and Associated Bacterial Antimicrobial Resistance Avertable by Vaccination: Modelling Study. BMJ Glob. Health 2023, 8, e011341. [Google Scholar] [CrossRef]
- Marotta, F.; Garofolo, G.; Di Marcantonio, L.; Di Serafino, G.; Neri, D.; Romantini, R.; Sacchini, L.; Alessiani, A.; Di Donato, G.; Nuvoloni, R.; et al. Antimicrobial Resistance Genotypes and Phenotypes of Campylobacter jejuni Isolated in Italy from Humans, Birds from Wild and Urban Habitats, and Poultry. PLoS ONE 2019, 14, e0223804. [Google Scholar] [CrossRef] [PubMed]
- Szczepanska, B.; Andrzejewska, M.; Spica, D.; Klawe, J.J. Prevalence and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli Isolated from Children and Environmental Sources in Urban and Suburban Areas. BMC Microbiol. 2017, 17, 80. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Luo, J.; Huang, J.; Wang, C.; Li, M.; Wang, B.; Wang, B.; Chang, H.; Ji, J.; Sen, K.; et al. Emergence of Genetic Diversity and Multi-Drug Resistant Campylobacter jejuni From Wild Birds in Beijing, China. Front. Microbiol. 2019, 10, 2433. [Google Scholar] [CrossRef] [PubMed]
- Mencía-Gutiérrez, A.; Martín-Maldonado, B.; Pastor-Tiburón, N.; Moraleda, V.; González, F.; García-Peña, F.J.; Pérez-Cobo, I.; Revuelta, L.; Marín, M. Prevalence and Antimicrobial Resistance of Campylobacter from Wild Birds of Prey in Spain. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 101712. [Google Scholar] [CrossRef] [PubMed]
- Tryjanowski, P.; Nowakowski, J.J.; Indykiewicz, P.; Andrzejewska, M.; Śpica, D.; Sandecki, R.; Mitrus, C.; Goławski, A.; Dulisz, B.; Dziarska, J.; et al. Campylobacter in Wintering Great Tits Parus Major in Poland. Environ. Sci. Pollut. Res. 2020, 27, 7570–7577. [Google Scholar] [CrossRef]
- Rossi, F.; Péguilhan, R.; Turgeon, N.; Veillette, M.; Baray, J.-L.; Deguillaume, L.; Amato, P.; Duchaine, C. Quantification of Antibiotic Resistance Genes (ARGs) in Clouds at a Mountain Site (Puy de Dôme, Central France). Sci. Total Environ. 2023, 865, 161264. [Google Scholar] [CrossRef] [PubMed]
- White, A.; Hughes, J.M. Critical Importance of a One Health Approach to Antimicrobial Resistance. EcoHealth 2019, 16, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Royal Decree 53/2013, 1 February, By which Establish the Basic Standards for the Protection of Animals Used in Experimen-tation and Other Scientific Purposes, Including Teaching [Real Decreto 53/2013, de 1 de Febrero, por el que se Establecen las Normas Básicas Aplicables para la Protección de los Animales Utilizados en Experimentación y otros Fines Científicos, Incluyendo la Docencia]. BOE 34, de 8 de Febrero de 2013]. Available online: https://www.boe.es/eli/es/rd/2013/02/01/53/con (accessed on 7 May 2023).
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. OJEU L276, 33–79. Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj (accessed on 7 May 2023).
- Ritchie, B.W.; Harrison, G.J.; Harrison, L.R. (Eds.) Avian Medicine: Principles and Application; Wingers Publishing Incorporated: Lake Worth, FL, USA, 1994; ISBN 978-0-9636996-0-2. [Google Scholar]
- ISO 10272-1:2017; Microbiology of the Food Chain. Horizontal Method for Detection and Enumeration of Campylobacter spp. Part 1: Detection Method. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/63225.html (accessed on 7 May 2024).
