Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (689)

Search Parameters:
Keywords = Co–Cr–Mo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 609 KiB  
Article
Leaching of Potentially Toxic Elements from Paper and Plastic Cups in Hot Water and Their Health Risk Assessment
by Mahmoud Mohery, Kholoud Ahmed Hamam, Sheldon Landsberger, Israa J. Hakeem and Mohamed Soliman
Toxics 2025, 13(8), 626; https://doi.org/10.3390/toxics13080626 - 26 Jul 2025
Viewed by 331
Abstract
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve [...] Read more.
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve potentially toxic elements, namely As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Pb, Sb, V, and Zn, were determined in leachates, revealing significant variability in mass fractions between paper and plastic cups, with plastic cups demonstrating greater leaching potential. Health risk assessments, including hazard quotient (HQ) and excess lifetime cancer risk (ELCR), indicated minimal non-carcinogenic and carcinogenic risks for most elements, except Pb, which posed elevated non-carcinogenic risk, especially in plastic cups. Children showed higher relative exposure levels compared to adults due to their lower body weights (the HQ in children is two times greater than in adults). Overall, the findings of the current study underscore the need for stricter monitoring and regulation of materials used in disposable cups, especially plastic ones, to mitigate potential health risks. Future investigations should assess the leaching behavior of potentially toxic elements under conditions that accurately mimic real-world usage. Such investigations ought to incorporate a systematic evaluation of diverse temperature regimes, varying exposure durations, and different beverage types. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

13 pages, 2184 KiB  
Article
A Comparative Study on the High-Temperature Oxidation Behavior and Mechanisms of Micro/Nanoparticle Composite-Modified Chromium Carbide Metal Ceramic Coatings
by Linwen Wang, Jiawei Wang, Haiyang Lu, Jiyu Du, Xiaoxia Qi, Laixiao Lu and Ziwu Liu
Coatings 2025, 15(7), 826; https://doi.org/10.3390/coatings15070826 - 15 Jul 2025
Viewed by 212
Abstract
To enhance the high-temperature oxidation resistance of chromium carbide metal ceramic coatings, micro/nanoparticle modification was applied to the alloy binder phase of the typical Cr3C2-NiCr coating. This led to the development of Cr3C2-NiCrCoMo and Cr [...] Read more.
To enhance the high-temperature oxidation resistance of chromium carbide metal ceramic coatings, micro/nanoparticle modification was applied to the alloy binder phase of the typical Cr3C2-NiCr coating. This led to the development of Cr3C2-NiCrCoMo and Cr3C2-NiCrCoMo/nano-CeO2 coatings with superior high-temperature oxidation performance. This study compares the high-temperature oxidation behavior of these coating samples and explores their respective oxidation mechanisms. The results indicate that the addition of CoCrMo improves the compatibility between the oxide film and the coating, enhancing the microstructure and integrity of the oxide film. Compared to Cr3C2-NiCrCoMo coatings, the incorporation of nano-CeO2 promotes the reaction between oxides in the Cr3C2-NiCrCoMo/nano-CeO2 coating, increasing the content of binary spinel phases, reducing thermal stress at the oxide–coating interface, and improving the adhesion strength of the oxide film. As a result, the oxidation rate of the coating is reduced, and its oxidation resistance is improved. Full article
(This article belongs to the Special Issue Ceramic-Based Coatings for High-Performance Applications)
Show Figures

