Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Choctawhatchee

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1021 KiB  
Article
Spatial Variation in Mercury Accumulation in Bottlenose Dolphins (Tursiops spp.) in Southeastern U.S.A.
by Mackenzie L. Griffin, Colleen E. Bryan, Tara M. Cox, Brian C. Balmer, Russell D. Day, Laura Garcia Barcia, Antoinette M. Gorgone, Jeremy J. Kiszka, Jenny A. Litz, Robin M. Perrtree, Teri K. Rowles, Lori H. Schwacke, Randall S. Wells and Eric Zolman
Toxics 2024, 12(5), 327; https://doi.org/10.3390/toxics12050327 - 30 Apr 2024
Viewed by 3673
Abstract
Bottlenose dolphins (Tursiops spp.) inhabit bays, sounds, and estuaries (BSEs) throughout the southeast region of the U.S.A. and are sentinel species for human and ecosystem-level health. Dolphins are vulnerable to the bioaccumulation of contaminants through the coastal food chain because they are [...] Read more.
Bottlenose dolphins (Tursiops spp.) inhabit bays, sounds, and estuaries (BSEs) throughout the southeast region of the U.S.A. and are sentinel species for human and ecosystem-level health. Dolphins are vulnerable to the bioaccumulation of contaminants through the coastal food chain because they are high-level predators. Currently, there is limited information on the spatial dynamics of mercury accumulation in these dolphins. Total mercury (THg) was measured in dolphin skin from multiple populations across the U.S. Southeast Atlantic and Gulf of Mexico coasts, and the influence of geographic origin, sex, and age class was investigated. Mercury varied significantly among sampling sites and was greatest in dolphins in St. Joseph Bay, Florida Everglades, and Choctawhatchee Bay (14,193 ng/g ± 2196 ng/g, 10,916 ng/g ± 1532 ng/g, and 7333 ng/g ± 1405 ng/g wet mass (wm), respectively) and lowest in dolphins in Charleston and Skidaway River Estuary (509 ng/g ± 32.1 ng/g and 530 ng/g ± 58.4 ng/g wm, respectively). Spatial mercury patterns were consistent regardless of sex or age class. Bottlenose dolphin mercury exposure can effectively represent regional trends and reflect large-scale atmospheric mercury input and local biogeochemical processes. As a sentinel species, the bottlenose dolphin data presented here can direct future studies to evaluate mercury exposure to human residents in St. Joseph Bay, Choctawhatchee Bay, and Florida Coastal Everglades, as well as additional sites with similar geographical, oceanographic, or anthropogenic parameters. These data may also inform state and federal authorities that establish fish consumption advisories to determine if residents in these locales are at heightened risk for mercury toxicity. Full article
(This article belongs to the Special Issue The Impact of Heavy Metals on Aquatic Ecosystems)
Show Figures

Figure 1

19 pages, 3330 KiB  
Article
Comparing Methods for Estimating Habitat Suitability
by Khaleel Muhammed, Aavudai Anandhi and Gang Chen
Land 2022, 11(10), 1754; https://doi.org/10.3390/land11101754 - 9 Oct 2022
Cited by 10 | Viewed by 7383
Abstract
Habitat suitability (HS) describes the ability of the habitat to support living organisms. There are several approaches to estimate habitat suitability. These approaches are specific to a species or habitat or estimate general HS broadly across multiple species or habitats. The objectives of [...] Read more.
Habitat suitability (HS) describes the ability of the habitat to support living organisms. There are several approaches to estimate habitat suitability. These approaches are specific to a species or habitat or estimate general HS broadly across multiple species or habitats. The objectives of the study were to compare the approaches for estimating HS and to provide guidelines for choosing an appropriate HS method for conservation. Three HS estimation methods were used. Method 1 scores the suitability based on the naturality of the habitat. Method 2 uses the average of HS values found in the literature. Method 3 uses the species richness as an indicator for HS. The methods were applied to a case study in the Choctawhatchee River Watershed. GIS applications were used to model the suitability of the watershed. The advantages and disadvantages of the HS methods were then summarized. The multiple HS maps created using the three methods display the suitability of the watershed. The highest suitability occurred in the southern parts of the region. Finally, a decision support tool was developed to help determine which approach to select based on the available data and research goals. Full article
Show Figures

