Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = Co K-edge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2516 KB  
Article
Temperature and Fluence Dependence Investigation of the Defect Evolution Characteristics of GaN Single Crystals Under Radiation with Ion Beam-Induced Luminescence
by Xue Peng, Wenli Jiang, Ruotong Chang, Hongtao Hu, Shasha Lv, Xiao Ouyang and Menglin Qiu
Quantum Beam Sci. 2026, 10(1), 2; https://doi.org/10.3390/qubs10010002 - 4 Jan 2026
Viewed by 71
Abstract
To investigate the in situ irradiation effects of gallium nitride at varying temperatures, we combined ion beam-induced luminescence spectroscopy with variable-temperature irradiation using a home-built IBIL system and a GIC4117 2 × 1.7 MV tandem accelerator. Unlike previous static studies—limited to post-irradiation or [...] Read more.
To investigate the in situ irradiation effects of gallium nitride at varying temperatures, we combined ion beam-induced luminescence spectroscopy with variable-temperature irradiation using a home-built IBIL system and a GIC4117 2 × 1.7 MV tandem accelerator. Unlike previous static studies—limited to post-irradiation or single-temperature luminescence—we in situ tracked dynamic luminescence changes throughout irradiation, directly capturing the real-time responses of luminescent centers to coupled temperature-dose variations—a rare capability in prior work. To clarify how irradiation and temperature affect the luminescent centers of GaN, we integrated density functional theory (DFT) calculations with literature analysis, then resolved the yellow luminescence band into three emission centers via Gaussian deconvolution: 1.78 eV associated with C/O impurities, 1.94 eV linked to VGa, and 2.2 eV corresponding to CN defects. Using a single-exponential decay model, we further quantified the temperature- and dose-dependent decay rates of these centers under dual-variable temperature and dose conditions. Experimental results show that low-temperature irradiation such as at 100 K suppresses the migration and recombination of VGa/CN point defects, significantly enhancing the radiation tolerance of the 1.94 eV and 2.2 eV emission centers; meanwhile, it reduces non-radiative recombination center density, stabilizing free excitons and donor-bound excitons, thereby improving near-band-edge emission center resistance. Notably, the 1.94 eV emission center linked to gallium vacancies exhibits superior cryogenic radiation tolerance due to slower defect migration and more stable free exciton/donor-bound exciton states. Collectively, these findings reveal a synergistic regulation mechanism of temperature and radiation fluence on defect stability, addressing a key gap in static studies, providing a basis for understanding degradation mechanisms of gallium nitride-based devices under actual operating conditions (coexisting temperature fluctuations and continuous radiation), and offering theoretical/experimental support for optimizing radiation-hardened gallium nitride devices for extreme environments such as space or nuclear applications. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

22 pages, 2523 KB  
Article
Network Modeling and Risk Assessment of Multi-Stakeholder-Coupled Unsafe Events in the Airspace System
by Yiming Dai, Honghai Zhang, Zongbei Shi and Yike Li
Aerospace 2025, 12(10), 923; https://doi.org/10.3390/aerospace12100923 - 13 Oct 2025
Cited by 1 | Viewed by 498
Abstract
Unsafe events in civil aviation increasingly arise from multi-stakeholder interactions, motivating system-level methods to quantify event risk and coupling. This study analyzes 1551 airspace unsafe-operation reports and models each report as a node with four attributes; edges capture co-occurrence based on cosine similarity, [...] Read more.
Unsafe events in civil aviation increasingly arise from multi-stakeholder interactions, motivating system-level methods to quantify event risk and coupling. This study analyzes 1551 airspace unsafe-operation reports and models each report as a node with four attributes; edges capture co-occurrence based on cosine similarity, and risk is scored via an entropy-weight TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) scheme. Risk scores range 0–0.858, with 7% of nodes above 0.8 forming a high-risk tail; entropy weights emphasize recovery time and hazard level. Community detection yields three modules aligned with Controller, Resource, and User stakeholders; key nodes occur predominantly in Controller and Resource groups, with Controller nodes showing the highest betweenness. Coupling analysis using an N–K perspective and edge-based inter-stakeholder strength further highlights controller-centric links. The proposed framework objectively ranks node risk, reveals cross-stakeholder coupling patterns, and isolates structurally influential events, providing evidence to prioritize monitoring and mitigation in airspace safety management. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

