Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Citrus wine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2304 KiB  
Article
The Effects of Flocculant Yeast or Spontaneous Fermentation Strategies Supplemented with an Organic Nitrogen-Rich Additive on the Volatilome and Organoleptic Profile of Wines from a Neutral Grape Variety
by Raquel Muñoz-Castells, Fernando Sánchez-Suárez, Juan Moreno, José Manuel Álvarez-Gil and Jaime Moreno-García
Appl. Sci. 2025, 15(8), 4196; https://doi.org/10.3390/app15084196 - 10 Apr 2025
Cited by 1 | Viewed by 543
Abstract
The effects of spontaneous fermentation and the inoculation of grape must with a flocculant yeast starter culture, together with the supplementation of must with a commercial organic nitrogen compound (ONC), were analyzed. The microbiome during fermentation was tracked, and volatile compounds in the [...] Read more.
The effects of spontaneous fermentation and the inoculation of grape must with a flocculant yeast starter culture, together with the supplementation of must with a commercial organic nitrogen compound (ONC), were analyzed. The microbiome during fermentation was tracked, and volatile compounds in the resulting wines were identified and quantified using gas chromatography and mass spectrometry (GC-MS). Volatile compound concentrations were then subjected to statistical analysis. No significant differences in pH, titratable and volatile acidity, and ethanol and lactic acid were observed among the four wines analyzed. However, the musts supplemented with the ONC slightly increased the fermentation rate of the flocculant yeast, and, also, this additive reduced the volume of lees in the spontaneous fermentation and flocculant yeast by 1.2% and 0.6%, respectively. The concentrations of 11 major and 28 minor volatiles were significantly influenced (p-value ≤ 0.05) by the inoculation strategy, while 8 major and 28 minor volatiles were affected by ONC supplementation. This supplementation significantly decreased the Odor Activity Values and, consequently, the values of the odorant series established in wines from spontaneous fermentation. On the contrary, those from flocculant yeast showed a significant increase in all the odorant series except for the waxy series, leading to a more balanced aroma profile. Additionally, lower scores were recorded for the green, creamy, citrus, chemical, and honey series compared to wines from spontaneous fermentation. Overall, the commercial ONC extract contributed to a content increase in volatiles that provided desirable aromatic notes to the wines made with flocculant yeast, although the organoleptic evaluation showed no significant statistical differences in the attributes evaluated at the 95% confidence level. Full article
(This article belongs to the Special Issue Wine Technology and Sensory Analysis)
Show Figures

Figure 1

14 pages, 673 KiB  
Proceeding Paper
Effect of Vineyard Location on Assyrtiko Grape Ripening in Santorini and Its Wine’s Characteristics
by Aikaterini Karampatea, Eirini Vrentzou, Adriana Skendi and Elisavet Bouloumpasi
Biol. Life Sci. Forum 2024, 40(1), 47; https://doi.org/10.3390/blsf2024040047 - 18 Mar 2025
Cited by 1 | Viewed by 497
Abstract
Besides the other factors, the microclimate (terroir) influences the quality characteristics of wine. The Assyrtiko variety has adapted to the volcanic soil of Santorini but under climate change, finding an ideal location for full grape ripening represents a challenge in preserving the PDO [...] Read more.
Besides the other factors, the microclimate (terroir) influences the quality characteristics of wine. The Assyrtiko variety has adapted to the volcanic soil of Santorini but under climate change, finding an ideal location for full grape ripening represents a challenge in preserving the PDO quality of Santorini wines. Thus, this study aims to evaluate the effect of location and harvesting time on the quality of Assyrtiko wine. It assessed the location effect (three distant plots of land in three distant areas of the island) on the composition of grapes (water uptake, pH, sugar, and organic acid accumulation) during the ripening. The grapes were vinified using the same procedure. The aromatic volatile profile of the wines was evaluated with GC-MS. A two-way ANOVA revealed that besides location and harvest time, their interaction is also significant for the parameters studied, except for the interaction effect involving sugar content. The analysis of volatile aromatic compounds revealed that the wine from grapes harvested at a later date had a higher aromatic intensity with notes of citrus, white-fleshed, and tropical fruits. This wine surpasses the levels of 2-phenylethanol, isoamyl acetate, linalool, and 2-phenylethyl ester with 17.8%, 7.7%, 21.1%, and 15.6%, respectively, compared to the immediate next in descending order. Results suggest that the grape variety is better suited to the local climatic conditions when full grape ripeness is reached by the end of the growing season. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
Show Figures