Figure 1

11 pages, 2464 KiB  
Article
The Recent Decline of Apalachicola–Chattahoochee–Flint (ACF) River Basin Streamflow
by Bin Fang, Jonghun Kam, Emily Elliott, Glenn Tootle, Matthew Therrell and Venkat Lakshmi
Hydrology 2022, 9(8), 140; https://doi.org/10.3390/hydrology9080140 - 5 Aug 2022
Cited by 5 | Viewed by 2590
Abstract
The Apalachicola–Chattahoochee–Flint (ACF) basin is arguably the most litigated interstate river system in the eastern United States. Given the complicated demands for water use within this basin, it has been difficult to ascertain if the recent multi-decadal decline in streamflow is a product [...] Read more.
The Apalachicola–Chattahoochee–Flint (ACF) basin is arguably the most litigated interstate river system in the eastern United States. Given the complicated demands for water use within this basin, it has been difficult to ascertain if the recent multi-decadal decline in streamflow is a product of human disturbance, changing climate, natural variability, or some combination of the above factors. To overcome these challenges, we examined unimpaired streamflow and precipitation within and adjacent to the ACF basin, upstream of the Apalachicola River at Chattahoochee, and the Florida streamflow station (ARCF), which has historically been identified to be representative of hydrologic variability in the ACF basin. Several of the upstream, unimpaired, streamflow stations selected were identified in rural watersheds where land-cover changes and human disturbance were minimal during the study period. When applying a series of statistical evaluations, ARCF streamflow variability generally reflects the natural variability of the ACF basin. Additionally, unimpaired streamflow variability from the neighboring Choctawhatchee River compared favorably with ARCF variability. The recent multi-decadal decline was consistent in all records, with the 2000s being the most severe in the historic record. Full article
Show Figures

Figure 1

30 pages, 5676 KiB  
Review
Define–Investigate–Estimate–Map (DIEM) Framework for Modeling Habitat Threats
by Khaleel Muhammed, Aavudai Anandhi, Gang Chen and Kevin Poole
Sustainability 2021, 13(20), 11259; https://doi.org/10.3390/su132011259 - 12 Oct 2021
Cited by 6 | Viewed by 2693
Abstract
As the human population increases, the landscape is altered to provide housing, food, and industry. Human activity poses a risk to the health of natural habitats that, in turn, affect biodiversity. Biodiversity is necessary for a functioning ecosystem, as species work synergistically to [...] Read more.
As the human population increases, the landscape is altered to provide housing, food, and industry. Human activity poses a risk to the health of natural habitats that, in turn, affect biodiversity. Biodiversity is necessary for a functioning ecosystem, as species work synergistically to create a livable environment. It is, therefore, important to know how human practices and natural events threaten these habitats and the species living in them. A universal method of modeling habitat threats does not exist. This paper details the use of a literature review to formulate a new framework called Define–Investigate–Estimate–Map (DIEM). This framework is a process of defining threats, investigating an area to discover what threats are present, estimating the severity of those threats, and mapping the threats. Analysis of 62 studies was conducted to determine how different authors define and characterize threats in various contexts. The results of this analysis were then applied to a case study to evaluate the Choctawhatchee River and Bay Watershed. Results suggest that the most abundant threat in the watershed is agricultural development, and the most destructive threat is urban development. These two threats have the greatest impact on the total threat level of the watershed. Applying the DIEM framework demonstrates its helpfulness in regional analysis, watershed modeling, and land development planning. Full article
Show Figures

