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Abstract: Ocean color algorithms have been successfully developed to estimate chlorophyll a and
total suspended solids concentrations in coastal and estuarine waters but few have been created to
estimate light absorption due to colored dissolved inorganic matter (CDOM) and salinity from the
spectral signatures of these waters. In this study, we used remotely sensed reflectances in the red and
blue-green portions of the visible spectrum retrieved from Medium Resolution Imaging Spectrometer
(MERIS) and the International Space Station (ISS) Hyperspectral Imager for the Coastal Ocean (HICO)
images to create a model to estimate CDOM absorption. CDOM absorption results were then used to
develop an algorithm to predict the surface salinities of coastal bays and estuaries in New England,
Middle Atlantic, and Gulf of Mexico regions. Algorithm-derived CDOM absorptions and salinities
were successfully validated using laboratory measured absorption values over magnitudes of ~0.1
to 7.0 m´1 and field collected CTD data from oligohaline to polyhaline (S less than 5 to 18–30)
environments in Narragansett Bay (Rhode Island); the Neuse River Estuary (North Carolina);
Pensacola Bay (Florida); Choctawhatchee Bay (Florida); St. Andrews Bay (Florida); St. Joseph
Bay (Florida); and inner continental shelf waters of the Gulf of Mexico.

Keywords: CDOM absorption; salinity; MERIS; HICO; bio-optical models

1. Introduction

The Clean Water Act (CWA) authorizes the US Environmental Protection Agency (USEPA)
to provide guidance and oversight to states, tribes, and US territories in the development and
implementation of water quality standards for the protection of the Nation’s waterways. Under the
CWA, the majority of aquatic research by the Agency addresses scientific questions about water
quality condition within state waters, estuaries, lakes, and streams. Water quality condition has been
traditionally assessed using a suite of indicators which directly relate to the stress of an ecosystem
or can serve as indicator of stress. Examples are chlorophyll a (chl a) and suspended sediment
concentrations, salinity, colored dissolved organic matter (CDOM) and temperature. CDOM serves
as a nutrient source and a vector for heavy metals in water (Zhang et al. [1]; Heyes et al. [2]). CDOM,
also known as yellow substance (or gelbstoff), is an important water color parameter for the study
of nearshore and estuarine biological processes. Along with chlorophyll a, the absorption of light
by CDOM in the ultraviolet and blue portions of the spectrum makes it an important control on the
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transfer of solar radiation through the water column which is critical to the structure and function
of freshwater and saltwater ecosystems. In the coastal ocean as well as in bays and estuaries, a large
portion of CDOM is terrestrial in origin and associated with freshwater (Opsahl and Benner [3]) which
allows its use as an indicator of the input and distribution of terrestrial organic matter in freshwater
and brackish water environments.

Several studies have found that detritus and CDOM concentrations are good tracers of salinity
(Coble et al. [4]; Del Vecchio and Blough [5]; Vodacek et al. [6]). Salinity (along with temperature)
determines the density of sea water and controls water column stratification, controls flocculation of
particles, and governs the biological, chemical, and physical processes which determine the types and
locations of plants and animals in estuarine and nearshore ecosystems. Salinity is also a key factor
when monitoring water quality variables (e.g., dissolved oxygen concentration).

On inner continental shelf areas, large salinity variations created during the mixing of higher
salinity coastal waters with lower salinity river runoff result in the development of density-driven
coastal currents that redistribute biological and chemical substances vertically as well as horizontally
across shelf areas (Miller et al. [7]). In estuaries, salinity values are used to estimate water residence
times and to estimate dissolved organic carbon concentrations (Mannino et al. [8]; Del Castillo and
Miller [9]). In all environments, salinity variations strongly influence biogeochemical processes as well
as create biological and chemical gradients both horizontally and vertically within the water column.
In this paper, salinity (S) is expressed in unitless terms (e.g., S = 35.034) according to the Practical
Salinity Scale 1978 (PSS-78). PSS-78 has been considered by the Joint Panel on Oceanographic Tables
and Standards as the scale to report salinity data (UNESCO [10]).

