Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Clean Sky 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 4727 KB  
Proceeding Paper
Assessing Continuous Descent Operations Using the Impact Monitor Framework
by Jordi Pons-Prats, Xavier Prats, David de la Torre, Eric Soler, Peter Hoogers, Michel van Eenige, Sreyoshi Chatterjee, Prajwal Shiva Prakasha, Patrick Ratei, Marko Alder, Thierry Lefebvre, Saskia van der Loo and Emanuela Peduzzi
Eng. Proc. 2025, 90(1), 108; https://doi.org/10.3390/engproc2025090108 - 6 May 2025
Cited by 1 | Viewed by 635
Abstract
The Impact Monitor Project is a European initiative designed to develop an impact assessment toolbox and framework, targeting the European aviation sector. The proposed framework is not only aimed at the environment, economics, and operations but also the societal impacts of new technologies [...] Read more.
The Impact Monitor Project is a European initiative designed to develop an impact assessment toolbox and framework, targeting the European aviation sector. The proposed framework is not only aimed at the environment, economics, and operations but also the societal impacts of new technologies and aircraft configurations. The toolbox works by setting out the key steps in the impact assessment cycle and presenting guidance, tips, and best practices. Led by DLR, the consortium includes research institutions and universities that have contributed their expertise and tools to develop the collaborative assessment toolbox and framework. The project defines three use cases by considering three assessment levels: aircraft, airport, and air transport system. This article focuses on Use Case 2 on continuous descent operations (CDOs) at the aircraft and airport levels. It describes the workflow proposal, along with the tools involved. The collaborative approach showcases integrating these tools and using collaborative strategies enabled by CPACS (Common Parametric Aircraft Configuration Schema) and RCE (remote component environment). The list of tools includes Scheduler (DLR; flight schedule simulation), AirTOp (NLR; TMA simulation), Dynamo/Farm (UPC; trajectory simulation and assessment), LEAS-iT (NLR; emissions simulation), Tuna (NLR; noise simulation), AECCI (ONERA; emissions simulation), TRIPAC (NLR; third-party risk simulation), and SCBA (TML; social and economic impact assessment). Interactions with other use cases of the project will be demonstrated via new aircraft configurations stemming from the use case at the aircraft level of the project. The results demonstrate the workflow’s feasibility, the cooperation among the tools to obtain and refine the outcomes, as well as the analysis of the operational scenario of a generic airport, CAEPport, which has been extensively used in previous Clean Sky 2 projects. Full article
Show Figures

Figure 1

9 pages, 3501 KB  
Proceeding Paper
An Investigation of Ionization Technology for Cleaning Cabin Air in a Business Jet
by Victor Norrefeldt, Michael Buschhaus, Sabine Johann, Anna Nagele-Renzl, Marie Pschirer, Maximilian Kienberger, Florian Mayer and Bernard Baldini
Eng. Proc. 2025, 90(1), 105; https://doi.org/10.3390/engproc2025090105 - 18 Apr 2025
Viewed by 702
Abstract
This paper describes an experimental investigation on the spread of a virus in a business jet cabin and the potential of ionization to reduce the pathogen load. In contrast to priorly investigated recirculation air cleaning, ionization can act directly in the cabin by [...] Read more.
This paper describes an experimental investigation on the spread of a virus in a business jet cabin and the potential of ionization to reduce the pathogen load. In contrast to priorly investigated recirculation air cleaning, ionization can act directly in the cabin by introducing ions into the supply air. Tests were performed by emitting a surrogate virus through a breathing head in a business jet mock-up. The results allow for the conclusion that ionization technology, along with increased airflow, is a well-suited tool to sanitize cabins. Additionally, the effect of ionization on particles was investigated where it became obvious that the presence of particles reduces the ion level; however, the presence of ions hardly impact particles. Full article
Show Figures