Figure 1

17 pages, 1716 KiB  
Article
Influence of Terroir on Microbial Diversity and Wine Volatilome
by María Trinidad Alcalá-Jiménez, Teresa García-Martínez, Juan Carlos Mauricio, Juan Moreno and Rafael A. Peinado
Appl. Sci. 2025, 15(6), 3237; https://doi.org/10.3390/app15063237 - 16 Mar 2025
Cited by 3 | Viewed by 1453
Abstract
In this research, the differences between two terroirs belonging to the Protected Designation of Origin (PDO) Montilla–Moriles (Spain) were analyzed. Both areas share soil and climate characteristics, grape varieties, viticultural practices, and winemaking processes. Therefore, the objective of this study was to establish [...] Read more.
In this research, the differences between two terroirs belonging to the Protected Designation of Origin (PDO) Montilla–Moriles (Spain) were analyzed. Both areas share soil and climate characteristics, grape varieties, viticultural practices, and winemaking processes. Therefore, the objective of this study was to establish differences between both areas based on the microbiome of the must, the oenological parameters, and the majority and minority volatile compounds of the wines, thus determining the identity traits that make the wines from both areas so different. The results obtained are quite revealing, since at the microbiome level qualitative differences were established between the various areas. In the quality area, the predominant species is Torulaspora delbrueckii while in the production area it is Hanseniaspora opuntiae. Regarding the volatilome, it was observed that the aromatic profile of the wines from the production area has more citrus-fruity aromas and the quality area has honey-floral aromas, thus producing unique wines from each of the areas. Full article
(This article belongs to the Special Issue Wine Technology and Sensory Analysis)
Show Figures

Figure 1

16 pages, 801 KiB  
Article
Revealing the Unique Characteristics of Greek White Wine Made from Indigenous Varieties Through Volatile Composition and Sensory Properties
by Evangelia Nanou, Maria Metafa, Susan E. P. Bastian and Yorgos Kotseridis
Beverages 2025, 11(2), 33; https://doi.org/10.3390/beverages11020033 - 27 Feb 2025
Cited by 1 | Viewed by 883
Abstract
Greek wines made from the indigenous grape varieties Assyrtiko, Malagousia, Moschofilero and Roditis are attracting the interest of wine producers and consumers due to their aromatic characteristics. However, there are few studies that focus on the unique wine characteristics of each variety and [...] Read more.
Greek wines made from the indigenous grape varieties Assyrtiko, Malagousia, Moschofilero and Roditis are attracting the interest of wine producers and consumers due to their aromatic characteristics. However, there are few studies that focus on the unique wine characteristics of each variety and the relationship between the composition of volatile compounds and sensory properties. Monovarietal white wines (2018 vintage) were analyzed by gas chromatography–mass spectrometry to quantify 34 volatile compounds. Multivariate statistical analyses were used to investigate correlations between volatiles and sensory attributes identified by a trained panel. The results showed that the strongest aroma compounds were a group of terpenes, isoamyl acetate and phenylethyl acetate. Terpenes such as geraniol, α-terpineol, linalool and cis-rose oxide correlated with floral notes, especially in Moschofilero wines. In addition, isoamyl acetate contributed to the aroma of tropical fruits, especially banana, in the Roditis wines, while phenylethyl acetate correlated with rose, vanilla and fruity notes in both the Moschofilero and Roditis samples. The Assyrtiko wines and the Malagousia wines were mainly associated with compounds such as cis-3-hexen-1-ol and cis- and trans-furan linalool oxides, which may enhance fresh fruit and citrus aromas through synergistic effects. The common background aroma of the studied wines was mainly determined by higher alcohols, fatty acids and ethyl esters. This study provides a basis for understanding the typical aroma of white wines from indigenous Greek grape varieties, which will help producers develop targeted wine styles and will be useful for consumer promotion. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Figure 1