Determining salinities for the global ocean from earth orbiting satellites has been a long-term
continuing challenge for the remote sensing community (Lagerloef et al. [11]). Attempts to successfully
map salinities using remote sensing have ranged from Skylab photography (Lerner and Hollinger [12])
to microwave radiometer measurements (Blume and Fedors [13]) and Landsat Thematic Mapper (TM)
data (McKeon and Rogers [14]). The first demonstration of the applicability of using satellite-derived
color data to derive estuarine salinity was conducted by Khorram [15]. This pioneering study found
correlations between Landsat TM color bands and surface salinities in the San Francisco Bay Estuary.

Investigators have demonstrated, with various levels of success, the potential of estimating CDOM
absorption (aCDOM) and salinity using remote sensing data (e.g., Miller et al. [7]; Siegel et al. [16]; Kahru
and Mitchell [17]; Kutser et al. [18]; Keith et al. [19]; Keith [20]; Bailey and Werdell [21]; D’ Sa [22];
Del Castillo and Miller [9]; Mannino et al. [8]; Shanmugam [23]; Wang and Xu [24]; Son et al. [25];
Tehrani [26]; Tehrani et al. [27]; Vandermeulen et al. [28]) or using neural networks to estimate salinities
from relationships between environmental variables (e.g., tides, sea surface temperature, chl a, stream
flow) and ocean color (Urquhart et al. [29]; Geiger et al. [30]). Most studies have been successful
estimating CDOM absorption and salinity in coastal and inner shelf waters (e.g., Mannino et al. [8];
D’ Sa [22]). Successful studies have been conducted to estimate these parameters in lakes (e.g.,
Kutser et al. [18]; Wang and Xu [24]; Zhu et al. [31]). However, only a limited number have been
conducted in estuaries (e.g., Keith et al. [19]) and there is no proven general or operational salinity
algorithm for estuaries and coastal bays (Urquhart et al. [30]; Geiger et al. [31])

Serious discussions within the remote sensing community have agreed that estimating
high-resolution estuarine surface salinities from satellites is of scientific value. These discussions
have set the stage for determining salinity on a variety of spatial scales from space-based platforms.
For example, there is NASA’s Aquarius mission for determining salinity for the global ocean.
On smaller scales, several area-specific algorithms (i.e., branching algorithms; IOCCG [32]) have
been produced which use CDOM absorptions, derived from the optical properties of local waters, to
predict surface salinities of the coastal and estuarine waters of interest. We suggest that the principles,
optical characteristics, and geochemical relationships between CDOM absorption and salinity that
collectively serve as the basis of these branching algorithms could be integrated into over-arching
algorithms, optimized for the range of absorptions and salinities characteristic of estuarine and coastal
waters of the US East and Gulf coasts.



Remote Sens. 2016, 8, 283 3 of 22

In this study, we set out to:

(1) Derive a single set of coefficients which can be used in an optical model to estimate the range of
CDOM absorptions found in estuarine, inland, and coastal environments along the US East and
Gulf Coasts.

(2) Create a general salinity model, which uses the derived CDOM absorption coefficients to estimate
salinities from oligohaline (salinity < 5) to polyhaline (salinity > 20) waters from New England to
the Gulf of Mexico.

Our approaches are to:

(1) Use regression analysis to derive a spectrally-based CDOM absorption algorithm based on the
relationship between remote sensing reflectances (Rrs) retrieved from in situ optical data and
laboratory measured CDOM absorption coefficients.

(2) Compare spectrally-derived CDOM absorption coefficients to laboratory measured CDOM
absorption coefficients.

(3) Use regression analysis to derive a salinity algorithm based on the relationship between laboratory
measured CDOM absorption coefficients and in situ salinity values.

(4) Compare predicted salinity values to in situ values of salinity.
(5) Evaluate these algorithms using in situ radiometric data, laboratory measured CDOM absorption

coefficients, and in situ salinity measurements from Narragansett Bay (Rhode Island), New
Bedford Harbor (Massachusetts), Neuse River (North Carolina), Pensacola Bay (Florida),
Choctawhatchee Bay (Florida), St. Andrews Bay (Florida), St. Joseph Bay (Florida) and Gulf of
Mexico inner continental shelf.

(6) Using regression analysis, validate the performance of the CDOM and salinity algorithms
in Pensacola and Choctawhatchee Bays during summer 2011 using match-ups between
Hyperspectral Imager for Coastal Ocean (HICO) spectral data, in situ salinity data, and laboratory
measured CDOM absorption coefficients from these estuaries.