Figure 1

9 pages, 1091 KB  
Proceeding Paper
Simulation-Based Assessment of the Control of a Hybrid ECS Including a Vapor Cycle System
by Arnav Pathak and Victor Norrefeldt
Eng. Proc. 2025, 90(1), 80; https://doi.org/10.3390/engproc2025090080 - 27 Mar 2025
Viewed by 541
Abstract
Within the Clean Sky 2 regional project, a hybrid environmental control system has been conceived that combines the classical bleed air approach with a vapor cycle cooling in the recirculation air. To protect partners’ IP, a functional mock-up (FMU) model of the hybrid [...] Read more.
Within the Clean Sky 2 regional project, a hybrid environmental control system has been conceived that combines the classical bleed air approach with a vapor cycle cooling in the recirculation air. To protect partners’ IP, a functional mock-up (FMU) model of the hybrid ECS was provided describing the system behavior. This model was interfaced with a zonal model of a 100-passenger regional aircraft cabin to investigate comfort and air quality conditions within the cabin. The interfacing reveals that some optimization of the control algorithm is possible for the hybrid ECS, while some operational points already perform as intended. Hence, the coupled simulation approach, at an early design stage, already shows the strengths and weaknesses of the system conception. Recommendations from the simulation study can subsequently be incorporated into the design before a physical demonstrator is produced. Full article
Show Figures

Figure 1

12 pages, 2976 KB  
Article
Overview of the Clean Sky 2 Technology Evaluator Project Methodology
by Alf Junior, Alexandra Leipold and Marc C. Gelhausen
Aerospace 2025, 12(4), 268; https://doi.org/10.3390/aerospace12040268 - 21 Mar 2025
Cited by 1 | Viewed by 1740
Abstract
Clean Sky 2 (CS2) was established to reduce the environmental impact of air transport by the introduction of new advanced aeronautical technologies, to improve mobility and to demonstrate reduction potentials for CO2, NOx, and noise emissions of from 20% [...] Read more.
Clean Sky 2 (CS2) was established to reduce the environmental impact of air transport by the introduction of new advanced aeronautical technologies, to improve mobility and to demonstrate reduction potentials for CO2, NOx, and noise emissions of from 20% to 30% as compared to state-of-the-art aircraft in 2014. A wide range of new technologies has been integrated into vehicle performance models for a set of concept aircraft, and the Clean Sky 2 Technology Evaluator (TE) has performed assessments with three major pillars: Vehicle- or mission-level reference aircraft, reflecting 2014 technologies, are compared with new Clean Sky 2 concept aircraft with a focus on CO2 and NOx emission and noise reduction potentials. At the airport level, environmental impact assessments for different traffic and fleet mixes are carried out, namely, noise on the ground and population impacted by certain noise levels and emissions (CO2 and NOx). At the level of the global air transport system (ATS), those new concept aircraft are embedded in fleet projections until 2050 and compared to a projection without new Clean Sky 2 aircraft to understand the emission reduction potentials of future global fleets and the long-term aviation footprint. This paper gives a conceptual overview of the work carried out in Clean Sky 2. Full article
Show Figures

Figure 1

19 pages, 21924 KB  
Article
Redesign of a Flange Wheel Used in an Airplane for Composite Manufacturing Made with a Mold with Removable Inserts Manufactured by Means of 3D Printing: A Comparison with the Current Conventional Alternative, a Turbine Wheel Machined out of Aluminum
by Carlos Javierre, Víctor Camañes, Julio Vidal, José Antonio Dieste and Angel Fernandez
Materials 2025, 18(6), 1296; https://doi.org/10.3390/ma18061296 - 15 Mar 2025
Cited by 1 | Viewed by 1130
Abstract
This work presents the redesign of an aircraft aluminum turbine wheel into a thermoplastic composite flange wheel with the support of 3D printing technology, which increases the turbine efficiency thanks to the introduction of the flange geometry, not possible with the current machined [...] Read more.
This work presents the redesign of an aircraft aluminum turbine wheel into a thermoplastic composite flange wheel with the support of 3D printing technology, which increases the turbine efficiency thanks to the introduction of the flange geometry, not possible with the current machined aluminum part. This work seeks the reduction of the aircraft’s structural weight by replacing metallic components with thermoplastic alternatives and proves the feasibility of producing a complex geometry product through injection molding, paving the way for manufacturing intricate designs using removable inserts created via 3D printing. This work has been developed within the INN-PAEK project of the H2020-CLEAN SKY 2 program. The thermoplastic component is produced using an innovative process that employs removable inserts in the mold, and its development has followed following three steps: redesign of aluminum part according to functional and plastic materials requirements, design of the mold, and validation of real plastic parts by means of tomography. This paper highlights highly positive results for the project, influenced by the new plastic flange wheel’s ability to achieve both weight reduction and an overall efficiency enhancement that decreases the aircraft’s kerosene consumption, and proves that 3D printing is a highly potential technology for complex thermoplastic part tooling production. Full article
(This article belongs to the Special Issue Design and Application of Additive Manufacturing: 3rd Edition)
Show Figures