Figure 1

33 pages, 20199 KiB  
Review
Composition Optimization in Alloy Design for Nickel-Based Single Crystal Superalloy: A Review
by Yu Zhou, Xinbao Zhao, Yunpeng Fan, Quanzhao Yue, Wanshun Xia, Qinghai Pan, Yuan Cheng, Weiqi Li, Yuefeng Gu and Ze Zhang
Metals 2025, 15(7), 793; https://doi.org/10.3390/met15070793 - 13 Jul 2025
Viewed by 364
Abstract
This article presents a review of the composition optimization progress of nickel-based single crystal (SC) superalloy design in recent years in order to obtain better high-temperature performance for the development of the aviation industry. The influence of alloying elements on the creep resistance, [...] Read more.
This article presents a review of the composition optimization progress of nickel-based single crystal (SC) superalloy design in recent years in order to obtain better high-temperature performance for the development of the aviation industry. The influence of alloying elements on the creep resistance, microstructure characteristics, oxidation resistance, castability, density, and cost of superalloys is analyzed and discussed. In order to obtain better high-temperature performance, the content of refractory elements (Ta + Re + W + Mo) and Co was increased gradually. The addition of Ru was added in the fourth-generation nickel-based SC superalloy to stabilize the microstructures and suppress the precipitation of the topologically close-packed (TCP) phase. However, the content of the antioxidant element Cr significantly decreased, while the synergistic effect of Al, Cr, and Ta received more attention. Therefore, synergistic effects should also receive more attention to meet the practical needs of reducing the content of refractory elements to reduce costs and density in future single crystal alloy designs without compromising critical performance. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 2054 KiB  
Data Descriptor
Data on Brazilian Powdered Milk Formulations for Infants of Various Age Groups: 0–6 Months, 6–12 Months, and 12–36 Months
by Francisco José Mendes dos Reis, Antonio Marcos Jacques Barbosa, Elaine Silva de Pádua Melo, Marta Aratuza Pereira Ancel, Rita de Cássia Avellaneda Guimarães, Priscila Aiko Hiane, Flavio Santana Michels, Daniele Bogo, Karine de Cássia Freitas Gielow, Diego Azevedo Zoccal Garcia, Geovanna Vilalva Freire, João Batista Gomes de Souza and Valter Aragão do Nascimento
Data 2025, 10(7), 114; https://doi.org/10.3390/data10070114 - 9 Jul 2025
Viewed by 323
Abstract
Milk powder is a key nutritional alternative to breastfeeding, but its thermal properties, which vary with temperature, can affect its quality and shelf life. However, there is little information about the physical and chemical properties of powdered milk in several countries. This dataset [...] Read more.
Milk powder is a key nutritional alternative to breastfeeding, but its thermal properties, which vary with temperature, can affect its quality and shelf life. However, there is little information about the physical and chemical properties of powdered milk in several countries. This dataset contains the result of an analysis of the aflatoxins, macroelement and microelement concentrations, oxidative stability, and fatty acid profile of infant formula milk powder. The concentrations of Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Se, V, and Zn in digested powdered milk samples were quantified through inductively coupled plasma optical emission spectrometry (ICP OES). Thermogravimetry (TG) and differential scanning calorimetry (DSC) were used to estimate the oxidative stability of infant formula milk powder, while the methyl esters of the fatty acids were analyzed by gas chromatography. Most milk samples showed significant concentrations of As (0.5583–1.3101 mg/kg) and Pb (0.2588–0.0847 mg/kg). The concentrations of aflatoxins G2 and B2 are below the limits established by Brazilian regulatory agencies. The thermal degradation behavior of the samples is not the same due to their fatty acid compositions. The data presented may be useful in identifying compounds present in infant milk powder used as a substitute for breast milk and understanding the mechanism of thermal stability and degradation, ensuring food safety for those who consume them. Full article
Show Figures

Figure 1

17 pages, 15703 KiB  
Article
Improving of Thermoelectric Efficiency of Layered Sodium Cobaltite Through Its Doping by Different Metal Oxides
by Natalie S. Krasutskaya, Ekaterina A. Chizhova, Julia A. Zizika, Alexey V. Buka, Hongchao Wang and Andrei I. Klyndyuk
Ceramics 2025, 8(3), 86; https://doi.org/10.3390/ceramics8030086 - 5 Jul 2025
Viewed by 360
Abstract
Na0.89Co0.90Me0.10O2 (Me = Cr, Ni, Mo, W, Pb, and Bi) ceramic samples were prepared using a solid-state reaction method, and their crystal structure, microstructure, and electrical, thermal, and thermoelectric properties were investigated. The effect [...] Read more.
Na0.89Co0.90Me0.10O2 (Me = Cr, Ni, Mo, W, Pb, and Bi) ceramic samples were prepared using a solid-state reaction method, and their crystal structure, microstructure, and electrical, thermal, and thermoelectric properties were investigated. The effect of the nature of the doping metal (Me = Cr, Ni, Mo, W, and Bi) on the structure and properties of layered sodium cobaltite Na0.89CoO2 was analyzed. The largest Seebeck coefficient (616 μV/K at 1073 K) and figure-of-merit (1.74 at 1073 K) values among the samples studied were demonstrated by the Na0.89Co0.9Bi0.1O2 solid solution, which was also characterized by the lowest value of the dimensionless relative self-compatibility factor of about 8% within the 673–873 K temperature range. The obtained results demonstrate that doping of layered sodium cobaltite by transition and heavy metal oxides improves its microstructure and thermoelectric properties, which shows the prospectiveness of the used doping strategy for the development of new thermoelectric oxides with enhanced thermoelectric characteristics. It was also shown that samples with a higher sodium content (Na:Co = 0.89:1) possessed higher chemical and thermal stability than those with a lower sodium content (Na:Co = 0.55:1), which makes them more suitable for practical applications. Full article
Show Figures