20 pages, 11715 KB  
Article
Hypercapnia as a Double-Edged Modulator of Innate Immunity and Alveolar Epithelial Repair: A PRISMA-ScR Scoping Review
by Elber Osorio-Rodríguez, José Correa-Guerrero, Dairo Rodelo-Barrios, María Bonilla-Llanos, Carlos Rebolledo-Maldonado, Jhonny Patiño-Patiño, Jesús Viera-Torres, Mariana Arias-Gómez, María Gracia-Ordoñez, Diego González-Betancur, Yassid Nuñez-Beyeh, Gustavo Solano-Sopó and Carmelo Dueñas-Castell
Int. J. Mol. Sci. 2025, 26(19), 9622; https://doi.org/10.3390/ijms26199622 - 2 Oct 2025
Cited by 1 | Viewed by 1123
Abstract
Lung-protective ventilation and other experimental conditions raise arterial carbon dioxide tension (PaCO2) and alter pH. Short-term benefits are reported in non-infectious settings, whereas infection and/or prolonged exposure are typically harmful. This scoping review systematically maps immune-mediated effects of hypercapnia on innate [...] Read more.
Lung-protective ventilation and other experimental conditions raise arterial carbon dioxide tension (PaCO2) and alter pH. Short-term benefits are reported in non-infectious settings, whereas infection and/or prolonged exposure are typically harmful. This scoping review systematically maps immune-mediated effects of hypercapnia on innate immunity and alveolar epithelial repair. Scoping review per Levac et al. and PRISMA Extension for Scoping Reviews (Open Science Framework protocol: 10.17605/OSF.IO/WV85T; post hoc). We searched original preclinical studies (in vivo/in vitro) in PubMed, Web of Science, ScienceDirect, Cochrane Reviews, and SciELO (2008–2023). PaCO2 (mmHg) was prioritized; %Fraction of inspired Carbon Dioxide (%FiCO2) was recorded when PaCO2 was unavailable; pH was classified as buffered/unbuffered. Data were organized by context, PaCO2, and exposure duration; synthesis used heat maps (0–120 h) and a narrative description for >120 h. Mechanistic axes extracted the following: NF-κB (canonical/non-canonical), Bcl-2/Bcl-xL–Beclin-1/autophagy, AMPK/PKA/CaMKKβ/ERK1/2 and ENaC/Na,K-ATPase trafficking, Wnt/β-catenin in AT2 cells, and miR-183/IDH2/ATP. Thirty-five studies met the inclusion criteria. In non-infectious models, a “protective window” emerged, with moderate PaCO2 and brief exposure (65–95 mmHg; ≤4–6 h), featuring NF-κB attenuation and preserved epithelial ion transport. In infectious models and/or with prolonged exposure or higher PaCO2, harmful signals predominated: reduced phagocytosis/autophagy (Bcl-2/Bcl-xL–Beclin-1 axis), AMPK/PKA/ERK1/2-mediated internalization of ENaC/Na,K-ATPase, depressed β-catenin signaling in AT2 cells, impaired alveolar fluid clearance, and increased bacterial burden. Chronic exposures (>120 h) reinforced injury. Hypercapnia is a context-, dose-, time-, and pH-dependent double-edged modulator. The safe window is narrow; standardized, parallel reporting of PaCO2 and pH—with explicit comparisons of buffered vs. unbuffered hypercapnia—is essential to guide clinical translation. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Acute Lung Injury)
Show Figures

