Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = Ciguatera Fish Poisoning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9989 KiB  
Article
Application of High-Resolution Mass Spectrometry for Ciguatoxin Detection in Fish from the Asia–Pacific Region
by Xin Li, Ker Lew, Yu Lee Leyau, Ping Shen, Joachim Chua, Kung Ju Lin, Yuansheng Wu and Sheot Harn Chan
Toxins 2025, 17(3), 100; https://doi.org/10.3390/toxins17030100 - 20 Feb 2025
Cited by 1 | Viewed by 1109
Abstract
Fish is a major source of protein in Asia–Pacific countries. Ciguatera fish poisoning (CFP), caused by consuming reef fish contaminated with ciguatoxins (CTXs), poses a significant health risk, affecting the neurological, gastrointestinal, and cardiovascular systems. Climate change and the global food trade are [...] Read more.
Fish is a major source of protein in Asia–Pacific countries. Ciguatera fish poisoning (CFP), caused by consuming reef fish contaminated with ciguatoxins (CTXs), poses a significant health risk, affecting the neurological, gastrointestinal, and cardiovascular systems. Climate change and the global food trade are potentially major factors contributing to the expanding geographical range and frequency of CFP outbreaks. Therefore, the surveillance and monitoring of CTXs in fishery products are essential to safeguard food safety. In this study, liquid chromatography–high-resolution mass spectrometry (LC-HRMS) was used to screen for CTXs in wild-caught fish from the region. Analysis of two grouper fish samples from Okinawa, Japan, detected CTX-1B, a major CTX known to incur in fish from the Asia–Pacific region. Additionally, putative Indian Ocean CTXs (I-CTXs) were also identified. Further study with HRMS on wild-caught red emperor fish from Southeast Asia waters revealed low levels of I-CTXs as well. These findings underscore the urgent need for enhanced food safety measures and expansion of monitoring protocols to include I-CTXs. This research contributes to the global understanding of CTX distribution and confirms the importance of HRMS application in routine surveillance to mitigate the risks associated with ciguatera fish poisoning (CFP). Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

23 pages, 2403 KiB  
Article
First Confirmed Occurrence of Ciguatera Poisoning in the UK from Imported Pinjalo Snapper (Pinjalo pinjalo)
by Andrew D. Turner, Benjamin H. Maskrey, David Stone, Elizabeth M. Mudge and Alison Robertson
Mar. Drugs 2025, 23(2), 67; https://doi.org/10.3390/md23020067 - 6 Feb 2025
Viewed by 1430
Abstract
Three people in England consumed fish steaks labeled as Red Snapper (Lutjanus bohar) originating from the Indian Ocean. Within 12 h, all three experienced sickness including nausea, vomiting, diarrhea, as well as myalgia and paresthesia. Three steaks from a single package [...] Read more.
Three people in England consumed fish steaks labeled as Red Snapper (Lutjanus bohar) originating from the Indian Ocean. Within 12 h, all three experienced sickness including nausea, vomiting, diarrhea, as well as myalgia and paresthesia. Three steaks from a single package of fish obtained from a grocery store were consumed, leaving one uneaten, which was submitted for analysis. Cytotoxicity testing via the mouse neuroblastoma assay confirmed the presence of sodium channel specific activity consistent with a ciguatoxin standard, and the levels detected were above established guidance limits for safe consumption. Chemical detection using liquid chromatography coupled with high-resolution mass spectrometry of both intact toxins and periodate oxidation products was used to confirm the presence of chromatographic peaks consistent with tri- and di-hydroxylated Pacific ciguatoxin 3C congeners. Taking the shared medical symptoms of patients, the recent dietary history, and the known potential for ciguatera poisoning to occur in snapper species, the subsequent evidence for CTX-like activity and CTXs in the same fish sample provides very strong evidence that the fish steaks consumed were similarly contaminated with CTXs. Furthermore, given the levels reported, such toxicity would be expected to cause intoxication in humans. Fish species identification based on DNA barcoding confirmed that the fish products were mislabeled, with the tissues instead being the Pinjalo snapper, Pinjalo pinjalo. This is the first confirmed ciguatera poisoning incident in both the UK and from the Pinjalo snapper and highlights the need for monitoring of these emerging toxins in reef fish imports to prevent future human intoxication. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