Figure 1

23 pages, 4317 KB  
Article
Innovative Aircraft Propulsive Configurations: Technology Evaluation and Operations in the SIENA Project
by Gabriele Sirtori, Benedikt Aigner, Erich Wehrle, Carlo E. D. Riboldi and Lorenzo Trainelli
Aerospace 2025, 12(3), 240; https://doi.org/10.3390/aerospace12030240 - 15 Mar 2025
Cited by 3 | Viewed by 2517
Abstract
In this paper, developed in the context of the Clean Sky 2 project SIENA (Scalability Investigation of hybrid-Electric concepts for Next-generation Aircraft), an extensive analysis is carried out to identify and accelerate the development of innovative propulsion technologies and architectures that can be [...] Read more.
In this paper, developed in the context of the Clean Sky 2 project SIENA (Scalability Investigation of hybrid-Electric concepts for Next-generation Aircraft), an extensive analysis is carried out to identify and accelerate the development of innovative propulsion technologies and architectures that can be scaled across five aircraft categories, from small General Aviation airplanes to long-range airliners. The assessed propulsive architectures consider various components such as batteries and fuel cells to provide electricity as well as electric motors and jet engines to provide thrust, combined to find feasible aircraft architectures that satisfy certification constraints and deliver the required performance. The results provide a comprehensive analysis of the impact of key technology performance indicators on aircraft performance. They also highlight technology switching points as well as the potential for scaling up technologies from smaller to larger aircraft based on different hypotheses and assumptions concerning the upcoming technological advancements of components crucial for the decarbonization of aviation. Given the considered scenarios, the common denominator of the obtained results is hydrogen as the main energy source. The presented work shows that for the underlying models and technology assumptions, hydrogen can be efficiently used by fuel cells for propulsive and system power for smaller aircraft (General Aviation, commuter and regional), typically driven by propellers. For short- to long-range jet aircraft, direct combustion of hydrogen combined with a fuel cell to power the on-board subsystems appears favorable. The results are obtained for two different temporal scenarios, 2030 and 2050, and are assessed using Payload-Range Energy Efficiency as the key performance indicator. Naturally, introducing such innovative architectures will face a lack of applicable regulation, which could hamper a smooth entry into service. These regulatory gaps are assessed, detailing the level of maturity in current regulations for the different technologies and aircraft categories. Full article
Show Figures

Figure 1

9 pages, 2861 KB  
Proceeding Paper
Application of a Fiber Optic-Based SHM System to a Composite Aircraft Wing and Its Technological Maturity Evaluation
by Gianvito Apuleo, Monica Ciminello, Lorenzo Pellone, Umberto Mercurio and Antonio Concilio
Eng. Proc. 2025, 90(1), 31; https://doi.org/10.3390/engproc2025090031 - 13 Mar 2025
Cited by 2 | Viewed by 1103
Abstract
This paper deals with the application of a novel fiber optic SHM system for bonding lines monitoring of a composite aircraft wing within Clean Sky 2 program framework. With the aim of controlling the structural state of the reference component, several targets may [...] Read more.
This paper deals with the application of a novel fiber optic SHM system for bonding lines monitoring of a composite aircraft wing within Clean Sky 2 program framework. With the aim of controlling the structural state of the reference component, several targets may be addressed, including safety increase through a periodic update of the integrity level, maintenance costs reduction, for instance, by moving to an on-demand from the usual scheduled approach, and even design benefits by envisaging the possibility of modulating the safety coefficients due to an increased knowledge of the intimate structural system behavior. Specifically, an original SHM architecture is herein presented, based on the use of distributed optical fibers, and implementing a proprietary algorithm, to detect bonding lines damage. Ground testing with a full-scale wing box successfully validated the system’s capability to identify damage. To assess maturity, a TRL evaluation has been carried out, whose results are summarized and discussed. Such a process allowed us to highlight specific areas for technological improvement, such as modeling-testing synergy and operational environment definition. The work herein reported is expected to address these aspects while achieving full-scale aircraft integration, paving the way for enhanced structural robustness and operational safety in future aircraft. Full article
Show Figures