Figure 1

36 pages, 4983 KB  
Article
Application of Multivariate Exponential Random Graph Models in Small Multilayer Networks: Latin America, Tariffs, and Importation
by Oralia Nolasco-Jáuregui, Luis Alberto Quezada-Téllez, Yuri Salazar-Flores and Adán Díaz-Hernández
Mathematics 2025, 13(19), 3078; https://doi.org/10.3390/math13193078 - 25 Sep 2025
Viewed by 1023
Abstract
This work is framed as an application of static and small exponential random graph models for complex networks in multiple layers. This document revisits the small network and exhibits its potential. Examining the bibliography reveals considerable interest in large and dynamic complex networks. [...] Read more.
This work is framed as an application of static and small exponential random graph models for complex networks in multiple layers. This document revisits the small network and exhibits its potential. Examining the bibliography reveals considerable interest in large and dynamic complex networks. This research examines the application of small networks (50,000 population) for analyzing global commerce, conducting a comparative graph structure of the tariffs, and importing multilayer networks. The authors created and described the scenario where the readers can compare the graph models visually, at a glance. The proposed methodology represents a significant contribution, providing detailed descriptions and instructions, thereby ensuring the operational effectiveness of the application. The method is organized into five distinct blocks (Bn) and an accompanying appendix containing reproduction notes. Each block encompasses a primary task and associated sub-tasks, articulated through a hierarchical series of steps. The most challenging mathematical aspects of a small network analysis pertain to modeling and sample selection (sel_p). This document describes several modeling tasks that confirm that sel_p = 10 is the best option, including modeling the edges and the convergence and covariance model parameters, modeling the node factor by vertex names, Pearson residual distributions, goodness of fit, and more. This method establishes a foundation for addressing the intricate questions derived from the established hypotheses. It provides eight model specifications and a detailed description. Given the scope of this investigation, a historical examination of the relationships between different network actors is deemed essential, providing context for the study of actors engaged in global trade. Various analytical perspectives (six), encompassing degree analyses, diameter and edges, hubs and authority, co-citation and cliques in mutual and collapse approaches, k-core, and clustering, facilitate the identification of the specific roles played by actors within the importation network in comparison to the tariff network. This study focuses on the Latin American and Caribbean region. Full article
Show Figures

Figure 1

18 pages, 4716 KB  
Article
Supercritical Fluids as Alternative Insulation and Arc-Quenching Medium
by Alfonso J. Cruz Feliciano, Zhiyang Jin and Lukas Graber
Appl. Sci. 2025, 15(18), 9986; https://doi.org/10.3390/app15189986 - 12 Sep 2025
Cited by 1 | Viewed by 996
Abstract
This paper reviews the historical progression of arc-quenching media and examines the unique properties of supercritical carbon dioxide (scCO2), including its transport characteristics, electrical breakdown resilience, and structural behavior. Through analysis of ionization mechanisms, mean free path, and heat dissipation, scCO [...] Read more.
This paper reviews the historical progression of arc-quenching media and examines the unique properties of supercritical carbon dioxide (scCO2), including its transport characteristics, electrical breakdown resilience, and structural behavior. Through analysis of ionization mechanisms, mean free path, and heat dissipation, scCO2 emerges as a viable insulating and arc-quenching medium, offering competitive performance and reduced environmental impact. Projected performance metrics for arcing time and dielectric strength show scCO2’s competitive edge. The limitations of alternative supercritical fluids and the potential benefits of scCO2 mixtures are discussed. In addition, the paper highlights the development of the first 72 kV scCO2 AC circuit breaker, marking a significant step toward sustainable high-voltage applications. This work positions scCO2 as a viable, environmentally friendly alternative to SF6, with promising implications for future power systems. Full article
Show Figures

Figure 1

23 pages, 3668 KB  
Article
Graph-Driven Micro-Expression Rendering with Emotionally Diverse Expressions for Lifelike Digital Humans
by Lei Fang, Fan Yang, Yichen Lin, Jing Zhang and Mincheol Whang
Biomimetics 2025, 10(9), 587; https://doi.org/10.3390/biomimetics10090587 - 3 Sep 2025
Viewed by 1133
Abstract
Micro-expressions, characterized by brief and subtle facial muscle movements, are essential for conveying nuanced emotions in digital humans, yet existing rendering techniques often produce rigid or emotionally monotonous animations due to the inadequate modeling of temporal dynamics and action unit interdependencies. This paper [...] Read more.
Micro-expressions, characterized by brief and subtle facial muscle movements, are essential for conveying nuanced emotions in digital humans, yet existing rendering techniques often produce rigid or emotionally monotonous animations due to the inadequate modeling of temporal dynamics and action unit interdependencies. This paper proposes a graph-driven framework for micro-expression rendering that generates emotionally diverse and lifelike expressions. We employ a 3D-ResNet-18 backbone network to perform joint spatio-temporal feature extraction from facial video sequences, enhancing sensitivity to transient motion cues. Action units (AUs) are modeled as nodes in a symmetric graph, with edge weights derived from empirical co-occurrence probabilities and processed via a graph convolutional network to capture structural dependencies and symmetric interactions. This symmetry is justified by the inherent bilateral nature of human facial anatomy, where AU relationships are based on co-occurrence and facial anatomy analysis (as per the FACS), which are typically undirected and symmetric. Human faces are symmetric, and such relationships align with the design of classic spectral GCNs for undirected graphs, assuming that adjacency matrices are symmetric to model non-directional co-occurrences effectively. Predicted AU activations and timestamps are interpolated into continuous motion curves using B-spline functions and mapped to skeletal controls within a real-time animation pipeline (Unreal Engine). Experiments on the CASME II dataset demonstrate superior performance, achieving an F1-score of 77.93% and an accuracy of 84.80% (k-fold cross-validation, k = 5), outperforming baselines in temporal segmentation. Subjective evaluations confirm that the rendered digital human exhibits improvements in perceptual clarity, naturalness, and realism. This approach bridges micro-expression recognition and high-fidelity facial animation, enabling more expressive virtual interactions through curve extraction from AU values and timestamps. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