(7) As an example of the applicability of these algorithms to other satellite sensor data, apply the
CDOM absorption and salinity algorithms to a full resolution (300 m) Moderate Resolution
Imaging Spectrometer (MERIS) image of the Neuse River estuary to illustrate the spatial
distribution of CDOM absorptions and surface salinities within one of the most important
commercial seafood nurseries along the US East Coast.

The approach that we used here is based on theoretical work of Bowers et al. [33] in which they
proposed that a simple band ratio model could be derived to estimate CDOM absorption at 440 nm
from the ratio of reflection coefficients (R1/R2). Further, salinity could be derived if the relationship
between CDOM absorption and salinity is known. Generally, R1/R2 is a function of absorption (a) by
water (w), particulates (p), and yellow substance or CDOM (y) at two bands. By inversion:

R1{R2 “ ppaw2 ` ap2 ` ay2q{aw1 ` ap1 ` ay1q (1)

If R1 is chosen to be in the red end of the spectrum where CDOM is not absorbed, then ay1 = 0 and

R1{R2 “ ppaw2 ` ap2 ` a ˚ y2ˆ g440q{aw1 ` ap1q (2)

where ay2 is rewritten as is the product of a specific absorption coefficient (a*y2) and g440 is the
concentration of CDOM at 440 nm. Solving for g440:

g440 “ ppaw1 ` ap1q{a ˚ y2qqˆR1{R2´paw2 ` ap2q{a ˚ y2 (3)

Bowers et al. [33] suggested that at the red wavelengths, with the exception of very turbid waters
or plankton blooms, aw1 > ap1 and therefore aw1 + ap1 « aw1. If R2 is chosen in another location in the
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spectrum where aw is low, then ap2 > aw2 and ap2 + aw2 « ap2. With this understanding, Equation (3)
simplifies to:

g440 “ paw1{a ˚ y2qˆ pR1{R2q´ ap2{a ˚ y2 (4)

Bowers et al. [33] further suggested that Equation (4) would predict a linear relationship between
g440 and the reflectance ratio when one band is red and the other is another color and that ratio will
continue to increase as g440 increased. In theory, the term ap2/a*y2 is a constant that is dependent on
light absorption by particulates. However, variations in particulate absorption resulted in variations
in the intercept of the linear relationship predicted by Equation (4). Bowers et al. [33] minimized this
unwanted effect by selecting an R2 band where a*y2 >> ap2. This meant choosing a band towards the
blue end of the spectrum where CDOM absorption is greatest. In this paper, we use the term aCDOM440
instead of g440 to refer to CDOM absorption at 440 nm.

The theory was tested by Binding and Bowers [34]; Bowers et al. [35]; and Bowers et al. [36] which
showed that the absorption of light by CDOM in marine waters could be derived using a simple band
ratio of Rrs and confirmed that the relationship between CDOM absorption and salinity was inversely
related over the salinity range of 15–35 found in estuaries and adjoining coastal seas. Additionally,
using a Sea-Viewing Wide Field-of View Sensor (SeaWiFS) image over Northern Europe, Binding
and Bowers [35] retrieved CDOM absorption values at 440 nm (aCDOM440) to calculate and map the
distribution of salinities from 16 to 34 along the coast and offshore areas of the Clyde Sea, Scotland.
However, with a spatial resolution of 1.1 km, the SeaWiFS image was unable to view regions of lower
salinity within adjoining lochs and estuaries. Bowers et al. [36] continued to explore the approach of
using the linear relationship between in situ aCDOM440 measurements and spectral band ratios to map
surface salinities for the Conwy estuary in North Wales, Great Britain.

The bio-optical models presented here to estimate CDOM absorption and surface salinities were
derived from several large datasets acquired by the USEPA during surveys of estuaries, coastal bays,
and nearshore waters along the U.S. East and Gulf coasts from 1999 to 2012 (referenced by abbreviations
found in Table 1).

Table 1. Estuaries sampled during this study.