Figure 1

22 pages, 4466 KB  
Article
Results from the ATS-Level Assessment of the Clean Sky 2 Technology Evaluator
by Marc C. Gelhausen, Alf Junior, Alexandra Leipold, Peter Berster, Holger Pabst, Christos Lois and Fabian Baier
Aerospace 2025, 12(3), 185; https://doi.org/10.3390/aerospace12030185 - 26 Feb 2025
Cited by 1 | Viewed by 1341
Abstract
In this paper, we present the main results from the Second ATS-Level Assessment of the Clean Sky 2 Technology Evaluator. We first present the models employed and then move to the passenger and fleet forecast results up to 2050. Based upon these traffic [...] Read more.
In this paper, we present the main results from the Second ATS-Level Assessment of the Clean Sky 2 Technology Evaluator. We first present the models employed and then move to the passenger and fleet forecast results up to 2050. Based upon these traffic forecasts, we show the environmental effect of Clean Sky 2 technology in terms of CO2 emissions. The main benefit of the forecast method employed is its high resolution in terms of each flight route between airports being modelled. Consequently, we can consider effects such as airport capacity constraints which will have a substantial impact on future passenger volume and fleet development. Full article
Show Figures

Figure 1

26 pages, 10513 KB  
Article
Structural Analysis and Experimental Tests of a Morphing-Flap Scaled Model
by Mürüvvet Sinem Sicim Demirci, Rosario Pecora, Luca Chianese, Massimo Viscardi and Metin Orhan Kaya
Aerospace 2024, 11(9), 725; https://doi.org/10.3390/aerospace11090725 - 5 Sep 2024
Cited by 6 | Viewed by 3113
Abstract
The implementation of morphing wing mechanisms shows significant potential for improving aircraft performance, as highlighted in the recent literature. The Clean Sky 2 AirGreen 2 European project team is currently performing ground and wind tunnel tests to validate improvements in morphing wing structures. [...] Read more.
The implementation of morphing wing mechanisms shows significant potential for improving aircraft performance, as highlighted in the recent literature. The Clean Sky 2 AirGreen 2 European project team is currently performing ground and wind tunnel tests to validate improvements in morphing wing structures. The project aims to demonstrate the effectiveness of these morphing designs on a full-scale flying prototype. This article describes the design methodology and structural testing of a scaled morphing-flap structure, which can adapt to three different morphing modes for various flight conditions: low-speed (take-off and landing) and high-speed (cruise). A scale factor of 1:3 was selected for the wind tunnel test campaign. Due to challenges in scaling the embedded mechanisms and actuators necessary for shape-changing, a full geometrical scale of the real flap prototype was not feasible. Static analyses were performed using the finite element method to address critical load conditions determined through three-dimensional computational fluid dynamic (CFD) analysis. The finite element (FE) analysis was conducted and the results were compared with the empirical data from the structural test. Good correlations were found between the structural testing results and numerical predictions, including static deflections and elastic deformations under applied loads. This indicates that the modeling approaches used during the design and testing phases were highly successful. Based on simulations for the ultimate load conditions tested during the wind tunnel tests, the scaled flap prototype has been deemed suitable for further testing. Full article
(This article belongs to the Special Issue Structures, Actuation and Control of Morphing Systems)
Show Figures