Graphical abstract

14 pages, 6081 KiB  
Article
Investigation on Tensile Behavior of Solid Solution-Strengthened Ni-Co-Cr-Based Superalloy During Long-Term Aging
by Wanqi Hou, Xianjun Guan, Jiaqi Wang, Jinrong Wu, Lanzhang Zhou and Zheng Jia
Crystals 2025, 15(7), 617; https://doi.org/10.3390/cryst15070617 - 30 Jun 2025
Viewed by 211
Abstract
This study investigated how long-term aging (750 °C and 950 °C) affects the microstructure and room-temperature tensile properties of the Ni-Co-Cr superalloy GH3617. Characterization (SEM, EDS, EBSD) showed that initial aging (750 °C, 500 h) formed discontinuous M23C6 carbides, pinning [...] Read more.
This study investigated how long-term aging (750 °C and 950 °C) affects the microstructure and room-temperature tensile properties of the Ni-Co-Cr superalloy GH3617. Characterization (SEM, EDS, EBSD) showed that initial aging (750 °C, 500 h) formed discontinuous M23C6 carbides, pinning grain boundaries and improving strength. Prolonged aging (750 °C, 5000 h) caused M23C6 to coarsen into brittle chain-like structures (width up to 1.244 μm) and precipitated M6C carbides, degrading grain boundaries. Aging at 950 °C accelerated this coarsening via LSW kinetics (rate constant: 6.83 × 10−2 μm3/s), with Mo segregation promoting M6C formation. Tensile properties resulted from competing γ′ precipitation strengthening (post-aging strength increased up to 23.3%) and grain boundary degradation (elongation dropped from 70.1% to 43.3%). Fracture shifted from purely intergranular (cracks along M23C6/γ interfaces at 750 °C) to mixed mode (cracks initiated by M6C fragmentation at 950 °C). These insights support superalloy microstructure optimization and lifetime prediction. Full article
(This article belongs to the Special Issue Crystal Plasticity (4th Edition))
Show Figures

Figure 1

18 pages, 5372 KiB  
Article
Effect of B4C Reinforcement on the Mechanical Properties and Corrosion Resistance of CoCrMo, Ti, and 17-4 PH Alloys
by Ömer Faruk Güder, Ertuğrul Adıgüzel and Aysel Ersoy
Appl. Sci. 2025, 15(13), 7284; https://doi.org/10.3390/app15137284 - 27 Jun 2025
Viewed by 273
Abstract
This study investigates the effect of boron carbide (B4C) ceramic reinforcement on the microstructural, mechanical, electrical, and electrochemical properties of CoCrMo, Ti, and 17-4 PH alloys produced via powder metallurgy for potential biomedical applications. A systematic experimental design was employed, incorporating [...] Read more.
This study investigates the effect of boron carbide (B4C) ceramic reinforcement on the microstructural, mechanical, electrical, and electrochemical properties of CoCrMo, Ti, and 17-4 PH alloys produced via powder metallurgy for potential biomedical applications. A systematic experimental design was employed, incorporating varying B4C contents into each matrix through mechanical alloying, cold pressing, and vacuum sintering. The microstructural integrity and dispersion of B4C were examined using scanning electron microscopy. The performance of the materials was evaluated using several methods, including Vickers hardness, pin-on-disk wear testing, ultrasonic elastic modulus measurements, electrical conductivity, and electrochemical assessments (potentiodynamic polarization and EIS). This study’s findings demonstrated that B4C significantly enhanced the hardness and wear resistance of all alloys, especially Ti- and CoCrMo-based systems. However, an inverse correlation was observed between B4C content and corrosion resistance, especially in 17-4 PH matrices. Ti-5B4C was identified as the most balanced composition, exhibiting high wear resistance, low corrosion rate and elastic modulus values approaching those of human bone. Weibull analysis validated the consistency and reliability of key performance metrics. The results show that adding B4C can change the properties of biomedical alloys, offering engineering advantages for B4C-reinforced biomedical implants. Ti-B4C composites exhibit considerable potential for application in advanced implant technologies. Full article
Show Figures