19 pages, 2246 KiB  
Article
Exploring the Sensory Typicity of Timorasso Wines: Physicochemical and Sensory Characteristics of Seven Consecutive Vintages
by Maria Alessandra Paissoni, Micaela Boido, Pietro Margotti, Simone Giacosa, Susana Río Segade, Vincenzo Gerbi, Luca Rolle, Christoph Schuessler, Rainer Jung, Doris Rauhut and Andrii Tarasov
Foods 2025, 14(4), 591; https://doi.org/10.3390/foods14040591 - 11 Feb 2025
Viewed by 921
Abstract
‘Timorasso’ is an autochthonous, non-aromatic white grape variety cultivated mainly in the southwest of the Piedmont region (northwestern Italy). The sensory profile of wines produced from this variety evolves greatly with aging. In this study, 31 wines from 2015–2021 vintages were analyzed to [...] Read more.
‘Timorasso’ is an autochthonous, non-aromatic white grape variety cultivated mainly in the southwest of the Piedmont region (northwestern Italy). The sensory profile of wines produced from this variety evolves greatly with aging. In this study, 31 wines from 2015–2021 vintages were analyzed to investigate changes in sensory descriptors at various stages of aging and their correlation with physicochemical properties (wine basic parameters, color, and total polyphenols) and sensory-perceptual typicity. A sensory analysis was conducted by a panel of experts, who were asked to indicate the in-mouth and aroma descriptors. The aroma-related terms were analyzed as individual descriptors or grouped in “Categories”. Moreover, the panel rated the Color, In-Mouth, and Aroma typicity of these wines. ‘Timorasso’ based wines were found to have, on average, a relevant alcohol content (14.20 ± 0.56% v/v), moderate acidity (5.8 ± 0.6 g/L), and low pH (3.19 ± 0.09). In fact, Timorasso wines were sensorially identified in terms of citation frequency with the in-mouth descriptors acidity (32.9%), sapidity (25.5%), and minerality (17.4%). The aroma of younger wines (2 years of aging) was characterized by “Green”, “White flowers”, “White pulp fruit”, and “Citrus”. In general, the most cited aroma category was “Kerosene” (27.9%), distinguishing wines with 5–6 years of aging. “Kerosene” category correlated with Aroma typicity (p < 0.001), as well as with “Balsamic” (10.8%, p < 0.01) and “Empyreumatic” (5.5%, p < 0.05) aroma categories. Full article
Show Figures

Graphical abstract

22 pages, 4090 KiB  
Article
Living Lab for the Diffusion of Enabling Technologies in Agriculture: The Case of Sicily in the Mediterranean Context
by Giuseppe Timpanaro, Vera Teresa Foti, Giulio Cascone, Manuela Trovato, Alessandro Grasso and Gabriella Vindigni
Agriculture 2024, 14(12), 2347; https://doi.org/10.3390/agriculture14122347 - 20 Dec 2024
Viewed by 1176
Abstract
Enabling technologies (KETs) offer transformative potential for agriculture by addressing major challenges such as climate change, resource efficiency, and sustainable development across economic, social, and environmental dimensions. However, KET adoption is often limited by high R&D requirements, rapid innovation cycles, investment costs, and [...] Read more.
Enabling technologies (KETs) offer transformative potential for agriculture by addressing major challenges such as climate change, resource efficiency, and sustainable development across economic, social, and environmental dimensions. However, KET adoption is often limited by high R&D requirements, rapid innovation cycles, investment costs, and cultural or training barriers, especially among small agricultural businesses. Sicily’s agricultural sector, already strained by pandemic-related economic setbacks and inflationary pressures, faces additional barriers in adopting these technologies. To investigate these adoption challenges and develop viable solutions, the ARIA Living Lab (Agritech Research Innovation Environment) was established within the PNRR framework. A qualitative approach was used, involving documentary analysis and data from stakeholders across Sicilian agriculture. This approach enabled an in-depth exploration of sector-specific needs, infrastructure, and socio-economic factors influencing KET adoption. The analysis highlighted that adoption barriers differ significantly across sectors (citrus, olive, and wine), with public incentives and digital infrastructure playing key roles. However, a persistent lack of technical skills among farmers reduces the effectiveness of these innovations. The findings suggest that an integrated approach—combining targeted incentives, training, and enhanced infrastructure—is essential for a sustainable transition to KETs. Future research should examine collaborative efforts between farms and tech providers and evaluate the impact of public policies in promoting the widespread, informed adoption of enabling technologies. Full article
Show Figures