Figure 1

18 pages, 46447 KB  
Article
Improved Coherent Processing of Synthetic Aperture Radar Data through Speckle Whitening of Single-Look Complex Images
by Luciano Alparone, Alberto Arienzo and Fabrizio Lombardini
Remote Sens. 2024, 16(16), 2955; https://doi.org/10.3390/rs16162955 - 12 Aug 2024
Cited by 2 | Viewed by 3040
Abstract
In this study, we investigate the usefulness of the spectral whitening procedure, devised by one of the authors as a preprocessing stage of envelope-detected single-look synthetic aperture radar (SAR) images, in application contexts where phase information is relevant. In the first experiment, each [...] Read more.
In this study, we investigate the usefulness of the spectral whitening procedure, devised by one of the authors as a preprocessing stage of envelope-detected single-look synthetic aperture radar (SAR) images, in application contexts where phase information is relevant. In the first experiment, each of the raw datasets of an interferometric pair of COSMO-SkyMed images, representing industrial buildings amidst vegetated areas, was individually (1) synthesized by the SAR processor without Fourier-domain Hamming windowing; (2) synthesized with Hamming windowing, used to improve the focalization of targets, with the drawback of spatially correlating speckle; and (3) processed for the whitening of complex speckle, using the data obtained in (2). The interferograms were produced in the three cases, and interferometric coherence and phase maps were calculated through 3 × 3 boxcar filtering. In (1), coherence is low on vegetation; the presence of high sidelobes in the system’s point-spread function (PSF) causes the spread of areas featuring high backscattering. In (2), point targets and buildings are better defined, thanks to the sidelobe suppression achieved by the frequency windowing, but the background coherence is abnormally increased because of the spatial correlation introduced by the Hamming window. Case (3) is the most favorable because the whitening operation results in low coherence in vegetation and high coherence in buildings, where the effects of windowing are preserved. An analysis of the phase map reveals that (3) is likely to be facilitated also in terms of unwrapping. Results are presented on a TerraSAR-X/TanDEM-X (TSX-TDX) image pair by processing the interferograms of original and whitened data using a non-local filter. The main results are as follows: (1) with autocorrelated speckle, the estimation error of coherence may attain 16% and inversely depends on the heterogeneity of the scene; and (2) the cleanness and accuracy of the phase are increased by the preliminary whitening stage, as witnessed by the number of residues, reduced by 24%. Benefits are also expected not only for differential InSAR (DInSAR) but also for any coherent analysis and processing carried out performed on SLC data. Full article
Show Figures

Graphical abstract

19 pages, 18083 KB  
Article
A Resilient Approach to a Test Rig Setup in the Qualification of a Tilt Rotor Carbon Fiber-Reinforced Polymer (CFRP) Wing
by Pasquale Vitale, Gianluca Diodati, Salvatore Orlando, Francesco Timbrato, Mario Miano, Antonio Chiariello and Marika Belardo
Aerospace 2024, 11(4), 323; https://doi.org/10.3390/aerospace11040323 - 21 Apr 2024
Cited by 3 | Viewed by 3109
Abstract
The evolution of aircraft wing development has seen significant progress since the early days of aviation, with static testing emerging as a crucial aspect for ensuring safety and reliability. This study focused specifically on the engineering phase of static testing for the Clean [...] Read more.
The evolution of aircraft wing development has seen significant progress since the early days of aviation, with static testing emerging as a crucial aspect for ensuring safety and reliability. This study focused specifically on the engineering phase of static testing for the Clean Sky 2 T-WING project, which is dedicated to testing the innovative composite wing of the Next-Generation Civil Tiltrotor Technology Demonstrator. During the design phase, critical load cases were identified through shear force/bending moment (SFBM) and failure mode analyses. To qualify the wing, an engineering team designed a dedicated test rig equipped with hydraulic jacks to mirror the SFBM diagrams. Adhering to specifications and geometric constraints due to several factors, the jacks aimed to minimize the errors (within 5%) in replicating the diagrams. An effective algorithm, spanning five phases, was employed to pinpoint the optimal configuration. This involved analyzing significant components, conducting least square linear optimizations, selecting solutions that met the directional constraints, analyzing the Pareto front solutions, and evaluating the external jack forces. The outcome was a test rig setup with a viable set of hydraulic jack forces, achieving precise SFBM replication on the wing with minimal jacks and overall applied forces. Full article
Show Figures