Estuary Abbreviation State

Narragansett Bay NB Rhode Island
New Bedford Harbor NBH Massachusetts

Neuse River NR North Carolina
Pensacola Bay PB Florida

Choctawhatchee Bay CB Florida
St. Andrews Bay SAB Florida

St. Joseph Bay SJB Florida

2. Materials and Methods

Water samples, CTD data, and spectral measurements were collected from all systems from
1999 to 2011 (Figure 1, Table 1). These systems represented a geographically diverse group of water
bodies which included meso-tidal, weakly stratified to well mixed, New England estuaries (NB, NBH);
a large lagoonal Mid-Atlantic estuarine system (NR); and several partially mixed, microtidal, shallow
estuaries characteristic of the northwest coast of the Gulf of Mexico (PB, CB, SAB, and SJB). Sampling
stations in all systems were located to characterize water quality and optical properties along the major
salinity gradients of each estuary.
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Figure 1. (a) Location of sampling stations within Narragansett Bay (NB), dark dots represent stations
where in situ multi and hyperspectral measurements, conductivity, temperature, and depth (CTD)
profiles, and water samples were collected.Not shown are three additional stations located along the
length of the Providence River; (b) Location of sampling stations within Neuse River (NRE white dots
represent stations where only hyperspectral data and water samples were collected. Salinity data were
collected by the NCDENR/UNC FerryMon Project (dashed lines (c) Station locations in Pensacola,
Chocowhatchee, St. Andrews, and St. Joseph Bays in the Gulf of Mexico, above-water hyperspectral
measurements, CTD, and water samples are indicated as gray and white diamonds. WQM stations
represent locations where only above-water hyperspectral and CTD measurements were collected.
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2.1. Spectral Measurements

Spectral data were collected to derive Rrs values at stations sampled for water quality and CDOM
analysis using multispectral and hyperspectral data acquisition systems.

In NB, optical data were collected at four stations along West Passage and Rhode Island Sound
(May 1999–June 2000) using both a Biospherical Instruments multispectral Profiling Reflectance
Radiometer (Model PRR 600). From June 2005–July 2007, nine additional stations were sampled in the
Providence River, Greenwich Bay, Bristol Harbor, East and West Passages, and Rhode Island Sound
(Figure 1a) using a Satlantic HyperPro Profiler II hyperspectral profiling acquisition system. In the
NBH, spectral data were also collected at four stations using the Satlantic HyperPro Profiler II system
(Freeman [37]; Keith [20]). The Biospherical PRR 600 logged in situ spectral data at 412, 443, 490, 510,
555, 665, and 683 nm. The PRR data were concurrently collected with a surface sensor (Biospherical
PRR 610), optimized for in-air use, to measure incident downwelling irradiance (Es) at 412, 443, 490,
510, and 555 nm. The HyperPro Profiler II system was deployed in surface mode (<3 m depth) to
acquire spectral measurements of in situ water radiance from 350 to 800 nm. Downwelling irradiance
(Ed), from 350 to 800 nm, was measured (in-air) using a shipboard mounted HyperOCR hyperspectral
radiometer. In NR, Rrs data were retrieved at stations along the salinity gradient also using a Satlantic
HyperPro remote sensing system which logged in-water radiance, sky radiance and downwelling
irradiance from 350 to 800 nm (Figure 1b; Sokoletsky et al. [38]). For the Florida estuaries, Rrs was
retrieved at stations using the Satlantic HyperSAS system which logged above-water radiance, sky
radiance and downwelling irradiance from 350 to 800 nm (Keith et al. [39]. The above-water Rrs spectra
were corrected following procedures in Gould et al. [40].

HyperSAS and HyperPro radiance and irradiance data were processed using the Satlantic ProSoft
data analysis package. ProSoft is an interactive graphical data processing and extraction application
for Satlantic sensors. Data collected by the Biospherical radiometers was processed to obtain Rrs using
programs written in Matlab programming language (Appendix 4 in Freeman [37]).

2.2. Determination of CDOM Absorption Coefficients

In NB, surface water samples (~0.5 m depth, n = 92) were collected to derive CDOM absorption
coefficients at four stations along the West Passage and Rhode Island Sound (May 1999–June 2000)
and nine additional stations (June 2005–July 2007) in the Providence River, Greenwich Bay, Bristol
Harbor, East and West Passages, and Rhode Island Sound (Figure 1a). Samples were also collected at
four stations (n = 4) in the NBH during June 2005. CDOM absorption coefficients, were expressed in
units of per meter (m´1) as a measure of how far into the water column light was able to penetrate
before it was absorbed.