24 pages, 4362 KiB  
Article
Optimization of the Extraction Protocol for Pacific Ciguatoxins from Marine Products Prior to Analysis Using the Neuroblastoma Cell-Based Assay
by Thomas Yon, Philippe Cruchet, Jérôme Viallon, J. Sam Murray, Emillie Passfield, Mireille Chinain, Hélène Taiana Darius and Mélanie Roué
Mar. Drugs 2025, 23(1), 42; https://doi.org/10.3390/md23010042 - 16 Jan 2025
Viewed by 1413
Abstract
Ciguatera poisoning (CP) is caused by the consumption of marine products contaminated with ciguatoxins (CTXs) produced by dinoflagellates of the genus Gambierdiscus. Analytical methods for CTXs, involving the extraction/purification of trace quantities of CTXs from complex matrices, are numerous in the literature. [...] Read more.
Ciguatera poisoning (CP) is caused by the consumption of marine products contaminated with ciguatoxins (CTXs) produced by dinoflagellates of the genus Gambierdiscus. Analytical methods for CTXs, involving the extraction/purification of trace quantities of CTXs from complex matrices, are numerous in the literature. However, little information on their effectiveness for nonpolar CTXs is available, yet these congeners, contributing to the risk of CP, are required for the establishment of effective food safety monitoring programs. An evaluation of six extraction/purification protocols, performed with CTX3C spiked on fish flesh and a neuroblastoma cell-based assay (CBA-N2a), revealed recoveries from 6 to 45%. This led to the development of an optimized 3-day protocol designed for a large number of samples, with CTX1B and CTX3C eluting in a single fraction and showing recoveries of 73% and 70%, respectively. In addition, a reduction in adverse matrix effects in the CBA-N2a analyses was demonstrated with naturally contaminated specimens, increasing the sensitivity of the method, which now meets the very low guidance level recommended by international agencies. However, efforts are still required to reduce the signal suppression observed in LC-MS/MS analysis. This optimized protocol contributes to the technological advancement of detection methods, promoting food safety and improving CP risk assessment in marine products. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

26 pages, 2572 KiB  
Review
Marine Algal Toxins and Public Health: Insights from Shellfish and Fish, the Main Biological Vectors
by Kuan-Kuan Yuan, Hong-Ye Li and Wei-Dong Yang
Mar. Drugs 2024, 22(11), 510; https://doi.org/10.3390/md22110510 - 10 Nov 2024
Cited by 6 | Viewed by 3389
Abstract
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning [...] Read more.
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning (CP). Despite being caused by exposure to various toxins or toxin analogs, these clinical syndromes share numerous similarities. Humans are exposed to these toxins mainly through the consumption of fish and shellfish, which serve as the main biological vectors. However, the risk of human diseases linked to toxigenic HABs is on the rise, corresponding to a dramatic increase in the occurrence, frequency, and intensity of toxigenic HABs in coastal regions worldwide. Although a growing body of studies have focused on the toxicological assessment of HAB-related species and their toxins on aquatic organisms, the organization of this information is lacking. Consequently, a comprehensive review of the adverse effects of HAB-associated species and their toxins on those organisms could deepen our understanding of the mechanisms behind their toxic effects, which is crucial to minimizing the risks of toxigenic HABs to human and public health. To this end, this paper summarizes the effects of the five most common HAB toxins on fish, shellfish, and humans and discusses the possible mechanisms. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