Figure 1

17 pages, 2031 KiB  
Article
Geochemical Characteristics and Paleoenvironmental Significance of the Xishanyao Formation Coal from the Xiheishan Mining Area, Zhundong Coalfield, Xinjiang, China
by Yongjie Hou, Kaixuan Zhang, Xiangcheng Jin, Yongjia Xu, Xiaotao Xu and Xiaoyun Yan
Minerals 2025, 15(7), 686; https://doi.org/10.3390/min15070686 - 27 Jun 2025
Viewed by 251
Abstract
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1 [...] Read more.
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1, B2, B3, and B5 coal seams of the Xishanyao Formation using X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to assess geochemical indicators of the depositional environment during coal formation. The results show that the coal samples are characterized by high inertinite content and low vitrinite reflectance, indicative of low-rank coal. Slight enrichment of strontium (Sr) was observed in the B1, B2, and B5 seams, while cobalt (Co) showed minor enrichment in B3. Redox-sensitive elemental ratios (Ni/Co, V/Cr, and Mo) suggest that the peat-forming environment ranged from oxidizing to dysoxic conditions, with relatively high oxygen availability and strong hydrodynamic activity. A vertical trend of increasing paleosalinity and a shift from warm–humid to dry–hot paleoclimatic conditions was identified from the lower (B1) to upper (B5) coal seams. Additionally, the estimated atmospheric oxygen concentration during the Middle Jurassic was approximately 28.4%, well above the threshold for wildfire combustion. These findings provide new insights into the paleoenvironmental evolution of the Xishanyao Formation and offer a valuable geochemical framework for coal exploration and the assessment of coal-associated mineral resources in the eastern Junggar Basin. Full article
Show Figures

Figure 1

16 pages, 1969 KiB  
Article
Environmental Sustainability of High-Power Impulse Magnetron Sputtering Nitriding Treatment of CoCrMo Alloys for Orthopedic Application: A Life Cycle Assessment Coupled with Critical Raw Material Analysis
by Valentina Zin, Stefania Fiameni, Ali Mohtashamifar, Simone Battiston, Francesco Montagner, Silvia Maria Deambrosis and Maria Losurdo
Sustainability 2025, 17(12), 5629; https://doi.org/10.3390/su17125629 - 18 Jun 2025
Viewed by 332
Abstract
CoCrMo alloys are interesting materials for implantable devices due to their favorable mechanical properties, high wear resistance, and good biocompatibility with the human body. Recent studies have demonstrated the possibility to further increase their wear resistance with an innovative approach consisting of nitriding [...] Read more.
CoCrMo alloys are interesting materials for implantable devices due to their favorable mechanical properties, high wear resistance, and good biocompatibility with the human body. Recent studies have demonstrated the possibility to further increase their wear resistance with an innovative approach consisting of nitriding treatments by the High-Power Impulse Magnetron Sputtering (HiPIMS) technique. Given the novelty of this treatment, it is relevant to develop a preliminary sustainability analysis of the processes to highlight the total environmental impact and to evaluate possible strategies to decrease it. Here, a Life Cycle Assessment (LCA) of HiPIMS nitriding treatments of CoCrMo alloys using a tantalum or molybdenum target is presented. The main impact driver in all impact categories was the electrical consumption of the vacuum apparatus and cooling system of HiPIMS instrumentation with a 45–47% and 37–39% contribution for Ta-based, and 39–40% and 41–42% for Mo-based treatments, respectively. Climate Change was found to be the most impacted category, followed by Resource Use both for Mo and Ta nitriding targets. Therefore, some perspectives to enhance the environmental sustainability of the synthesis process have been considered by means of a sensitivity analysis. Moreover, a Critical Raw Material (CRM) assessment is discussed, providing a complete sustainability evaluation of the proposed HiPIMS treatments. Full article
Show Figures