Figure 1

16 pages, 2262 KiB  
Article
Aroma Potential of German Riesling Winegrapes during Late-Stage Ripening
by Thi H. Nguyen, Daniel Zimmermann and Dominik Durner
Beverages 2024, 10(3), 77; https://doi.org/10.3390/beverages10030077 - 23 Aug 2024
Viewed by 1287
Abstract
The “aromatic maturity” of winegrapes is not fully understood, particularly during the later stages of ripening. The contribution of grapes to wine aroma has historically been challenging to determine, given most aroma compounds originate from nonvolatile precursors. In this study, an analytical approach [...] Read more.
The “aromatic maturity” of winegrapes is not fully understood, particularly during the later stages of ripening. The contribution of grapes to wine aroma has historically been challenging to determine, given most aroma compounds originate from nonvolatile precursors. In this study, an analytical approach previously developed for red winegrapes was adapted to assess the “aroma potential” of Riesling from two vineyards in Essenheim and Durbach, Germany, during the 2022 vintage, by extracting and hydrolyzing aroma precursors in an anoxic model wine matrix. Following sensory and chemical analyses of the hydrolysates using flash profiling and gas chromatography, a multiple factor analysis revealed vineyard- and ripening-dependent changes to aroma, even after total soluble solids had plateaued. As samples matured, green apple and fresh/vegetal aromas were prominent among the Durbach hydrolysates, likely due to persistent concentrations of hexanol. Hydrolysates from both vineyards nonetheless developed more pronounced citrus fruit, tropical fruit, and floral aromas, reflecting increased concentrations of various norisoprenoids and terpenoids. Findings suggest delaying harvest past technological maturity could confer greater aromatic intensity and complexity. The analytical approach used here appears promising for future studies on other grape varieties and other factors that could influence aroma, such as viticultural practices and environmental conditions. Full article
Show Figures

Figure 1

18 pages, 2574 KiB  
Article
Aromatic Characterisation of Moscato Giallo by GC-MS/MS and Validation of Stable Isotopic Ratio Analysis of the Major Volatile Compounds
by Mauro Paolini, Alberto Roncone, Lorenzo Cucinotta, Danilo Sciarrone, Luigi Mondello, Federica Camin, Sergio Moser, Roberto Larcher and Luana Bontempo
Biomolecules 2024, 14(6), 710; https://doi.org/10.3390/biom14060710 - 16 Jun 2024
Cited by 4 | Viewed by 2089
Abstract
Among the Moscato grapes, Moscato Giallo is a winegrape variety characterised by a high content of free and glycosylated monoterpenoids, which gives wines very intense notes of ripe fruit and flowers. The aromatic bouquet of Moscato Giallo is strongly influenced by the high [...] Read more.
Among the Moscato grapes, Moscato Giallo is a winegrape variety characterised by a high content of free and glycosylated monoterpenoids, which gives wines very intense notes of ripe fruit and flowers. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, hotrienol, diendiols, trans/cis-8-hydroxy linalool, geranic acid and myrcene, that give citrus, rose, and peach notes. Except for quali-quantitative analysis, no investigations regarding the isotopic values of the target volatile compounds in grapes and wines are documented in the literature. Nevertheless, the analysis of the stable isotope ratio represents a modern and powerful tool used by the laboratories responsible for official consumer protection, for food quality and genuineness assessment. To this aim, the aromatic compounds extracted from grapes and wine were analysed both by GC-MS/MS, to define the aroma profiles, and by GC-C/Py-IRMS, for a preliminary isotope compound-specific investigation. Seventeen samples of Moscato Giallo grapes were collected during the harvest season in 2021 from two Italian regions renowned for the cultivation of this aromatic variety, Trentino Alto Adige and Veneto, and the corresponding wines were produced at micro-winery scale. The GC-MS/MS analysis confirmed the presence of the typical terpenoids both in glycosylated and free forms, responsible for the characteristic aroma of the Moscato Giallo variety, while the compound-specific isotope ratio analysis allowed us to determine the carbon (δ13C) and hydrogen (δ2H) isotopic signatures of the major volatile compounds for the first time. Full article
(This article belongs to the Special Issue 2nd Edition: Biochemistry of Wine and Beer)
Show Figures