38 pages, 5610 KiB  
Article
Morphological, Toxicological, and Biochemical Characterization of Two Species of Gambierdiscus from Bahía de La Paz, Gulf of California
by Leyberth José Fernández-Herrera, Erick Julián Núñez-Vázquez, Francisco E. Hernández-Sandoval, Daniel Octavio Ceseña-Ojeda, Sara García-Davis, Andressa Teles, Marte Virgen-Félix and Dariel Tovar-Ramírez
Mar. Drugs 2024, 22(9), 422; https://doi.org/10.3390/md22090422 - 16 Sep 2024
Cited by 1 | Viewed by 2094
Abstract
We describe five new isolates of two Gambierdiscus species from Bahía de La Paz in the southern Gulf of California. Batch cultures of Gambierdiscus were established for morphological characterization using light microscopy (LM) and scanning electron microscopy (SEM). Pigment and amino acid profiles [...] Read more.
We describe five new isolates of two Gambierdiscus species from Bahía de La Paz in the southern Gulf of California. Batch cultures of Gambierdiscus were established for morphological characterization using light microscopy (LM) and scanning electron microscopy (SEM). Pigment and amino acid profiles were also analyzed using high-performance liquid chromatography (HPLC-UV and HPLC-DAD). Finally, toxicity (CTX-like and MTX-like activity) was evaluated using the Artemia salina assay (ARTOX), mouse assay (MBA), marine fish assay (MFA), and fluorescent receptor binding assay (fRBA). These strains were identified as Gambierdiscus cf. caribaeus and Gambierdiscus cf. carpenteri. Toxicity for CTX-like and MTX-like activity was confirmed in all evaluated clones. Seven pigments were detected, with chlorophyll a, pyridine, Chl2, and diadinoxanthin being particularly noteworthy. For the first time, a screening of the amino acid profile of Gambierdiscus from the Pacific Ocean was conducted, which showed 14 amino acids for all strains except histidine, which was only present in G. cf. caribeaus. We report the presence of Gambierdiscus and Fukuyoa species in the Mexican Pacific, where ciguatera fish poisoning (CFP) cases have occurred. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

20 pages, 2588 KiB  
Article
Fish Extract Fractionation by Solid Phase Extraction: Investigating Co-Occurring Ciguatoxins by LC-MS/MS and N2a-Bioassay
by Astrid Spielmeyer, Vincent Blaschke and Christopher R. Loeffler
Separations 2024, 11(8), 238; https://doi.org/10.3390/separations11080238 - 1 Aug 2024
Cited by 2 | Viewed by 1600
Abstract
Ciguatoxins (CTXs) are neurotoxic marine biotoxins capable of contaminating marine organisms. Approximately 30 CTX analogues have been described; however, only a few have been documented in ciguatera poisoning (CP) outbreaks. Detecting CTXs from complex matrices at CP-relevant concentrations (<1 µg per kg seafood [...] Read more.
Ciguatoxins (CTXs) are neurotoxic marine biotoxins capable of contaminating marine organisms. Approximately 30 CTX analogues have been described; however, only a few have been documented in ciguatera poisoning (CP) outbreaks. Detecting CTXs from complex matrices at CP-relevant concentrations (<1 µg per kg seafood tissue) is analytically challenging. Analytical standards for CTXs are rare. Even after multi-step sample preparation (including liquid–liquid partition, defatting, and solid-phase extraction (SPE)), extracts can contain undesirable co-eluting matrix components. These limitations can exacerbate discrepancies between results obtained by LC-MS/MS and the N2a-bioassay, which are two common CTX detection methods. Herein, a rapid and simple fractionation method, based on normal phase SPE (silica), is demonstrated. Target CTXs were eluted using solvent mixtures of ascending polarity, passed through the column, and separated into eight fractions. To challenge the method, extracts with eleven naturally incurred CTX analogues among different structural CTX groups (e.g., CTX3C, CTX4A, and C-CTX group) were used. The most complex tissue matrix tested (viscera) was improved the most for extract purity and CTX detection, enhancing the correlation between LC-MS/MS and N2a-bioassay results. This workflow represents an advancement for characterizing CTXs in seafood products and CP outbreaks, irrespective of the responsible CTX analogue and where standards are lacking. Full article
Show Figures