Figure 1

30 pages, 5481 KiB  
Article
Agricultural Greenhouse Gas Emissions in a Data-Scarce Region Using a Scenario-Based Modeling Approach: A Case Study in Southeastern USA
by Mahnaz Afroz, Runwei Li, Gang Chen and Aavudai Anandhi
Agronomy 2021, 11(7), 1323; https://doi.org/10.3390/agronomy11071323 - 29 Jun 2021
Cited by 6 | Viewed by 3920
Abstract
Climate change may impact agricultural greenhouse gas emissions (GHGs) and yields under higher temperatures, higher atmospheric CO2 concentrations, and variable precipitations. This calls for adaptation strategies to optimize agricultural productions with minimal GHGs. This study aimed to identify these optimum agricultural managements [...] Read more.
Climate change may impact agricultural greenhouse gas emissions (GHGs) and yields under higher temperatures, higher atmospheric CO2 concentrations, and variable precipitations. This calls for adaptation strategies to optimize agricultural productions with minimal GHGs. This study aimed to identify these optimum agricultural managements in response to current and projected climatic scenarios for the Choctawhatchee Basin in Southeastern USA, an experimentally unexplored data-scarce region lacking validation data. This scenario-based modeling study analyzed a total of 1344 scenarios consisting of four major crops, eight managements (varying tillage, manuring, and residue), and forty climatic combinations under current as wells as two representative concentration pathways with process-based Denitrification and Decomposition (DNDC) model. The results indicated that the region’s GHGs and yields were most affected by higher temperatures (≥+3 °C) and extreme precipitation changes (≥±40%), while high atmospheric CO2 concentrations exerted positive fertilization effects. The manure-related and higher residue incorporation scenarios were found to be better options in varying climates with minimal present global warming potentials (GWP) of 0.23 k to −29.1 k MT equivalent CO2. As such, the study presented climate change impacts and potential mitigation options in the study region while presenting a framework to design GHG mitigation in similar data-scarce regions. Full article
(This article belongs to the Special Issue Cropping Systems Models for Sustainable and Intensive Management)
Show Figures

Figure 1

12 pages, 1791 KiB  
Article
A Paleo Perspective of Alabama and Florida (USA) Interstate Streamflow
by Melanie Vines, Glenn Tootle, Leigh Terry, Emily Elliott, Joni Corbin, Grant L. Harley, Jonghun Kam, Sahar Sadeghi and Matthew Therrell
Water 2021, 13(5), 657; https://doi.org/10.3390/w13050657 - 28 Feb 2021
Cited by 6 | Viewed by 3043
Abstract
Seasonal reconstructions of streamflow are valuable because they provide water planners, policy makers, and stakeholders with information on the range and variability of water resources before the observational period. In this study, we used streamflow data from five gages near the Alabama-Florida border [...] Read more.
Seasonal reconstructions of streamflow are valuable because they provide water planners, policy makers, and stakeholders with information on the range and variability of water resources before the observational period. In this study, we used streamflow data from five gages near the Alabama-Florida border and centuries-long tree-ring chronologies to create and analyze seasonal flow reconstructions. Prescreening methods included correlation and temporal stability analysis of predictors to ensure practical and reliable reconstructions. Seasonal correlation analysis revealed that several regional tree-ring chronologies were significantly correlated (p ≤ 0.05) with March–October streamflow, and stepwise linear regression was used to create the reconstructions. Reconstructions spanned 1203–1985, 1652–1983, 1725–1993, 1867–2011, and 1238–1985 for the Choctawhatchee, Conecuh, Escambia, Perdido, and Pascagoula Rivers, respectively, all of which were statistically skillful (R2 ≥ 0.50). The reconstructions were statistically validated using the following parameters: R2 predicted validation, the sign test, the variance inflation factor (VIF), and the Durbin–Watson (D–W) statistic. The long-term streamflow variability was analyzed for the Choctawhatchee, Conecuh, Escambia, and Perdido Rivers, and the recent (2000s) drought was identified as being the most severe in the instrumental record. The 2000s drought was also identified as being one of the most severe droughts throughout the entire reconstructed paleo-record developed for all five rivers. This information is vital for the consideration of present and future conditions within the system. Full article
Show Figures