Graphical abstract

27 pages, 26121 KiB  
Article
Spark Plasma Sintering and Electrospark Deposition of High Entropy Alloys with Elemental Variation
by Ciprian Alexandru Manea, Laura Elena Geambazu, Ileana Mariana Mateș, Delia Pătroi, Gabriela Beatrice Sbârcea, Dorinel Tălpeanu, Jan Přikryl, Gifty B. Oppong and Augustin Semenescu
Materials 2025, 18(12), 2799; https://doi.org/10.3390/ma18122799 - 13 Jun 2025
Viewed by 419
Abstract
A novel processing route of producing CrFeNiMo, Co0.5CrFeNiMo, and Al0.5CrFeNiMo high-entropy alloy coatings was proposed in this work. Pre-alloyed HEAs were consolidated by spark plasma sintering (SPS) in order to fabricate electrodes for electrospark deposition (ESD) coatings on carbon [...] Read more.
A novel processing route of producing CrFeNiMo, Co0.5CrFeNiMo, and Al0.5CrFeNiMo high-entropy alloy coatings was proposed in this work. Pre-alloyed HEAs were consolidated by spark plasma sintering (SPS) in order to fabricate electrodes for electrospark deposition (ESD) coatings on carbon steel substrates. Investigations were performed to observe aspects such as phase composition and stability, contamination level, homogeneity, elemental distribution, and microstructural integrity. The results indicated phase stability and lower porosity when increasing the SPS temperature by 50 °C for all cases, with tetragonal distortion related to the HEAs’ severe lattice distortion core effect. The coating surface analysis indicated that a continuous and compact coating was obtained, correlated with the ESD layering count, but microfissures were present after 6 layers were applied due to the reduced ductility combined with rapid cooling under Ar atmosphere. The chemical integrity of both the sintered samples and the coatings was preserved during the processing, revealing a uniform elemental distribution with no contaminations or impurities present. The results indicated successful HEA sintering and deposition, highlighting the potential of the combined SPS-ESD process for high-performance material fabrication with possible applications in aggressive environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

21 pages, 10366 KiB  
Article
An Assessment of the Impact of Gypsum Deposit Development on Changes in the Radiation Environment
by Alexander I. Malov, Vitaliy A. Nakhod, Sergey V. Druzhinin and Elena N. Zykova
Appl. Sci. 2025, 15(12), 6639; https://doi.org/10.3390/app15126639 - 12 Jun 2025
Viewed by 480
Abstract
The aim of the conducted research was to assess the impact of gypsum deposit development on changes in the radiation levels of the abiotic components of the environment. For this purpose, a study of the radioactivity of water, bottom sediment, soil, gypsum and [...] Read more.
The aim of the conducted research was to assess the impact of gypsum deposit development on changes in the radiation levels of the abiotic components of the environment. For this purpose, a study of the radioactivity of water, bottom sediment, soil, gypsum and loam samples was performed. Ground-based studies of the distribution of the values of the ambient dose equivalent rate of gamma radiation and radon flux density were also carried out. It was shown that due to the high solubility of gypsum, the degree of karstification of the territory increases under the influence of meteoric waters, and as a result of the intensification of anthropogenic impact, the degree of chemical weathering of rocks increases. This leads to a coordinated change in not only the chemical but also the radiation conditions. In particular, radioactive contamination of quarry waters and areas of increased radon flux density in soil air were established. In bottom sediments, the significant correlations of 137Cs, 238U and 234U activity concentrations with carbonates, organic matter and soluble salts contents, as well as Fe, Zn, Cu, Cr, Pb, Ni, Mo, Cd, Co, Ti and V, indicate a significant role of the anthropogenic factor in the accumulation in bottom sediments. This factor is associated with both regional atmospheric transport (137Cs) and the activity of the mining enterprise in the study area (238U and 234U). Full article
(This article belongs to the Special Issue Advances in Environmental Radioactivity Monitoring and Measurement)
Show Figures