Figure 1

18 pages, 1708 KiB  
Article
Effects on Biochemical Parameters and Animal Welfare of Dusky Grouper (Epinephelus marginatus, Lowe 1834) by Feeding CTX Toxic Flesh
by Yefermin Darias-Dágfeel, Andres Sanchez-Henao, Daniel Padilla, María Virginia Martín, María José Ramos-Sosa, Paula Poquet, Michelle Barreto, Freddy Silva Sergent, Salvador Jerez and Fernando Real
Animals 2024, 14(12), 1757; https://doi.org/10.3390/ani14121757 - 11 Jun 2024
Cited by 2 | Viewed by 1583
Abstract
Ciguatera is a foodborne disease caused by ciguatoxins (CTXs), produced by dinoflagellates (genera Gambierdiscus and Fukuyoa), which bioaccumulate in fish through the food web, causing poisoning in humans. Currently, the physiological mechanisms of the species with the highest amount of toxins in [...] Read more.
Ciguatera is a foodborne disease caused by ciguatoxins (CTXs), produced by dinoflagellates (genera Gambierdiscus and Fukuyoa), which bioaccumulate in fish through the food web, causing poisoning in humans. Currently, the physiological mechanisms of the species with the highest amount of toxins in their adult stage of life that are capable of causing these poisonings are poorly understood. Dusky grouper (Epinephelus marginatus) is a relevant fishing species and is part of the CTX food chain in the Canary Islands. This study developed an experimental model of dietary exposure featuring adult dusky groupers with two diets of tissue naturally contaminated with CTXs (amberjack and moray eel flesh) with two different potential toxicities; both groups were studied at different stages of exposure (4, 6, 10, 12, and 18 weeks). The results showed that this species did not show changes in its behavior due to the provided feeding, but the changes were recorded in biochemical parameters (mainly lipid and hepatic metabolism) that may respond to liver damage and alterations in the homeostasis of the fish; more research is needed to understand histopathological and cytotoxic changes. Full article
(This article belongs to the Special Issue Ecotoxicology in Aquatic Animals)
Show Figures

Graphical abstract

17 pages, 933 KiB  
Review
Expansion of Toxic Algal Blooms in Coastal and Marine Areas in the Philippines and Malaysia: Is It Climate Change Related?
by Rhodora V. Azanza, Aletta T. Yñiguez, Deo Florence Onda, Garry A. Benico, Po Teen Lim, Chui Pin Leaw and Mitsunori Iwataki
Sustainability 2024, 16(8), 3304; https://doi.org/10.3390/su16083304 - 15 Apr 2024
Cited by 9 | Viewed by 9017
Abstract
This paper provides a review of toxic algal blooms in the Philippine and Malaysian coastal and marine systems, considering relevant available knowledge, including climate change dimension/s in the assessment of their recorded recent expansion. The first record of human toxicity in the Philippines [...] Read more.
This paper provides a review of toxic algal blooms in the Philippine and Malaysian coastal and marine systems, considering relevant available knowledge, including climate change dimension/s in the assessment of their recorded recent expansion. The first record of human toxicity in the Philippines associated with HABs/toxic algal blooms specifically was during the bloom of Pyrodinium bahamense in the Sorsogon, Samar, and Leyte waters in 1983. Since then, the species has been identified to occur and cause blooms in about 44 sites/areas in the country. Recent government reports, i.e., 2021, 2022, and 2023, have also identified other paralytic shellfish poisoning (PSP) causative organisms (Gymnodinium catenatum, Alexandrium spp.) in the country. New records indicate that the presence of PSP causative species has been reported almost year-round in the Philippines. In Malaysia, PSP caused by P. bahamense was initially confined in 1981 to the state of Sabah, Malaysia Borneo, but since then, blooms of this species have been reported almost annually at different scales across the coastal waters of Sabah. P. bahamense and other cyst-forming dinoflagellates could be transported naturally or through human activities. Other eco-physiological and environment factors from the field and the laboratory have been used to study the bloom dynamics and transport of PSP causative species in several areas in the Philippines and Malaysia. More recently, plastics and other marine litter have been considered potential vectors of invasion/transport or expansion of dinoflagellates with other microorganisms. ENSO events have been observed to be stronger since 1950 compared with those recorded from 1850 to 1950. The extreme phases of the ENSO phenomenon have a strong modulating effect based on seasonal rainfall in the Philippines, with extreme ENSO warm events (El Niño) often associated with drought and stresses on water resources and agriculture/aquaculture. In contrast, cold events (La Niña) often result in excessive rainfall. The La Nina Advisories from 2021 to 2023 (18 advisories) showed the persistence of this part of ENSO, particularly in regions with recurrent and new records of HABs/toxic algal blooms. More studies and monitoring of another type of toxic algal bloom, Ciguatera Fish Poisoning (CFP), are recommended in tropical countries such as the Philippines and Malaysia, which have extensive reef areas that harvest and culture marine fish for local and export purposes, as accelerating reports of this type of poisoning have apparently increased and causative organisms have been identified in several areas. There is an urgent need to enhance HAB/toxic algal bloom research and monitoring, particularly those related to climate change, which has apparently impacted these blooms/occurrences directly or indirectly. Local researchers and managers should be made aware of the knowledge and tools already available for their utilization and enhancement to meet local conditions and challenges for potential recurrence and expansion of HABs/toxic algal blooms. Regional and international HAB research and collaboration should be further advanced for the protection of public health and marine resources. Full article
Show Figures