40 pages, 1777 KB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Cited by 5 | Viewed by 6250
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

23 pages, 15083 KB  
Article
Reactivity of Shale to Supercritical CO2: Insights from Microstructural Characterization and Mineral Phase Evolution in Caney Shales for CCUS Applications
by Loic Bethel Dje and Mileva Radonjic
Materials 2025, 18(14), 3382; https://doi.org/10.3390/ma18143382 - 18 Jul 2025
Cited by 2 | Viewed by 853
Abstract
Understanding mineral–fluid interactions in shale under supercritical CO2 (scCO2) conditions is relevant for assessing long-term geochemical containment. This study characterizes mineralogical transformations and elemental redistribution in five Caney Shale samples serving as proxies for reservoir (R1, R2, R3) and caprock [...] Read more.
Understanding mineral–fluid interactions in shale under supercritical CO2 (scCO2) conditions is relevant for assessing long-term geochemical containment. This study characterizes mineralogical transformations and elemental redistribution in five Caney Shale samples serving as proxies for reservoir (R1, R2, R3) and caprock (D1, D2) facies, subjected to 30-day static exposure to pure scCO2 at 60 °C and 17.23 MPa (2500 psi), with no brine or impurities introduced. SEM-EDS analyses were conducted before and after exposure, with mineral phases classified into silicates, carbonates, sulfides, and organic matter. Initial compositions were dominated by quartz (38–47 wt.%), illite (16–23 wt.%), carbonates (12–18 wt.%), and organic matter (8–11 wt.%). Post-exposure, carbonate loss ranged from 15 to 40% in reservoir samples and up to 20% in caprock samples. Illite and K-feldspar showed depletion of Fe2+, Mg2+, and K+ at grain edges and cleavages, while pyrite underwent oxidation with Fe redistribution. Organic matter exhibited scCO2-induced surface alteration and apparent sorption effects, most pronounced in R2 and R3. Elemental mapping revealed Ca2+, Mg2+, Fe2+, and Si4+ mobilization near reactive interfaces, though no secondary mineral precipitates formed. Reservoir samples developed localized porosity, whereas caprock samples retained more structural clay integrity. The results advance understanding of mineral reactivity and elemental fluxes in shale-based CO2 sequestration. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Graphical abstract

12 pages, 1442 KB  
Article
Reversible Binding of Nitric Oxide in a Cu(II)-Containing Microporous Metal-Organic Framework
by Konstantin A. Bikov, Götz Schuck and Peter A. Georgiev
Molecules 2025, 30(14), 3007; https://doi.org/10.3390/molecules30143007 - 17 Jul 2025
Viewed by 811
Abstract
We studied the adsorption thermodynamics and mechanism behind the binding of nitric oxide (NO) in the interior surfaces and structural fragments of the high metal center density microporous Metal-Organic Framework (MOF) CPO-27-Cu, by gas sorption, at a series of temperatures. For the purpose [...] Read more.
We studied the adsorption thermodynamics and mechanism behind the binding of nitric oxide (NO) in the interior surfaces and structural fragments of the high metal center density microporous Metal-Organic Framework (MOF) CPO-27-Cu, by gas sorption, at a series of temperatures. For the purpose of comparison, we also measured the corresponding CO2 adsorption isotherms, and as a result, the isosteric heats of adsorption for the two studied adsorptives were derived, being in the range of 12–15 kJ/mol for NO at loadings up to 0.5 NO molecules per formula unit (f.u.) of the bare compound (C4O3HCu), and 23–25 kJ/mol CO2 in the range 0–1 CO2 per f.u. Microscopically, the mode of NO binding near the square pyramid Cu(II) centers was directly accessed with the use of in situ NO gas adsorption X-ray Absorption Spectroscopy (XAS). Additionally, during the vacuum/temperature activation of the material and consequent NO adsorption, the electronic state of the Cu-species was monitored by observing the corresponding X-ray Near Edge Spectra (XANES). Contrary to the previously anticipated chemisorption mechanism for NO binding at Cu(II) species, we found that at slightly elevated temperatures, under ambient, but also cryogenic conditions, only relatively weak physisorption takes place, with no evidence for a particular adsorption preference to the coordinatively unsaturated Cu-centers of the material. Full article
(This article belongs to the Special Issue Functional Porous Frameworks: Synthesis, Properties, and Applications)
Show Figures