Figure 1

18 pages, 7115 KiB  
Article
Streamflow Variability Indicated by False Rings in Bald Cypress (Taxodium distichum (L.) Rich.)
by Matthew D. Therrell, Emily A. Elliott, Matthew D. Meko, Joshua C. Bregy, Clay S. Tucker, Grant L. Harley, Justin T. Maxwell and Glenn A. Tootle
Forests 2020, 11(10), 1100; https://doi.org/10.3390/f11101100 - 16 Oct 2020
Cited by 11 | Viewed by 4382
Abstract
Despite growing in wet lowland and riparian settings, Taxodium distichum (L.) Rich. (bald cypress) has a strong response to hydroclimate variability, and tree ring chronologies derived from bald cypress have been used extensively to reconstruct drought, precipitation and streamflow. Previous studies have also [...] Read more.
Despite growing in wet lowland and riparian settings, Taxodium distichum (L.) Rich. (bald cypress) has a strong response to hydroclimate variability, and tree ring chronologies derived from bald cypress have been used extensively to reconstruct drought, precipitation and streamflow. Previous studies have also demonstrated that false rings in bald cypress appear to be the result of variations in water availability during the growing season. In this study 28 trees from two sites located adjacent to the Choctawhatchee River in Northwestern Florida, USA were used to develop a false ring record extending from 1881 to 2014. Twenty false ring events were recorded during the available instrumental era (1931–2014). This record was compared with daily and monthly streamflow data from a nearby gage. All 20 of the false-ring events recorded during the instrumental period occurred during years in which greatly increased streamflow occurred late in the growing season. Many of these wet events appear to be the result of rainfall resulting from landfalling tropical cyclones. We also found that the intra-annual position of false rings within growth rings reflects streamflow variability and combining the false-ring record with tree ring width chronologies improves the estimation of overall summer streamflow by 14%. Future work using these and other quantitative approaches for the identification and measurement of false ring variables in tree rings may improve tree-ring reconstructions of streamflow and potentially the record of tropical cyclone rainfall events. Full article
(This article belongs to the Special Issue Wood Formation and Environmental Constraints: Multiscale Approach)
Show Figures