Figure 1

9 pages, 2030 KiB  
Communication
First Detection of Algal Caribbean Ciguatoxin in Amberjack Causing Ciguatera Poisoning in the Canary Islands (Spain)
by Pablo Estevez, Juan Oses-Prieto, David Castro, Alejandro Penin, Alma Burlingame and Ana Gago-Martinez
Toxins 2024, 16(4), 189; https://doi.org/10.3390/toxins16040189 - 13 Apr 2024
Cited by 6 | Viewed by 2597
Abstract
Ciguatera Poisoning (CP) is an illness associated with the consumption of fish contaminated with potent natural toxins found in the marine environment, commonly known as ciguatoxins (CTXs). The risk characterization of CP has become a worldwide concern due to the widespread expansion of [...] Read more.
Ciguatera Poisoning (CP) is an illness associated with the consumption of fish contaminated with potent natural toxins found in the marine environment, commonly known as ciguatoxins (CTXs). The risk characterization of CP has become a worldwide concern due to the widespread expansion of these natural toxins. The identification of CTXs is hindered by the lack of commercially available reference materials. This limitation impedes progress in developing analytical tools and conducting toxicological studies essential for establishing regulatory levels for control. This study focuses on characterizing the CTX profile of an amberjack responsible for a recent CP case in the Canary Islands (Spain), located on the east Atlantic coast. The exceptional sensitivity offered by Capillary Liquid Chromatography coupled with High-Resolution Mass Spectrometry (cLC-HRMS) enabled the detection, for the first time in fish contaminated in the Canary Islands, of traces of an algal ciguatoxin recently identified in G. silvae and G. caribeaus from the Caribbean Sea. This algal toxin was structurally characterized by cLC-HRMS being initially identified as C-CTX5. The total toxin concentration of CTXs was eight times higher than the guidance level proposed by the Food and Drug Administration (0.1 ng C-CTX1/g fish tissue), with C-CTX1 and 17-hydroxy-C-CTX1 as major CTXs. Full article
Show Figures