Figure 1

23 pages, 5680 KiB  
Article
Influence of Laser Power on CoCrFeNiMo High-Entropy Alloy Coating Microstructure and Properties
by Shuai Li, Fuheng Nie, Jiyuan Ding, Guijun Mao, Yang Guo, Tianlan Cao, Chong Xiang and Honggang Dong
Materials 2025, 18(11), 2650; https://doi.org/10.3390/ma18112650 - 5 Jun 2025
Viewed by 441
Abstract
This work studies the fabrication of CoCrFeNiMo high-entropy alloy (HEA) coatings via coaxial powder-fed laser cladding, addressing porosity and impurity issues in conventional methods. The HEA coatings exhibited eutectic/hypereutectic microstructures under all laser power conditions. A systematic investigation of laser power effects (1750–2500 [...] Read more.
This work studies the fabrication of CoCrFeNiMo high-entropy alloy (HEA) coatings via coaxial powder-fed laser cladding, addressing porosity and impurity issues in conventional methods. The HEA coatings exhibited eutectic/hypereutectic microstructures under all laser power conditions. A systematic investigation of laser power effects (1750–2500 W) reveals that 2250 W optimizes microstructure and performance, yielding a dual-phase structure with FCC matrix and dispersed σ phases (Fe-Cr/Mo-rich). The coating achieves exceptional hardness (738.3 HV0.2, 3.8× substrate), ultralow wear rate (4.55 × 10−5 mm3/N·m), and minimized corrosion current (2.31 × 10−4 A/cm2) in 3.5 wt.% NaCl. The friction mechanism of the CoCrFeNiMo HEA coating is that in high-speed friction and wear, the oxide film is formed on the surface of the coating, and then the rupture of the oxide film leads to adhesive wear and abrasive wear. The corrosion mechanism is the galvanic corrosion caused by the potential difference between the FCC phase and the σ phase. Full article
Show Figures

Figure 1

20 pages, 2340 KiB  
Article
Essential Trace Elements in the Shells of Commercial Mollusk Species from the Black Sea and Their Biotechnological Potential
by Larisa L. Kapranova, Juliya D. Dikareva, Sergey V. Kapranov, Daria S. Balycheva and Vitaliy I. Ryabushko
Animals 2025, 15(11), 1637; https://doi.org/10.3390/ani15111637 - 2 Jun 2025
Viewed by 639
Abstract
Among the commercial mollusks from the Black Sea, the ark clam Anadara kagoshimensis, the oyster Crassostrea gigas, the mussel Mytilus galloprovincialis, the scallop Flexopecten glaber ponticus, and the gastropod Rapana venosa hold the top positions in terms of cultivation [...] Read more.
Among the commercial mollusks from the Black Sea, the ark clam Anadara kagoshimensis, the oyster Crassostrea gigas, the mussel Mytilus galloprovincialis, the scallop Flexopecten glaber ponticus, and the gastropod Rapana venosa hold the top positions in terms of cultivation and harvesting volumes. Mollusk shells are attracting attention due to their potential use in various biotechnological applications, including nutraceutical production. In the present study, using inductively coupled plasma mass spectrometry, concentrations of essential trace elements (Cr, Mn, Fe, Co, Cu, Zn, Se, Mo, and I) were measured in shells of the five mollusks sampled from the same biotope. The essential element concentrations in the mollusk shells differed significantly. The highest concentrations of Cr, Mn, and I were found in Anadara shells; Fe and Co in Crassostrea shells; Zn in Mytilus shells; and Cu and Se in Rapana shells. Principal component analyses demonstrated the overall accumulation of all elements as the main cause of the total data variance and the species-specific accumulation of certain elements as the second most important source of the data dispersion. Matrices of element concentration correlations showed considerable dissimilarity, which suggested species specificity in the concerted or competing element accumulation. Powdered shells of Anadara, Crassostrea, and Rapana are most suitable to fulfill the daily human requirements for many essential elements, and the consumption of these powders in amounts of less than a few tens of grams appears to be sufficient for this purpose. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