Figure 1

25 pages, 18750 KB  
Article
Vibration Qualification Campaign on Main Landing Gear System for High-Speed Compound Helicopter
by Antonio Chiariello, Carmine Carandente Tartaglia, Maurizio Arena, Vincenzo Quaranta, Giovanni Bruno, Marika Belardo and Martina Castaldo
Aerospace 2024, 11(2), 130; https://doi.org/10.3390/aerospace11020130 - 1 Feb 2024
Cited by 1 | Viewed by 5020
Abstract
Vibrations in helicopters have strong implications for their performance and safety, leading to the increased fatigue of components and reduced operational efficiency. As helicopters are designed to land on several types of surfaces, the landing gear system dissipates the impact on the ground [...] Read more.
Vibrations in helicopters have strong implications for their performance and safety, leading to the increased fatigue of components and reduced operational efficiency. As helicopters are designed to land on several types of surfaces, the landing gear system dissipates the impact on the ground and maintains stability during landing and take-off. These vibrations can arise from a variety of sources, such as aerodynamic loads, mechanical imbalances, and engine instabilities. In the present work, the authors describe the vibration qualification process of the main landing gear tailored to fast helicopters within the Clean Sky 2 Racer program. The method entails devising preliminary load sets that deform the structure in its key excited mode shapes to assess stresses and address the experimental campaign. A full-scale prototype model is then tested for sine sweep and random vibrations as per the Airbus Helicopter requirements in order to reach the final qualification and acceptance stage. Although the discussion centers on a landing gear structure, the described process could be extended to other critical equipment as well. Full article
(This article belongs to the Special Issue Advances in Rotorcraft Dynamics)
Show Figures

Figure 1

16 pages, 8152 KB  
Article
On the Fine-Tuning of the Stick-Beam Wing Dynamic Model of a Tiltrotor: A Case Study
by Jacopo Beretta, Andres Cardozo, Nicola Paletta, Antonio Chiariello and Marika Belardo
Aerospace 2024, 11(2), 116; https://doi.org/10.3390/aerospace11020116 - 27 Jan 2024
Cited by 2 | Viewed by 2164
Abstract
The T-WING project, a CS2-CPW (Clean Sky 2 call for core partner waves) research initiative within FRC IADP (Fast Rotor-Craft Innovative Aircraft Demonstrator Platform), focuses on developing, qualifying and testing the new wing of the Next-Generation Civil Tilt-Rotor (NGCTR). This paper introduces a [...] Read more.
The T-WING project, a CS2-CPW (Clean Sky 2 call for core partner waves) research initiative within FRC IADP (Fast Rotor-Craft Innovative Aircraft Demonstrator Platform), focuses on developing, qualifying and testing the new wing of the Next-Generation Civil Tilt-Rotor (NGCTR). This paper introduces a case study about a methodology for refining the stick-beam model for the NGCTR wing, aligning it with the GFEM (Global Finite Element Model) wing’s dynamic characteristics in terms of modal frequencies and mode shapes. The initial stick-beam model was generated through the static condensation of the GFEM wing. The tuning process was formulated as an optimization problem, adjusting beam properties to minimize the sum of weighted quadratic errors in modal frequencies and Modal Assurance Criterion (MAC) values. Throughout the optimization, the MAC analysis ensured that the target modes were tracked, and, at each iteration, a new set of variable estimates were determined based on the gradient vector and Hessian matrix of the objective function. This methodology effectively fine-tunes the stick-beam model for various mass cases, such as maximum take-off weight (MTOW) and maximum zero-fuel weight (MZFW). Full article
Show Figures