Figure 1

1 pages, 125 KiB  
Abstract
Understanding Ciguatoxin-Induced CNS Depression and Evaluating Piperine as a Therapeutic Strategy
by Vishesh Kumar Maurya
Proceedings 2024, 103(1), 68; https://doi.org/10.3390/proceedings2024103068 - 12 Apr 2024
Viewed by 656
Abstract
Introduction: Ciguatoxin (CTX) is a potent marine toxin known for its detrimental effects on the Central Nervous System (CNS), inducing symptoms of depression and neurological dysfunction. The nervous system’s synapses’ threshold for opening voltage-gated sodium channels is reduced by ciguatoxin. Piperine, a bioactive [...] Read more.
Introduction: Ciguatoxin (CTX) is a potent marine toxin known for its detrimental effects on the Central Nervous System (CNS), inducing symptoms of depression and neurological dysfunction. The nervous system’s synapses’ threshold for opening voltage-gated sodium channels is reduced by ciguatoxin. Piperine, a bioactive compound found in black pepper, has shown promise as a potential treatment for CTX-induced CNS depression due to its neuroprotective properties. Methods: This review comprehensively examines studies investigating the effects of CTX on CNS depression and the potential therapeutic role of piperine. Various cell models, including Mus musculus cells (N2A), Zalophus californianus tissues and many others have been utilized to elucidate the mechanisms underlying CTX-induced CNS depression. Studies employing proteomic techniques such as 2D DIGE, MALDI-TOF/TOF, LC-MS/MS, and nanoLC-MS/MS have provided insights into the dysregulated proteins, pathways, and cellular responses associated with CTX toxicity. Additionally, investigation into the therapeutic effects of bioactive compound such as piperine has been conducted for marine toxins. Results: Studies have revealed that CTX exerts its CNS-depressant effects through dysregulation of calcium homeostasis, membrane depolarization, and disruption of neurotransmitter pathways. Furthermore, CTX-induced toxicity is associated with dysregulated proteins involved in neurodegenerative pathways, apoptosis, and excitotoxicity. Piperine has been shown to mitigate CTX-induced CNS depression by modulating oxidative stress, inflammation, and neurotransmitter imbalances. Mechanistically, piperine’s neuroprotective effects involve activation of NRF2 pathways, inhibition of apoptotic signaling, and modulation of neuronal excitability. Conclusions: The findings from this review underscore the potential of piperine as a therapeutic agent for mitigating CTX-induced CNS depression. More large-scale studies and clinical trials are required for subsequent research to demonstrate piperine’s effectiveness and safety as a treatment for CTX intoxication. Understanding the intricate mechanisms underlying CTX-induced CNS depression and the therapeutic effects of piperine could pave the way for novel interventions in managing ciguatera fish poisoning. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
17 pages, 4127 KiB  
Article
Detection of Extremely Low Level Ciguatoxins through Monitoring of Lithium Adduct Ions by Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry
by Manami Kobayashi, Junichi Masuda and Naomasa Oshiro
Toxins 2024, 16(4), 170; https://doi.org/10.3390/toxins16040170 - 27 Mar 2024
Cited by 1 | Viewed by 2025
Abstract
Ciguatera poisoning (CP) is the most common type of marine biotoxin food poisoning worldwide, and it is caused by ciguatoxins (CTXs), thermostable polyether toxins produced by dinoflagellate Gambierdiscus and Fukuyoa spp. It is typically caused by the consumption of large fish high on [...] Read more.
Ciguatera poisoning (CP) is the most common type of marine biotoxin food poisoning worldwide, and it is caused by ciguatoxins (CTXs), thermostable polyether toxins produced by dinoflagellate Gambierdiscus and Fukuyoa spp. It is typically caused by the consumption of large fish high on the food chain that have accumulated CTXs in their flesh. CTXs in trace amounts are found in natural samples, and they mainly induce neurotoxic effects in consumers at concentrations as low as 0.2 µg/kg. The U.S. Food and Drug Administration has established CTX maximum permitted levels of 0.01 µg/kg for CTX1B and 0.1 µg/kg for C-CTX1 based on toxicological data. More than 20 variants of the CTX1B and CTX3C series have been identified, and the simultaneous detection of trace amounts of CTX analogs has recently been required. Previously published works using LC-MS/MS achieved the safety levels by monitoring the sodium adduct ions of CTXs ([M+Na]+ > [M+Na]+). In this study, we optimized a highly sensitive method for the detection of CTXs using the sodium or lithium adducts, [M+Na]+ or [M+Li]+, by adding alkali metals such as Na+ or Li+ to the mobile phase. This work demonstrates that CTXs can be successfully detected at the low concentrations recommended by the FDA with good chromatographic separation using LC-MS/MS. It also reports on the method’s new analytical conditions and accuracy using [M+Li]+. Full article
(This article belongs to the Special Issue Analytical Chemistry Techniques in Toxin Detection)
Show Figures