Figure 1

21 pages, 12231 KB  
Article
Efficient CoM Motion Planning for Quadruped Robots’ Quasi-Static Walking
by Milutin Nikolić, Vladimir Mitić, Srđan Savić and Tianwei Zhang 
Actuators 2025, 14(5), 202; https://doi.org/10.3390/act14050202 - 23 Apr 2025
Viewed by 2076
Abstract
With the popularity of quadruped robots, the main challenge they must overcome is traversing unstructured environments. Current methods that allow modern robots to traverse challenging terrain are unsuitable for situations at the edge of robot performance, where torque limits and contact forces must [...] Read more.
With the popularity of quadruped robots, the main challenge they must overcome is traversing unstructured environments. Current methods that allow modern robots to traverse challenging terrain are unsuitable for situations at the edge of robot performance, where torque limits and contact forces must be carefully considered. This paper will investigate a way of generating feasible center of mass (CoM) trajectories applicable in such cases. A feasible CoM trajectory is one that the robot can perform considering contact, torque, and reachability constraints. We improve the existing method for finding feasible CoM regions, yielding a thirty times speedup so that it can run under 1 ms. Based on that improvement, we introduce a new iterative CoM planner that sequentially solves prioritized constrained IK and computes feasible regions. That way, we guarantee the satisfaction of contact constraints, torque constraints, and reachability. The planned motion was performed using a whole-body controller. We tested the approach on high-fidelity simulation and on real Solo12 quadruped, achieving the control loop frequency of 1 kHz. The whole codebase has been disclosed on GitHub. Full article
(This article belongs to the Special Issue Dynamics and Control of Underactuated Systems)
Show Figures

Figure 1

18 pages, 2882 KB  
Article
CGD-CD: A Contrastive Learning-Guided Graph Diffusion Model for Change Detection in Remote Sensing Images
by Yang Shang, Zicheng Lei, Keming Chen, Qianqian Li and Xinyu Zhao
Remote Sens. 2025, 17(7), 1144; https://doi.org/10.3390/rs17071144 - 24 Mar 2025
Viewed by 3705
Abstract
With the rapid development of remote sensing technology, the question of how to leverage large amounts of unlabeled remote sensing data to detect changes in multi-temporal images has become a significant challenge. Self-supervised methods (SSL) for remote sensing image change detection (CD) can [...] Read more.
With the rapid development of remote sensing technology, the question of how to leverage large amounts of unlabeled remote sensing data to detect changes in multi-temporal images has become a significant challenge. Self-supervised methods (SSL) for remote sensing image change detection (CD) can effectively address the issue of limited labeled data. However, most SSL algorithms for CD in remote sensing image rely on convolutional neural networks with fixed receptive fields as their feature extraction backbones, which limits their ability to capture objects of varying scales and model global contextual information in complex scenes. Additionally, these methods fail to capture essential topological and structural information from remote sensing images, resulting in a high false positive rate. To address these issues, we introduce a graph diffusion model into the field of CD and propose a novel network architecture called CGD-CD Net, which is driven by a structure-sensitive SSL strategy based on contrastive learning. Specifically, a superpixel segmentation algorithm is applied to bi-temporal images to construct graph nodes, while the k-nearest neighbors algorithm is used to define edge connections. Subsequently, a diffusion model is employed to balance the states of nodes within the graph, enabling the co-evolution of adjacency relationships and feature information, thereby aggregating higher-order feature information to obtain superior feature embeddings. The network is trained with a carefully crafted contrastive loss function to effectively capture high-level structural information. Ultimately, high-quality difference images are generated from the extracted bi-temporal features, then use thresholding analysis to obtain a final change map. The effectiveness and feasibility of the suggested method are confirmed by experimental results on three different datasets, which show that it performs better than several of the top SSL-CD methods. Full article
Show Figures