- Wang, G.; Clark, C.G.; Taylor, T.M.; Pucknell, C.; Barton, C.; Price, L.; Woodward, D.L.; Rodgers, F.G. Colony Multiplex PCR Assay for Identification and Differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. J. Clin. Microbiol. 2002, 40, 4744–4747. [Google Scholar] [CrossRef] [PubMed]
- Denis, M.; Soumet, C.; Rivoal, K.; Ermel, G.; Blivet, D.; Salvat, G.; Colin, P. Development of a m-PCR Assay for Simultaneous Identification of Campylobacter jejuni and C. coli. Lett. Appl. Microbiol. 1999, 29, 406–410. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Data from the EUCAST MIC Distribution Website. Available online: https://www.eucast.org/ (accessed on 18 June 2023).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Smith, O.M.; Snyder, W.E.; Owen, J.P. Are We Overestimating Risk of Enteric Pathogen Spillover from Wild Birds to Humans? Biol. Rev. Camb. Philos. Soc. 2020, 95, 652–679. [Google Scholar] [CrossRef] [PubMed]
- Hald, B.; Skov, M.N.; Nielsen, E.M.; Rahbek, C.; Madsen, J.J.; Wainø, M.; Chriél, M.; Nordentoft, S.; Baggesen, D.L.; Madsen, M. Campylobacter jejuni and Campylobacter coli in Wild Birds on Danish Livestock Farms. Acta Vet. Scand. 2016, 58, 11. [Google Scholar] [CrossRef] [PubMed]
- Ramonaite, S.; Kudirkiene, E.; Tamuleviciene, E.; Leviniene, G.; Malakauskas, A.; Gölz, G.; Alter, T.; Malakauskas, M. Prevalence and Genotypes of Campylobacter jejuni from Urban Environmental Sources in Comparison with Clinical Isolates from Children. J. Med. Microbiol. 2014, 63, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.I.; Shriver, W.G. Prevalence of Three Campylobacter Species, C. jejuni, C. coli, and C. lari, Using Multilocus Sequence Typing in Wild Birds of the Mid-Atlantic Region, USA. J. Wildl. Dis. 2014, 50, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Troxler, S.; Hess, C.; Konicek, C.; Knotek, Z.; Barták, P.; Hess, M. Microdilution Testing Reveals Considerable and Diverse Antimicrobial Resistance of Escherichia coli, Thermophilic Campylobacter spp. and Salmonella spp. Isolated from Wild Birds Present in Urban Areas. Eur. J. Wildl. Res. 2017, 63, 68. [Google Scholar] [CrossRef]
- Malekian, M.; Shagholian, J.; Hosseinpour, Z. Pathogen Presence in Wild Birds Inhabiting Landfills in Central Iran. EcoHealth 2021, 18, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Konicek, C.; Vodrážka, P.; Barták, P.; Knotek, Z.; Hess, C.; Račka, K.; Hess, M.; Troxler, S. Detection of Zoonotic Pathogens in Wild Birds in the Cross-Border Region Austria–Czech Republic. J. Wildl. Dis. 2016, 52, 850–861. [Google Scholar] [CrossRef]
- Hock, L.; Herold, M.; Walczak, C.; Schoos, A.; Penny, C.; Cauchie, H.-M.; Ragimbeau, C. Environmental Dynamics of Campylobacter jejuni Genotypes Circulating in Luxembourg: What Is the Role of Wild Birds? Microb. Genom. 2023, 9, mgen001031. [Google Scholar] [CrossRef]
- Ito, K.; Kubokura, Y.; Kaneko, K.; Totake, Y.; Ogawa, M. Occurrence of Campylobacter jejuni in Free-Living Wild Birds from Japan. J. Wildl. Dis. 1988, 24, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, B.; Kamiński, P.; Andrzejewska, M.; Śpica, D.; Kartanas, E.; Ulrich, W.; Jerzak, L.; Kasprzak, M.; Bocheński, M.; Klawe, J.J. Prevalence, Virulence, and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli in White Stork Ciconia ciconia in Poland. Foodborne Pathog. Dis. 2015, 12, 24–31. [Google Scholar] [CrossRef]