Figure 1

35 pages, 7567 KiB  
Article
Evaluating Water Balance Variables under Land Use and Climate Projections in the Upper Choctawhatchee River Watershed, in Southeast US
by Yashar Makhtoumi, Simeng Li, Victor Ibeanusi and Gang Chen
Water 2020, 12(8), 2205; https://doi.org/10.3390/w12082205 - 5 Aug 2020
Cited by 11 | Viewed by 9358
Abstract
Changes in water balance variables are essential in planning and management. Two major factors affecting these variables are climate change and land use change. Few researches have been done to investigate the combined effect of the land use change and climate change using [...] Read more.
Changes in water balance variables are essential in planning and management. Two major factors affecting these variables are climate change and land use change. Few researches have been done to investigate the combined effect of the land use change and climate change using projections. In this study the hydrological processes in Upper Choctawhatchee River Watershed were modeled using the Soil and Water Assessment Tool (SWAT) to investigate the impacts of climate and land use change. We integrated land use projection based in the Shared Socioeconomic Pathways with future climate data to study the combined effects on Hydrological response of the watershed. Future rainfall and temperature, for two time periods, were obtained using General Climate Models to provide SWAT with the climatic forcing in order to project water balance variables. The simulation was carried out under two radiative forcing pathways of RCP4.5 and RCP6.0. Land use change focused on urbanization dominated the climate changes. Impacts on water balance variables differed seasonally. Results showed surface runoff experienced major changes under both emissions scenarios in some months up to 5 times increase. Among the water balance variables, evapotranspiration (ET) as the least dominant pathway for water loss showed the modest changes with the largest decrease during fall and summer. Projection indicated more frequent extreme behavior regarding water balance during midcentury. Discharge was estimated to increase through the year and the highest changes were projected during summer and fall with 186.3% increase in November under RCP6.0. Relying on rainfall for farming along with reduced agricultural landuse (11.8%) and increased urban area (47%) and population growth would likely make the water use efficiency critical. The model demonstrated satisfactory performance, capturing the hydrologic parameters. It thus can be used for further modelling of water quality to determine the sustainable conservation practices and extreme weather events such as hurricane and tropical storms. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 5115 KiB  
Article
Optical Models for Remote Sensing of Colored Dissolved Organic Matter Absorption and Salinity in New England, Middle Atlantic and Gulf Coast Estuaries USA
by Darryl J. Keith, Ross S. Lunetta and Blake A. Schaeffer
Remote Sens. 2016, 8(4), 283; https://doi.org/10.3390/rs8040283 - 29 Mar 2016
Cited by 19 | Viewed by 6949
Abstract
Ocean color algorithms have been successfully developed to estimate chlorophyll a and total suspended solids concentrations in coastal and estuarine waters but few have been created to estimate light absorption due to colored dissolved inorganic matter (CDOM) and salinity from the spectral signatures [...] Read more.
Ocean color algorithms have been successfully developed to estimate chlorophyll a and total suspended solids concentrations in coastal and estuarine waters but few have been created to estimate light absorption due to colored dissolved inorganic matter (CDOM) and salinity from the spectral signatures of these waters. In this study, we used remotely sensed reflectances in the red and blue-green portions of the visible spectrum retrieved from Medium Resolution Imaging Spectrometer (MERIS) and the International Space Station (ISS) Hyperspectral Imager for the Coastal Ocean (HICO) images to create a model to estimate CDOM absorption. CDOM absorption results were then used to develop an algorithm to predict the surface salinities of coastal bays and estuaries in New England, Middle Atlantic, and Gulf of Mexico regions. Algorithm-derived CDOM absorptions and salinities were successfully validated using laboratory measured absorption values over magnitudes of ~0.1 to 7.0 m−1 and field collected CTD data from oligohaline to polyhaline (S less than 5 to 18–30) environments in Narragansett Bay (Rhode Island); the Neuse River Estuary (North Carolina); Pensacola Bay (Florida); Choctawhatchee Bay (Florida); St. Andrews Bay (Florida); St. Joseph Bay (Florida); and inner continental shelf waters of the Gulf of Mexico. Full article
Show Figures

Graphical abstract

18 pages, 1202 KiB  
Article
Past, Present, and Future Nutrient Quality of a Small Southeastern River: A Pre-Dam Assessment
by Jonathan M. Miller and Paul M. Stewart
Water 2013, 5(3), 988-1005; https://doi.org/10.3390/w5030988 - 8 Jul 2013
Cited by 2 | Viewed by 7617
Abstract
Riverine dams alter both the physical environment and water chemistry, thus affecting species assemblages within these environments. In the United States, dam construction is on the decline and there is a growing trend for dam removal. The Choctawhatchee, Pea, and Yellow Rivers Watershed [...] Read more.
Riverine dams alter both the physical environment and water chemistry, thus affecting species assemblages within these environments. In the United States, dam construction is on the decline and there is a growing trend for dam removal. The Choctawhatchee, Pea, and Yellow Rivers Watershed Management Authority had initiated the permitting process for placing a reservoir dam on the Little Choctawhatchee River (LCR), a tributary to the Choctawhatchee River. The purpose of the proposed reservoir was water supply, and while the permit application has been suspended, history shows that this or related projects are likely to arise in the future. This study collected data on nutrient quality seasonally (four times) from 12 sites in the LCR watershed from October 2007 to June 2008 in order to determine pre-dam conditions and to compare these data to historical and regional information. Historical and current nutrient concentrations were elevated throughout the watershed, in most cases above suggested criteria, and indicated that water quality of the river was and continues to be nutrient rich. A future reservoir at recent levels of water quality will likely be highly eutrophic, and anthropogenic influences will further stress this ecosystem and its water quality as the urban region expands. Full article
(This article belongs to the Special Issue Ecological Watershed Management)
Show Figures

Graphical abstract

Back to TopTop