Figure 1

24 pages, 4959 KB  
Article
Feature of Nonlinear Electromagnetic Properties and Local Atomic Structure of Metals in Two Systems of Nanocomposites Cox(MgF2)100−x and (CoFeZr)x(MgF2)100−x
by Evelina Pavlovna Domashevskaya, Sergey Alexandrovich Ivkov, Elena Alexandrovna Ganshina, Lyubov Vladimirovna Guda, Valeriy Grigoryevich Vlasenko and Alexander Victorovich Sitnikov
Nanomaterials 2025, 15(6), 463; https://doi.org/10.3390/nano15060463 - 19 Mar 2025
Viewed by 778
Abstract
Based on modern concepts of the nonlinear percolation mechanisms of electrical and magnetic properties in granular metal–dielectric nanocomposites, the authors present for the first time a comparative analysis of their own results of a comprehensive study of nonlinear electromagnetic properties in two nanocomposite [...] Read more.
Based on modern concepts of the nonlinear percolation mechanisms of electrical and magnetic properties in granular metal–dielectric nanocomposites, the authors present for the first time a comparative analysis of their own results of a comprehensive study of nonlinear electromagnetic properties in two nanocomposite systems: metal–dielectric Cox(MgF2)100−x and alloy–dielectric (CoFeZr)x(MgF2)100−x, obtained by ion-beam sputtering of composite targets in a wide range of different compositions. For the first time, the features of the influence of atomic composition and structural-phase transitions on nonlinear magnetoresistive, magnetic, and magneto-optical properties in two systems are presented in comparison, one of which, Cox(MgF2)100−x, showed soft magnetic properties, and the second, (CoFeZr)x(MgF2)100−x, hard magnetic properties, during the transition from the superparamagnetic to the ferromagnetic state. Moreover, for the first time, the concentration dependences of the oscillating fine structure of XANES K-absorption edges of Co atoms in the first system and Co and Fe atoms in the second system are presented, which undergo changes at the percolation thresholds in each of the two systems and thus confirm the nonlinear nature of the electromagnetic properties changes in each of the two systems at the atomic level. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

12 pages, 649 KB  
Article
High-Coercivity Ferrimagnet Co₂FeO₂BO₃: XMCD Insights into Charge-Ordering and Cation Distribution
by Mikhail S. Platunov
Inorganics 2025, 13(1), 24; https://doi.org/10.3390/inorganics13010024 - 15 Jan 2025
Viewed by 1659
Abstract
The multi-sublattice ferrimagnet Co2FeO2BO3, a prominent example of lanthanide-free magnets, was the subject of element-selective studies using X-ray magnetic circular dichroism (XMCD) observations at the L- and K- X-ray absorption edges. Research findings indicate that [...] Read more.
The multi-sublattice ferrimagnet Co2FeO2BO3, a prominent example of lanthanide-free magnets, was the subject of element-selective studies using X-ray magnetic circular dichroism (XMCD) observations at the L- and K- X-ray absorption edges. Research findings indicate that the distinct magnetic characteristics of Co2FeO2BO3, namely its remarkable high coercivity (which surpasses 7 Tesla at low temperatures), originate from an atypical arrangement of magnetic ions in the crystal structure (sp.gr. Pbam). The antiferromagnetic nature of the Co2+-O-Fe3+ exchange interaction was confirmed by identifying the spin and orbital contributions to the total magnetization from Co (mL = 0.27 ± 0.1 μB/ion and meffS = 0.53 ± 0.1 μB/ion) and Fe (mL = 0.05 ± 0.1 μB/ion and meffS = 0.80 ± 0.1 μB/ion) ions through element-selective XMCD analysis. Additionally, the research explicitly revealed that the strong magnetic anisotropy is a result of the significant unquenched orbital magnetic moment of Co, a feature that is also present in the related compound Co3O2BO3. A complex magnetic structure in Co2FeO2BO3, with infinite Co²⁺O6 layers in the bc-plane and strong antiferromagnetic coupling through Fe3⁺ ions, is suggested by element-selective hysteresis data, which revealed that Co²⁺ ions contribute both antiferromagnetic and ferromagnetic components to the total magnetization. The findings underline the suitability of Co2FeO2BO3 for applications in extreme environments, such as low temperatures and high magnetic fields, where its unique magnetic topology and anisotropy can be harnessed for advanced technologies, including materials for space exploration and quantum devices. This XMCD study opens the door to the production of novel high-coercivity, lanthanide-free magnetic materials by showing that targeted substitution at specific crystallographic sites can significantly enhance the magnetic properties of such materials. Full article
(This article belongs to the Special Issue Inorganic Materials for Applications in Extreme Environments)
Show Figures