- Arnold, K.E.; Williams, N.J.; Bennett, M. ‘Disperse Abroad in the Land’: The Role of Wildlife in the Dissemination of Antimicrobial Resistance. Biol. Lett. 2016, 12, 20160137. [Google Scholar] [CrossRef] [PubMed]
- Casalino, G.; D’Amico, F.; Dinardo, F.R.; Bozzo, G.; Napoletano, V.; Camarda, A.; Bove, A.; Lombardi, R.; D’Onghia, F.P.; Circella, E. Prevalence and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli in Wild Birds from a Wildlife Rescue Centre. Animals 2022, 12, 2889. [Google Scholar] [CrossRef] [PubMed]
- Deeming, D.C.; Du Feu, C.R. Measurement of Brood Patch Temperature of British Passerines Using an Infrared Thermometer. Bird Study 2008, 55, 139–143. [Google Scholar] [CrossRef]
- Colles, F.M.; McCarthy, N.D.; Howe, J.C.; Devereux, C.L.; Gosler, A.G.; Maiden, M.C.J. Dynamics of Campylobacter Colonization of a Natural Host, Sturnus vulgaris (European Starling). Environ. Microbiol. 2009, 11, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V. Faeco-Prevalence of Campylobacter jejuni in Urban Wild Birds and Pets in New Zealand. BMC Res. Notes 2015, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Tarifa, E.; Torralbo, A.; Borge, C.; Cerdà-Cuéllar, M.; Ayats, T.; Carbonero, A.; García-Bocanegra, I. Genetic Diversity and Antimicrobial Resistance of Campylobacter and Salmonella Strains Isolated from Decoys and Raptors. Comp. Immunol. Microbiol. Infect. Dis. 2016, 48, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Glünder, G.; Neumann, U.; Braune, S. Occurrence of Campylobacter spp. in Young Gulls, Duration of Campylobacter Infection and Reinfection by Contact. J. Vet. Med. Ser. B 1992, 39, 119–122. [Google Scholar] [CrossRef]
- Grond, K.; Sandercock, B.K.; Jumpponen, A.; Zeglin, L.H. The Avian Gut Microbiota: Community, Physiology and Function in Wild Birds. J. Avian Biol. 2018, 49, e01788. [Google Scholar] [CrossRef]
- Sun, F.; Chen, J.; Liu, K.; Tang, M.; Yang, Y. The Avian Gut Microbiota: Diversity, Influencing Factors, and Future Directions. Front. Microbiol. 2022, 13, 934272. [Google Scholar] [CrossRef]
- Aksomaitiene, J.; Ramonaite, S.; Tamuleviciene, E.; Novoslavskij, A.; Alter, T.; Malakauskas, M. Overlap of Antibiotic Resistant Campylobacter jejuni MLST Genotypes Isolated From Humans, Broiler Products, Dairy Cattle and Wild Birds in Lithuania. Front. Microbiol. 2019, 10, 1377. [Google Scholar] [CrossRef]
- Yang, Y.; Feye, K.M.; Shi, Z.; Pavlidis, H.O.; Kogut, M.; Ashworth, A.J.; Ricke, S.C. A Historical Review on Antibiotic Resistance of Foodborne Campylobacter. Front. Microbiol. 2019, 10, 1509. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Ferrando, E.; Guirado, P.; Miró, E.; Iglesias-Torrens, Y.; Navarro, F.; Alioto, T.S.; Gómez-Garrido, J.; Madrid, C.; Balsalobre, C. Tetracycline Resistance Transmission in Campylobacter Is Promoted at Temperatures Resembling the Avian Reservoir. Vet. Microbiol. 2020, 244, 108652. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Pampliega, J.; Ramiro, Y.; Herrera-Dueñas, A.; Martinez-Haro, M.; Hernández, J.M.; Aguirre, J.I.; Höfle, U. A Multidisciplinary Approach to the Evaluation of the Effects of Foraging on Landfills on White Stork Nestlings. Sci. Total Environ. 2021, 775, 145197. [Google Scholar] [CrossRef] [PubMed]