14 pages, 1353 KiB  
Article
One-Pot Syntheses and Characterization of Group VI Carbonyl NHC Coordination Compounds
by Zala Stopar, Evelin Gruden, Melita Tramšek and Gašper Tavčar
Molecules 2025, 30(11), 2433; https://doi.org/10.3390/molecules30112433 - 2 Jun 2025
Viewed by 502
Abstract
The reactions of N-heterocyclic carbenes (IMesNHC and IPrNHC) with transition metal carbonyls of group VI (Cr(CO)6, Mo(CO)6, and W(CO)6) were carried out in acetonitrile in simple one-pot syntheses and led to the formation of the coordination [...] Read more.
The reactions of N-heterocyclic carbenes (IMesNHC and IPrNHC) with transition metal carbonyls of group VI (Cr(CO)6, Mo(CO)6, and W(CO)6) were carried out in acetonitrile in simple one-pot syntheses and led to the formation of the coordination compounds IMesNHC–Cr(CO)5 (1a), IMesNHC–Mo(CO)5 (2a), IMesNHC–W(CO)5 (3a), IPrNHC–Cr(CO)5 (1b), IPrNHC–Mo(CO)5 (2b), and IPrNHC–W(CO)5 (3b). With the exception of 1b, the coordination compounds were formed selectively and in high yields. The method represents an effective and easy-to-perform alternative to the previously described methods for NHC–M(CO)5 (M = Cr, Mo, W). All prepared compounds were characterized by NMR and Raman spectroscopy. Compounds 1a, 2a, 3a, and 2b were also crystallized and structurally characterized by X-ray structure analysis. Finally, the structural features of all compounds were compared with DFT calculations of structurally optimized coordination compounds. Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry—2nd Edition)
Show Figures

Graphical abstract

24 pages, 1729 KiB  
Article
Assessment of Metal(loid)s and Nonmetals Contamination in Soils of Urban Ecological Parks in Brazil: Implications for Ecological Risk and Human Health
by Fernanda Guerreiro de Paula, Igor Domingos de Souza, Elaine Silva de Pádua Melo, Marta Aratuza Pereira Ancel, Diego Azevedo Zoccal Garcia, Danielle Bogo, Rita de Cássia Avellaneda Guimarães, Karine de Cássia Freitas Gielow, Rodrigo Juliano Oliveira, Gisele Melo Sanches, Priscila Aiko Hiane and Valter Aragão do Nascimento
Urban Sci. 2025, 9(6), 193; https://doi.org/10.3390/urbansci9060193 - 28 May 2025
Viewed by 666
Abstract
Metal(loid)s and nonmetals in the soil of urban parks can pose risks to human health. Thus, we aimed to study the soil elemental content, soil types and their pH, contamination factor, geo-accumulation index, pollution load index, total carcinogenic risk, and hazard quotient for [...] Read more.
Metal(loid)s and nonmetals in the soil of urban parks can pose risks to human health. Thus, we aimed to study the soil elemental content, soil types and their pH, contamination factor, geo-accumulation index, pollution load index, total carcinogenic risk, and hazard quotient for children and adults by ingestion, inhalation, and dermal routes contact in ecological parks (EP) in Central-West Brazil. In Lago do Amor EP, high concentrations of Mg and Mn and lower pH values predominate, while in the Águas do Prosa EP, there is a greater influence of Zn. Except for the range of average concentrations of Al, Fe, P, Mg, and Mn in all EP soils, the range of the average concentrations of As, Cd, Co, Pb, Cr, Cu, Mo, Se, and Zn were generally higher than those permissible limits. There is moderate contamination by Mo, Ni, Cd, and mainly Se in Lago do Amor, Anhanduí, and Sóter EPs. The geo-accumulation index revealed that Lago do Amor EP is moderately polluted by Cd. Oral ingestion was evidenced as the main route of possible contamination by heavy metals, especially for children, who presented a carcinogenic risk greater than 10−1 for As, Cr, and Ni. Full article
Show Figures

Figure 1

Back to TopTop