Figure 1

33 pages, 9587 KiB  
Review
Volatilomics of Fruit Wines
by Tomasz Tarko and Aleksandra Duda
Molecules 2024, 29(11), 2457; https://doi.org/10.3390/molecules29112457 - 23 May 2024
Cited by 14 | Viewed by 3157
Abstract
Volatilomics is a scientific field concerned with the evaluation of volatile compounds in the food matrix and methods for their identification. This review discusses the main groups of compounds that shape the aroma of wines, their origin, precursors, and selected metabolic pathways. The [...] Read more.
Volatilomics is a scientific field concerned with the evaluation of volatile compounds in the food matrix and methods for their identification. This review discusses the main groups of compounds that shape the aroma of wines, their origin, precursors, and selected metabolic pathways. The paper classifies fruit wines into several categories, including ciders and apple wines, cherry wines, plum wines, berry wines, citrus wines, and exotic wines. The following article discusses the characteristics of volatiles that shape the aroma of each group of wine and the concentrations at which they occur. It also discusses how the strain and species of yeast and lactic acid bacteria can influence the aroma of fruit wines. The article also covers techniques for evaluating the volatile compound profile of fruit wines, including modern analytical techniques. Full article
Show Figures

Graphical abstract

16 pages, 2415 KiB  
Article
Enhancing the Content of Hesperidin and Nobiletin in Citrus Wines through Multi-Strain Fermentation
by Shaoqing Zou, Yerui Ouyang, Linfeng Xie, Jiantao Liu, Ya Wang, Yiwen Xiao, Boliang Gao and Du Zhu
Fermentation 2024, 10(5), 238; https://doi.org/10.3390/fermentation10050238 - 29 Apr 2024
Cited by 1 | Viewed by 1970
Abstract
This research investigates how different fermentation techniques using non-Saccharomyces yeast (Candida ethanolica Ce, Hanseniaspora guilliermondii Hg, Hanseniaspora thailandica Ht) and Saccharomyces cerevisiae (Sc) affect the synthesis of hesperidin, nobiletin, and other flavonoid and aromatic substances, which play a vital [...] Read more.
This research investigates how different fermentation techniques using non-Saccharomyces yeast (Candida ethanolica Ce, Hanseniaspora guilliermondii Hg, Hanseniaspora thailandica Ht) and Saccharomyces cerevisiae (Sc) affect the synthesis of hesperidin, nobiletin, and other flavonoid and aromatic substances, which play a vital role in improving the overall quality of fruit wines due to their various biological properties. The combination of Sc:(Ce.Ht)-1:100 (Ce 0.5 × 107 CFU/mL, Ht 0.5 × 107 CFU/mL, Sc 1 × 105 CFU/mL) yielded the highest hesperidin content at 4.12 ± 0.08 mg/L, followed by the Sc:(Ce.Hg)-1:1 (Ce 0.5 × 107 CFU/mL, Hg 0.5 × 107 CFU/mL, Sc 1 × 107 CFU/mL) combination at 4.08 ± 0.06 mg/L. The highest nobiletin content was achieved by the (Hg.Ht)-10-Sc (Hg 0.5 × 107 CFU/mL, Ht 0.5 × 107 CFU/mL, Sc 1 × 107 CFU/mL) combination, reaching 1.04 ± 0.05 mg/L, which was significantly higher than other multi-strain combinations. Additionally, the hesperidin content produced by the (Hg.Ht)-10-Sc combination was relatively high at 4.04 ± 0.02 mg/L, demonstrating a richness and complexity of aroma superior to that of fermentation with commercial yeast strains alone. The findings suggest that the (Hg.Ht)-10-Sc combination is the most effective multi-strain combination for increasing the levels of nobiletin and hesperidin in citrus wine, thereby enhancing the overall quality of the wine. These experimental results offer a promising approach for enhancing the quality of citrus wines and other fruit wines. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