Figure 1

12 pages, 1875 KiB  
Article
Sensitive Detection of Ciguatoxins Using a Neuroblastoma Cell-Based Assay with Voltage-Gated Potassium Channel Inhibitors
by Toshiaki Yokozeki, Madoka Kawabata, Kazuhiro Fujita, Masahiro Hirama and Takeshi Tsumuraya
Toxins 2024, 16(3), 118; https://doi.org/10.3390/toxins16030118 - 29 Feb 2024
Cited by 4 | Viewed by 2284
Abstract
Ciguatoxins (CTXs) are neurotoxins responsible for ciguatera poisoning (CP), which affects more than 50,000 people worldwide annually. The development of analytical methods to prevent CP is a pressing global issue, and the N2a assay is one of the most promising methods for detecting [...] Read more.
Ciguatoxins (CTXs) are neurotoxins responsible for ciguatera poisoning (CP), which affects more than 50,000 people worldwide annually. The development of analytical methods to prevent CP is a pressing global issue, and the N2a assay is one of the most promising methods for detecting CTXs. CTXs are highly toxic, and an action level of 0.01 μg CTX1B equivalent (eq)/kg in fish has been proposed. It is desirable to further increase the detection sensitivity of CTXs in the N2a assay to detect such low concentrations reliably. The opening of voltage-gated sodium channels (NaV channels) and blocking of voltage-gated potassium channels (KV channels) are thought to be involved in the toxicity of CTXs. Therefore, in this study, we developed an assay that could detect CTXs with higher sensitivity than conventional N2a assays, using KV channel inhibitors as sensitizing reagents for N2a cells. The addition of the KV channel inhibitors 4-aminopyridine and tetraethylammonium chloride to N2a cells, in addition to the traditional sensitizing reagents ouabain and veratridine, increased the sensitivity of N2a cells to CTXs by up to approximately 4-fold. This is also the first study to demonstrate the influence of KV channels on the toxicity of CTXs in a cell-based assay. Full article
(This article belongs to the Topic Marine Biotoxins and Bioactive Marine Natural Products)
Show Figures

Figure 1

12 pages, 2966 KiB  
Communication
Structural Assignment of the Product Ion Generated from a Natural Ciguatoxin-3C Congener, 51-Hydroxyciguatoxin-3C, and Discovery of Distinguishable Signals in Congeners Bearing the 51-Hydroxy Group
by Ryogo Ukai, Hideaki Uchida, Kouichi Sugaya, Jun-ichi Onose, Naomasa Oshiro, Takeshi Yasumoto and Naoki Abe
Toxins 2024, 16(2), 89; https://doi.org/10.3390/toxins16020089 - 6 Feb 2024
Cited by 1 | Viewed by 1778
Abstract
Ciguatoxins (CTXs) stand as the primary toxins causing ciguatera fish poisoning (CFP) and are essential compounds distinguished by their characteristic polycyclic ether structure. In a previous report, we identified the structures of product ions generated via homolytic fragmentation by assuming three charge sites [...] Read more.
Ciguatoxins (CTXs) stand as the primary toxins causing ciguatera fish poisoning (CFP) and are essential compounds distinguished by their characteristic polycyclic ether structure. In a previous report, we identified the structures of product ions generated via homolytic fragmentation by assuming three charge sites in the mass spectrometry (MS)/MS spectrum of ciguatoxin-3C (CTX3C) using LC-MS. This study aims to elucidate the homolytic fragmentation of a ciguatoxin-3C congener. We assigned detailed structures of the product ions in the MS/MS spectrum of a naturally occurring ciguatoxin-3C congener, 51-hydroxyciguatoxin-3C (51-hydoxyCTX3C), employing liquid chromatography/quadrupole time-of-flight mass spectrometry with an atmospheric pressure chemical ionization (APCI) source. The introduction of a hydroxy substituent on C51 induced different fragmentation pathways, including a novel cleavage mechanism of the M ring involving the elimination of 51-OH and the formation of enol ether. Consequently, new cleavage patterns generated product ions at m/z 979 (C55H79O15), 439 (C24H39O7), 149 (C10H13O), 135 (C9H11O), and 115 (C6H11O2). Additionally, characteristic product ions were observed at m/z 509 (C28H45O8), 491 (C28H43O7), 481 (C26H41O8), 463 (C26H39O7), 439 (C24H39O7), 421 (C24H37O6), 171 (C9H15O3), 153 (C9H13O2), 141 (C8H13O2), and 123 (C8H11O). Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Graphical abstract