- Martín-Maldonado, B.; Rodríguez-Alcázar, P.; Fernández-Novo, A.; González, F.; Pastor, N.; López, I.; Suárez, L.; Moraleda, V.; Aranaz, A. Urban Birds as Antimicrobial Resistance Sentinels: White Storks Showed Higher Multidrug-Resistant Escherichia coli Levels Than Seagulls in Central Spain. Animals 2022, 12, 2714. [Google Scholar] [CrossRef]
- Zothanpuia; Zomuansangi, R.; Leo, V.V.; Passari, A.K.; Yadav, M.K.; Singh, B.P. Antimicrobial Sensitivity Profiling of Bacterial Communities Recovered from Effluents of Municipal Solid Waste Dumping Site. 3 Biotech 2021, 11, 37. [Google Scholar] [CrossRef]
Cut-Off Values (mg/L) | ||
---|---|---|
C. jejuni | C. coli | |
Nalidixic acid | >16.0 | >16.0 |
Ciprofloxacin | >0.5 | >0.5 |
Erythromycin | >4.0 | >8.0 |
Tetracycline | >1.0 | >2.0 |
Gentamycin | >4.0 | >4.0 |
Species * | N | Feeding a | Presence in Landfills b | Positive Birds | % | Campylobacter Species |
---|---|---|---|---|---|---|
Order Ciconiiformes | 85 | 15 | 17.6% | |||
White stork (Ciconia ciconia) | 85 | O | Y | 15 | 17.6% | C. jejuni (14), C. coli (1) |
Order Columbiformes | 28 | 0 | 0% | |||
Collared dove (Streptopelia decaocto) | 8 | H | N | 0 | 0% | |
Ringdove (Columba palumbus) | 20 | H | N | 0 | 0% | |
Order Passeriformes | 24 | 8 | 33.3% | |||
Barn swallow (Hirundo rustica) | 3 | I | N | 0 | 0% | |
Common blackbird (Turdus merula) | 4 | O | N | 1 | 25% | Campylobacter spp. (1) |
Common crow (Corvus corone) | 2 | O | Y | 1 | 50% | C. jejuni (1) |
Common raven (Corvus corax) | 1 | O | Y | 1 | 100% | C. lari (1) |
European robin (Erithacus rubecula) | 1 | I | N | 0 | 0% | |
House sparrow (Passer domesticus) | 2 | O | N | 1 | 50% | Campylobacter spp. (1) |
Red-rumped swallow (Cecropis daurica) | 1 | I | N | 1 | 100% | C. jejuni (1) |
Magpie (Pica pica) | 5 | O | Y | 0 | 0% | |
Spotless starling (Sturnus unicolor) | 2 | O | N | 1 | 50% | C. jejuni (1) |
Western jackdaw (Coloeus monedula) | 3 | O | Y | 2 | 66.7% | C. jejuni (2) |
TOTAL | 137 | 23 | 16.8% |
Variable | Category | No. of Samples | Presence | (%) | Chi-Square/Fisher Exact Test | Univariate Logistic Regression | Multivariate Logistic Regression | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
p-Value | p-Value | OR | CI95% | p-Value | OR | CI95% | |||||
Order | Ciconiiformes | 85 | 15 | 17.6% | 0.006 | Reference | Reference | ||||
Columbiformes | 28 | 0 | 0% | - | - | - | - | - | - | ||
Passeriformes | 24 | 8 | 33.3% | 0.102 | 2.33 | 0.54–6.44 | 0.074 | 35.37 | 0.70–1779.96 | ||
Feeding | Herbivore | 28 | 0 | 0% | 0.029 | - | - | - | - | - | - |
Insectivore | 5 | 1 | 20% | Reference | |||||||
Omnivore | 104 | 22 | 21.1% | 0.951 | 1.07 | 0.11–10.09 | - | - | - | ||
Presence in landfill | Yes | 96 | 19 | 19.8% | 0.213 | Reference | |||||
No | 41 | 4 | 9.7% | 0.159 | 2.28 | 0.72–7.19 | - | - | - | ||
Season of sampling | Winter | 19 | 3 | 15.8% | 0.004 | 0.16 | 3.31 | 0.61–18.04 | 0.12 | 5.05 | 0.66–38.86 |
Spring | 56 | 3 | 5.3% | Reference | Reference | ||||||
Summer | 47 | 15 | 31.9% | 0.002 | 8.28 | 2.22–30.84 | 0.029 | 8.78 | 1.31–58.74 | ||
Autumn | 15 | 2 | 13.3% | 0.3 | 2.72 | 0.41–17.98 | 0.15 | 5.98 | 0.6–59.93 | ||
Age | Adult | 82 | 8 | 9.8% | 0.010 | Reference | Reference | ||||