13 pages, 1120 KiB  
Article
Bread Improvement with Nutraceutical Ingredients Obtained from Food By-Products: Effect on Quality and Technological Aspects
by Giulio Scappaticci, Nicola Mercanti, Ylenia Pieracci, Corrado Ferrari, Roberto Mangia, Andrea Marianelli, Monica Macaluso and Angela Zinnai
Foods 2024, 13(6), 825; https://doi.org/10.3390/foods13060825 - 7 Mar 2024
Cited by 2 | Viewed by 2084
Abstract
The use of by-products as functional ingredients for bread recipes may open up new horizons in terms of product innovation to increase nutraceutical characteristics and/or shelf-life. In this research, the ability of residual products from important food chains (Citrus and wine) to [...] Read more.
The use of by-products as functional ingredients for bread recipes may open up new horizons in terms of product innovation to increase nutraceutical characteristics and/or shelf-life. In this research, the ability of residual products from important food chains (Citrus and wine) to influence the water binding capacity of dough and bread was investigated in order to create industrial breads of high quality with prolonged shelf-life in the absence of any chemical additives (e.g., ethanol, sorbic acid, and propionic acid). The product under study is the ‘Pan Bauletto bianco con olio EVO’ (white bakery bread with EVO oil), an ‘industrial bread’ type usually treated with ethanol before being marketed, aiming to prolong its short shelf-life. The effect of the addition of different amounts of pectin (Citrus supply chain) and grape pomace (wine supply chain), in combination or not, has shown promising results from both a technological point of view and the increasing shelf-life, allowing to obtain products with high nutraceutical value and interesting properties. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

14 pages, 5302 KiB  
Article
Effects of Non-Saccharomyces Yeasts and Their Pairwise Combinations in Co-Fermentation with Saccharomyces cerevisiae on the Quality of Chunjian Citrus Wine
by Yu Fu, Yueyue Gao, Ming Yang, Juan Chen, Chenglin Zhu, Junni Tang, Lianhong Chen and Zijian Cai
Molecules 2024, 29(5), 1028; https://doi.org/10.3390/molecules29051028 - 27 Feb 2024
Cited by 5 | Viewed by 1976
Abstract
Non-Saccharomyces (NSc) yeasts have great potential in improving wine qualities. In this study, two NSc and two Saccharomyces cerevisiae (Sc) samples were tested on their performance of mono-inoculated and composite culture in the fermentation of Chunjian citrus wine. The cell count, Brix degree, [...] Read more.
Non-Saccharomyces (NSc) yeasts have great potential in improving wine qualities. In this study, two NSc and two Saccharomyces cerevisiae (Sc) samples were tested on their performance of mono-inoculated and composite culture in the fermentation of Chunjian citrus wine. The cell count, Brix degree, total sugar, total acidity, alcohol level, pH value, color intensity (CI), and tonality were determined to evaluate the contribution of NSc to the quality of citrus wine in the mixed fermentation. Volatile compounds were analyzed by HS-SPME-GC-MS, and sensory evaluation was carried out. During the 9-day fermentation, the mixed-culture wine exhibited a higher cell concentration than the pure culture. After the fermentation, mixed-culture wine specifically decreased the concentrations of unfavorable volatile compounds, such as isobutanol and octanoic acid, and increased favorable volatile compounds, including ethyl octanoate, ethyl decanoate, and phenylethyl acetate. The quality category of the citrus wine was improved compared with the Sc mono-inoculated wines, mainly in regard to aroma, retention, and sweetness. The study shows that the mixed fermentation of NSc and Sc has positive impacts on reducing alcohol level and total acidity and increasing CI. The present work demonstrates that the mixed fermentation of NSc and Sc has enormous beneficial impacts on improving the quality of citrus wine. Full article
Show Figures

Figure 1

22 pages, 7560 KiB  
Review
Monoterpene Thiols: Synthesis and Modifications for Obtaining Biologically Active Substances
by Denis V. Sudarikov, Liliya E. Nikitina, Patrick Rollin, Evgeniy S. Izmest’ev and Svetlana A. Rubtsova
Int. J. Mol. Sci. 2023, 24(21), 15884; https://doi.org/10.3390/ijms242115884 - 1 Nov 2023
Cited by 2 | Viewed by 3682
Abstract
Monoterpene thiols are one of the classes of natural flavors that impart the smell of citrus fruits, grape must and wine, black currants, and guava and are used as flavoring agents in the food and perfume industries. Synthetic monoterpene thiols have found an [...] Read more.
Monoterpene thiols are one of the classes of natural flavors that impart the smell of citrus fruits, grape must and wine, black currants, and guava and are used as flavoring agents in the food and perfume industries. Synthetic monoterpene thiols have found an application in asymmetric synthesis as chiral auxiliaries, derivatizing agents, and ligands for metal complex catalysis and organocatalysts. Since monoterpenes and monoterpenoids are a renewable source, there are emerging trends to use monoterpene thiols as monomers for producing new types of green polymers. Monoterpene thioderivatives are also known to possess antioxidant, anticoagulant, antifungal, and antibacterial activity. The current review covers methods for the synthesis of acyclic, mono-, and bicyclic monoterpene thiols, as well as some investigations related to their usage for the preparation of the compounds with antimicrobial properties. Full article
(This article belongs to the Special Issue Antimicrobial Agents and Resistance Mechanisms)
Show Figures