Graphical abstract

20 pages, 688 KB  
Article
The Role of Atmospheric Composition in Defining the Habitable Zone Limits and Supporting E. coli Growth
by Asena Kuzucan, Emeline Bolmont, Guillaume Chaverot, Jaqueline Quirino Ferreira, Bastiaan Willem Ibelings, Siddharth Bhatnagar and Daniel Frank McGinnis
Life 2025, 15(1), 79; https://doi.org/10.3390/life15010079 - 10 Jan 2025
Cited by 4 | Viewed by 3262
Abstract
Studying exoplanet atmospheres is essential for assessing their potential to host liquid water and their capacity to support life (their habitability). Each atmosphere uniquely influences the likelihood of surface liquid water, defining the habitable zone (HZ)—the region around a star where liquid water [...] Read more.
Studying exoplanet atmospheres is essential for assessing their potential to host liquid water and their capacity to support life (their habitability). Each atmosphere uniquely influences the likelihood of surface liquid water, defining the habitable zone (HZ)—the region around a star where liquid water can exist. However, being within the HZ does not guarantee habitability, as life requires more than just liquid water. In this study, we adopted a two-pronged approach. First, we estimated the surface conditions of planets near the HZ’s inner edge under various atmospheric compositions. By utilizing a 3D climate model, we refined the inner boundaries of the HZ for planets with atmospheres dominated by H2 and CO2 for the first time. Second, we investigated microbial survival in these environments, conducting laboratory experiments on the growth and survival of E. coli K-12, focusing on the impact of different gas compositions. This innovative combination of climate modeling and biological experiments bridges theoretical climate predictions with biological outcomes. Our findings indicate that atmospheric composition significantly affects bacterial growth patterns, highlighting the importance of considering diverse atmospheres in evaluating exoplanet habitability and advancing the search for life beyond Earth. Full article
(This article belongs to the Section Astrobiology)
Show Figures

Figure 1

21 pages, 7055 KB  
Article
KOH Activation Mechanism in the Preparation of Brewer’s Spent Grain-Based Activated Carbons
by Pengbo Liu, Shuo Sun, Sheng Huang, Youqing Wu, Xueqin Li, Xiao Wei and Shiyong Wu
Catalysts 2024, 14(11), 814; https://doi.org/10.3390/catal14110814 - 12 Nov 2024
Cited by 30 | Viewed by 8809
Abstract
Understanding the mechanism of KOH activation in the preparation of activated carbon (AC) enables more efficient utilization of biomass. In this study, brewer’s spent grains (BSGs) were carbonized at 500 °C to produce biochar (BC), followed by KOH activation under different activation conditions. [...] Read more.
Understanding the mechanism of KOH activation in the preparation of activated carbon (AC) enables more efficient utilization of biomass. In this study, brewer’s spent grains (BSGs) were carbonized at 500 °C to produce biochar (BC), followed by KOH activation under different activation conditions. The gas and solid products generated during the activation process were analyzed by gas chromatography (GC), X-ray diffraction (XRD), Raman analysis, a surface area and pore size analyzer, and X-ray photoelectron spectroscopy (XPS). The results show that increasing the KOH/BC ratio or the activation temperature could both promote gas production. XPS results indicated that the activator reacted first with -COOH and then with -OH of ACs, with AC5-700 having the highest C-OH content (50.04%). As the KOH/BC ratio increased, more aromatic structures were destroyed, and the porosity of ACs was significantly enhanced, with AC7-700 having the highest Brunauer–Emmett–Teller (BET) specific surface area (SBET) (2997.69 m2/g). At low temperatures, KOH reacted with the active groups of BC and carbon at the edge of the aromatic structure. At high temperatures, the activator (KOH, K2O, and K2CO3) reacted with carbon in the aromatic structure to generate a large number of pores on ACs and expand them. ACs exhibited more pores with higher KOH addition, and a higher activation temperature did not generate more new pores, but expanded the pores more significantly than high KOH addition. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

Back to TopTop