Figure 1

17 pages, 4560 KB  
Article
A Generalised Intelligent Bearing Fault Diagnosis Model Based on a Two-Stage Approach
by Amirmasoud Kiakojouri, Zudi Lu, Patrick Mirring, Honor Powrie and Ling Wang
Machines 2024, 12(1), 77; https://doi.org/10.3390/machines12010077 - 19 Jan 2024
Cited by 7 | Viewed by 2775
Abstract
This paper introduces a two-stage intelligent fault diagnosis model for rolling element bearings (REBs) aimed at overcoming the challenge of limited real-world vibration training data. In this study, bearing characteristic frequencies (BCFs) extracted from a novel hybrid method combining cepstrum pre-whitening (CPW) and [...] Read more.
This paper introduces a two-stage intelligent fault diagnosis model for rolling element bearings (REBs) aimed at overcoming the challenge of limited real-world vibration training data. In this study, bearing characteristic frequencies (BCFs) extracted from a novel hybrid method combining cepstrum pre-whitening (CPW) and high-pass filtering developed by the authors’ group are used as input features, and a two-stage approach is taken to develop an intelligent REB fault detect and diagnosis model. In the first stage, various machine learning (ML) methods, including support vector machine (SVM), multinomial logistic regressions (MLR), and artificial neural networks (ANN), are evaluated to identify faulty bearings from healthy ones. The best-performing ML model is selected for this stage. In the second stage, a similar evaluation is conducted to find the most suitable ML technique for bearing fault classification. The model is trained and validated using vibration data from an EU Clean Sky2 I2BS project (An EU Clean Sky 2 project ‘Integrated Intelligent Bearing Systems’ collaborated between Schaeffler Technologies and the University of Southampton. Safran Aero Engines was the topic manager for this project) and tested on datasets from Case Western Reserve University (CWRU) and the US Society for Machinery Failure Prevention Technology (MFPT). The results show that the two-stage model, using an SVM with a polynomial kernel function in Stage-1 and an ANN with one hidden layer and 0.05 dropout rate in Stage-2, can successfully detect bearing conditions in both test datasets and perform better than the results in literature without the requirement of further training. Compared with a single-stage model, the two-stage model also shows improved performance. Full article
Show Figures

Figure 1

27 pages, 33386 KB  
Article
A Novel Hybrid Technique Combining Improved Cepstrum Pre-Whitening and High-Pass Filtering for Effective Bearing Fault Diagnosis Using Vibration Data
by Amirmasoud Kiakojouri, Zudi Lu, Patrick Mirring, Honor Powrie and Ling Wang
Sensors 2023, 23(22), 9048; https://doi.org/10.3390/s23229048 - 8 Nov 2023
Cited by 12 | Viewed by 3552
Abstract
Rolling element bearings (REBs) are an essential part of rotating machinery. A localised defect in a REB typically results in periodic impulses in vibration signals at bearing characteristic frequencies (BCFs), and these are widely used for bearing fault detection and diagnosis. One of [...] Read more.
Rolling element bearings (REBs) are an essential part of rotating machinery. A localised defect in a REB typically results in periodic impulses in vibration signals at bearing characteristic frequencies (BCFs), and these are widely used for bearing fault detection and diagnosis. One of the most powerful methods for BCF detection in noisy signals is envelope analysis. However, the selection of an effective band-pass filtering region presents significant challenges in moving towards automated bearing fault diagnosis due to the variable nature of the resonant frequencies present in bearing systems and rotating machinery. Cepstrum Pre-Whitening (CPW) is a technique that can effectively eliminate discrete frequency components in the signal whilst detecting the impulsive features related to the bearing defect(s). Nevertheless, CPW is ineffective for detecting incipient bearing defects with weak signatures. In this study, a novel hybrid method based on an improved CPW (ICPW) and high-pass filtering (ICPW-HPF) is developed that shows improved detection of BCFs under a wide range of conditions when compared with existing BCF detection methods, such as Fast Kurtogram (FK). Combined with machine learning techniques, this novel hybrid method provides the capability for automated bearing defect detection and diagnosis without the need for manual selection of the resonant frequencies. The results from this novel hybrid method are compared with a number of established BCF detection methods, including Fast Kurtogram (FK), on vibration signals collected from the project I2BS (An EU Clean Sky 2 project ‘Integrated Intelligent Bearing Systems’ collaboration between Schaeffler Technologies and the University of Southampton. Safran Aero Engines was the topic manager for this project) and those from three databases available in the public domain—Case Western Reserve University (CWRU), Intelligent Maintenance Systems (IMS) datasets, and Safran jet engine data—all of which have been widely used in studies of this kind. By calculating the Signal-to-Noise Ratio (SNR) of each case, the new method is shown to be effective for a much lower SNR (with an average of 30.21) compared with that achieved using the FK method (average of 14.4) and thus is much more effective in detecting incipient bearing faults. The results also show that it is effective in detecting a combination of several bearing faults that occur simultaneously under a wide range of bearing configurations and test conditions and without the requirement of further human intervention such as extra screening or manual selection of filters. Full article
(This article belongs to the Special Issue Advanced Sensing for Mechanical Vibration and Fault Diagnosis)
Show Figures

Figure 1

Back to TopTop