Scheme 1

11 pages, 1591 KiB  
Brief Report
In Vitro Hypoxic Environment Enhances Volatile Compound Production in Persian Violet Flowers
by Sompoch Noichinda and Kitti Bodhipadma
Horticulturae 2023, 9(9), 981; https://doi.org/10.3390/horticulturae9090981 - 31 Aug 2023
Viewed by 1624
Abstract
Flowers of Persian violet (Exacum affine Balf. f. ex Regel) that are grown in nature typically produce a scent. However, whether Persian violet flowers developed inside sterile containers produce odors has yet to be studied. Therefore, this research aimed to study and [...] Read more.
Flowers of Persian violet (Exacum affine Balf. f. ex Regel) that are grown in nature typically produce a scent. However, whether Persian violet flowers developed inside sterile containers produce odors has yet to be studied. Therefore, this research aimed to study and compare the effects of ex vitro and in vitro environments on the volatile composition of Persian violet flowers. Persian violet flowers obtained from an in vitro culture and potted plants were analyzed for volatile constituents using gas chromatography–mass spectrometry (GC-MS). The main constituent of the volatile compounds in the Persian violet flowers grown in both conditions was alcohol, with 3-hexen-1-ol, which produces a grassy-green odor, being the dominant substance. In addition, the in vitro Persian violet flowers contained the highest amount of ethanol, which produces a wine aroma—followed by the terpene alcohol β-citronellol, which produces a rose scent. However, 3-carene (citrus odor), caryophyllene (floral odor), humulene (woody odor), and β-ionone (floral odor) were detected only in Persian violet flowers grown in natural conditions. Therefore, these results indicate that hypoxia possibly occurred during plantlet growth in the in vitro environment and caused some different volatile compound production from that in natural conditions. Full article
(This article belongs to the Special Issue In Vitro Propagation and Biotechnology of Horticultural Plants)
Show Figures

Graphical abstract

13 pages, 3734 KiB  
Article
Biocontrol Using Torulaspora delbrueckii in Sequential Fermentation: New Insights into Low-Sulfite Verdicchio Wines
by Laura Canonico, Alice Agarbati, Edoardo Galli, Francesca Comitini and Maurizio Ciani
Foods 2023, 12(15), 2899; https://doi.org/10.3390/foods12152899 - 30 Jul 2023
Cited by 3 | Viewed by 1466
Abstract
Torulaspora delbrueckii has attracted renewed interest in recent years, for its biotechnological potential linked to its ability to enhance the flavor and aroma complexity of wine. Sequential fermentations with a selected native strain of T. delbrueckii (DiSVA 130) and low-sulfite native strain of [...] Read more.
Torulaspora delbrueckii has attracted renewed interest in recent years, for its biotechnological potential linked to its ability to enhance the flavor and aroma complexity of wine. Sequential fermentations with a selected native strain of T. delbrueckii (DiSVA 130) and low-sulfite native strain of Saccharomyces cerevisiae (DiSVA 709) were carried out to establish their contribution in biocontrol and the aroma profile. A first set of trials were conducted to evaluate the effect of the sulfur dioxide addition on pure and T. debrueckii/S. cerevisiae sequential fermentations. A second set of sequential fermentations without SO2 addition were conducted to evaluate the biocontrol and aromatic effectiveness of T. delbrueckii. Native T. delbrueckii showed a biocontrol action in the first two days of fermentation (wild yeasts reduced by c.a. 1 log at the second day). Finally, trials with the combination of both native and commercial T. delbrueckii/S. cerevisiae led to distinctive aromatic profiles of wines, with a significant enhancement in isoamyl acetate, phenyl ethyl acetate, supported by positive appreciations from the tasters, for ripe and tropical fruits, citrus, and balance. The whole results indicate that native T. delbrueckii could be a potential biocontrol tool against wild yeasts in the first phase of fermentation, contributing to improving the final wine aroma. Full article
(This article belongs to the Special Issue Yeast Biotechnology for Food Industrial Processes)
Show Figures

Figure 1

Back to TopTop