Young | 55 | 15 | 27.3% | 0.01 | 3.47 | 1.35–8.88 | 0.049 | 7.53 | 1.01–56.35 |
Antimicrobials (Range, mg/mL) | Campylobacter Species | MIC (>mg/L) | No. of Isolates at Each MIC (mg/mL) | Resistant Isolates (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | Among Campylobacter Species | Among Total of Campylobacter Isolates | |||
Ciprofloxacin (0.12–16) | C. jejuni | 4 * | 2 | 8 | 1 | 11/15 (73.3%) | 12/17 (70.6%) | ||||||||
C. coli | 0.5 | 1 * | 0/1 (0%) | ||||||||||||
C. lari | 1 | 1/1 (100%) | |||||||||||||
Nalidixic acid (1–64) | C. jejuni | 16.0 | 1 * | 3 | 2 | 3 | 6 ^ | 9/15 (60%) | 9/17 (52.9%) | ||||||
C. coli | 1 | 0/1 (0%) | |||||||||||||
C. lari | 1 | 0/1 (0%) | |||||||||||||
Tetracycline (0.5–64) | C. jejuni | 1.0 | 5 * | 2 | 6 | 2 ^ | 10/15 (66.7%) | 11/17 (64.7%) | |||||||
C. coli | 2.0 | 1 ^ | 1/1 (100%) | ||||||||||||
C. lari | 1.0 | 0/1 (0%) | |||||||||||||
Streptomycin (0.25–16) | C. jejuni | 4.0 | 11 | 3 | 1 | 0/15 (0%) | 1/17 (5.8%) | ||||||||
C. coli | 1 ^ | 1/1 (100%) | |||||||||||||
C. lari | 1 | 0/1 (0%) | |||||||||||||
Gentamycin (0.12–16) | C. jejuni | 2.0 | 8 * | 6 | 0/15 (0%) | 0/17 (0%) | |||||||||
C. coli | 1 | 0/1 (0%) | |||||||||||||
C. lari | 1 | 0/1 (0%) | |||||||||||||
Erythromycin (1–128) | C. jejuni | 4.0 | 15 * | 0/15 (0%) | 0/17 (0%) | ||||||||||
C. coli | 8.0 | 1 * | 0/1 (0%) | ||||||||||||
C. lari | 4.0 | 1 * | 0/1 (0%) |
Antimicrobial Resistance Pattern | Resistant Isolates (n = 14) | C. jejuni (%) | C. coli (%) | C. lari (%) | Avian Species |
---|---|---|---|---|---|
CIP | 2 (14.3%) | 1 (8.3%) | - | - | White stork (Ciconia ciconia), 1 |
- | - | 1 (100%) | Common raven (Corvus corax), 1 | ||
TET | 1 (7.1%) | 1 (8.3%) | - | - | Western jackdaw (Coloeus monedula), 1 |
CIP TET | 1 (7.1%) | 1 (8.3%) | - | - | White stork (Ciconia ciconia), 1 |
CIP NAL | 1 (7.1%) | 1 (8.3%) | - | - | White stork (Ciconia ciconia), 1 |
CIP NAL TET | 8 (57.1%) | 8 (66.7%) | - | - | White stork (Ciconia ciconia), 8 |
TET STR | 1 (7.1%) | - | 1 (100%) | - | White stork (Ciconia ciconia), 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mencía-Gutiérrez, A.; García-Peña, F.J.; González, F.; Pastor-Tiburón, N.; Pérez-Cobo, I.; Marín, M.; Martín-Maldonado, B. Exploring the Prevalence and Resistance of Campylobacter in Urban Bird Populations. Vet. Sci. 2024, 11, 210. https://doi.org/10.3390/vetsci11050210
Mencía-Gutiérrez A, García-Peña FJ, González F, Pastor-Tiburón N, Pérez-Cobo I, Marín M, Martín-Maldonado B. Exploring the Prevalence and Resistance of Campylobacter in Urban Bird Populations. Veterinary Sciences. 2024; 11(5):210. https://doi.org/10.3390/vetsci11050210
Chicago/Turabian StyleMencía-Gutiérrez, Aida, Francisco Javier García-Peña, Fernando González, Natalia Pastor-Tiburón, Iratxe Pérez-Cobo, María Marín, and Bárbara Martín-Maldonado. 2024. "Exploring the Prevalence and Resistance of Campylobacter in Urban Bird Populations" Veterinary Sciences 11, no. 5: 210. https://doi.org/10.3390/vetsci11050210
APA StyleMencía-Gutiérrez, A., García-Peña, F. J., González, F., Pastor-Tiburón, N., Pérez-Cobo, I., Marín, M., & Martín-Maldonado, B. (2024). Exploring the Prevalence and Resistance of Campylobacter in Urban Bird Populations. Veterinary Sciences, 11(5), 210. https://doi.org/10.3390/vetsci11050210