22 pages, 1531 KiB  
Article
Tissue Distribution and Metabolization of Ciguatoxins in an Herbivorous Fish following Experimental Dietary Exposure to Gambierdiscus polynesiensis
by Rachel J. Clausing, Hela Ben Gharbia, Khalil Sdiri, Manoëlla Sibat, Ma. Llorina Rañada-Mestizo, Laura Lavenu, Philipp Hess, Mireille Chinain and Marie-Yasmine Dechraoui Bottein
Mar. Drugs 2024, 22(1), 14; https://doi.org/10.3390/md22010014 - 25 Dec 2023
Cited by 9 | Viewed by 2868
Abstract
Ciguatoxins (CTXs), potent neurotoxins produced by dinoflagellates of the genera Gambierdiscus and Fukuyoa, accumulate in commonly consumed fish species, causing human ciguatera poisoning. Field collections of Pacific reef fish reveal that consumed CTXs undergo oxidative biotransformations, resulting in numerous, often toxified analogs. [...] Read more.
Ciguatoxins (CTXs), potent neurotoxins produced by dinoflagellates of the genera Gambierdiscus and Fukuyoa, accumulate in commonly consumed fish species, causing human ciguatera poisoning. Field collections of Pacific reef fish reveal that consumed CTXs undergo oxidative biotransformations, resulting in numerous, often toxified analogs. Following our study showing rapid CTX accumulation in flesh of an herbivorous fish, we used the same laboratory model to examine the tissue distribution and metabolization of Pacific CTXs following long-term dietary exposure. Naso brevirostris consumed cells of Gambierdiscus polynesiensis in a gel food matrix over 16 weeks at a constant dose rate of 0.36 ng CTX3C equiv g−1 fish d−1. CTX toxicity determination of fish tissues showed CTX activity in all tissues of exposed fish (eight tissues plus the carcass), with the highest concentrations in the spleen. Muscle tissue retained the largest proportion of CTXs, with 44% of the total tissue burden. Moreover, relative to our previous study, we found that larger fish with slower growth rates assimilated a higher proportion of ingested toxin in their flesh (13% vs. 2%). Analysis of muscle extracts revealed the presence of CTX3C and CTX3B as well as a biotransformed product showing the m/z transitions of 2,3-dihydroxyCTX3C. This is the first experimental evidence of oxidative transformation of an algal CTX in a model consumer and known vector of CTX into the fish food web. These findings that the flesh intended for human consumption carries the majority of the toxin load, and that growth rates can influence the relationship between exposure and accumulation, have significant implications in risk assessment and the development of regulatory measures aimed at ensuring seafood safety. Full article
(This article belongs to the Special Issue Marine Biotoxins 3.0)
Show Figures

Graphical abstract

21 pages, 3879 KiB  
Article
Mouse N2a Neuroblastoma Assay: Uncertainties and Comparison with Alternative Cell-Based Assays for Ciguatoxin Detection
by Sandra Raposo-Garcia, Alejandro Cao, Celia Costas, M. Carmen Louzao, Natalia Vilariño, Carmen Vale and Luis M. Botana
Mar. Drugs 2023, 21(11), 590; https://doi.org/10.3390/md21110590 - 13 Nov 2023
Cited by 5 | Viewed by 3601
Abstract
The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with [...] Read more.
The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Graphical abstract

Back to TopTop