NB and NBH samples were placed on ice in the field for later transport for laboratory analysis.
In the laboratory, water for CDOM absorption analysis was twice filtered using 47 mm Millipore filters
(nominal pore size = 0.2 µm) to remove small particles and colloids. Absorption coefficients were
determined from measurements of the optical density (OD) of the water samples over the spectral
range of 400–700 nm using Perkin Elmer Lambda 3 Double-Beam UV-Visible (samples collected
between 1999 and 2000) and Perkin Elmer Lambda 35 Double-Beam UV-Visible (samples collected
after 2000) Spectrophotometers with a spectral resolution of 0.5 nm using 10 cm path length cells
(Bricaud et al. [41]; Mitchell et al. [42]; Keith et al. [19]). The OD was determined using:

OD “ log10pI0{Iq (5)

where I0 is the absorbance of the water sample and I is the absorbance of a reference sample, in this
case deionized water. CDOM absorption was calculated using:

apλq “ 2.303ˆrpODspλq´ pODbpλqq{ls (6)

where ODs(λ) = sample absorbance, ODb(λ) = sample blank absorbance, and l = cuvette pathlength.
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Absorption coefficients were corrected for backscattering of small particles and colloids not
removed during filtering according to Bricaud et al. [42]. Salinity measurements were also made at
each NB and NBH station using a Seabird Sealogger CTD SBE 25 profiler lowered to the same depth as
the water samples and the data averaged from the surface to depth (Keith et al. [19]; Keith [20]).

In NR, surface water samples (~1 m depth, n = 74) were collected from October 2006–October
2008 at 10 sampling sites (Figure 1b). Salinity and CDOM data were obtained as part of the Neuse
River Estuary Modeling and Monitoring Project (ModMon), which is a collaborative effort between
the University of North Carolina-Chapel Hill and the NC Department of Environment and Natural
Resources and the North Carolina Department of Transportation Ferry-based Monitoring (FerryMon)
Program. Water temperature, salinity, dissolved oxygen, chlorophyll fluorescence, and turbidity were
collected with each crossing of the Neuse River and Pamlico Sound by FerryMon using flow-through
YSI 6600 sondes.

For PB and the other Florida estuaries, surface water samples (~1 m depth, n = 87) were collected
from four locations from April 2010 and June 2011–June 2012 (Figure 1c). CDOM absorption coefficients
were determined using water filtered through Whatman 47 mm GF/F glass fiber filters (nominal pore
size = 0.7 µm) and absorbance was measured using a 10 cm cuvette with a Shimadazu UV1700
dual-beam spectrophotometer (Schaeffer et al. [43]). OD and absorption coefficients were derived
using Equations (1) and (2). Data were collected at 1 nm intervals between 200 and 750 nm. Spectra
were normalized for backscattering of small particles and colloids using Pegau et al. [44]. Salinity was
concurrently measured at each station using a Seabird 25 SBE CTD system (Keith et al. [39]).

2.3. CDOM Algorithm Development

Historically, CDOM absorption at 440 nm (aCDOM440) has been used as the parameter to indicate
the concentration of CDOM in marine and fresh waters. This wavelength was chosen because it
approximately corresponds to the mid-point of the blue waveband peak that most classes of algae
have in their photosynthetic action spectrum (Kirk [45]).

In this study, laboratory measured CDOM absorptions at 412 nm (aCDOM412) and aCDOM440
values were regressed against CTD measured salinities (n = 176) obtained from NB (1999–2000, 2003),
NR (2006–2008) and SAB (2010) to determine wavelength choice for inclusion into the CDOM algorithm
development process. Wavelength selection was based on the strength of the relationships for each
wavelength as derived from scatterplots.

Once a wavelength was chosen, the CDOM absorption model was derived from linear regression
of Rrs ratio of 665 and 490 nm against laboratory measured CDOM absorptions at the wavelength
identified from NB (1999–2000 and 2005–2007) and NR (2006–2007). The CDOM spectral model was
validated using a subset of spectral and laboratory data not used during model creation.

As part of the development process, scatterplots were created to illustrate the relationship between
predicted and measured absorption values. The Major Axis method of Model II linear regression
was used, not to develop a predictive relationship between the variables as in Model I regression
analysis, but to examine functional relationships between predicted and measured absorption values
(Laws [46]). The strength of the relationships was determined from the goodness of fit (R2) of the
values and slope (m) of the regression. The statistical significance of the regression is expressed by its
p-value. The measurement uncertainty for all algorithms derived in this study was calculated as the
root-mean-square error (RSME) and the percentage root-mean-square error (%RSME), using:

RMSE “

c

1
n
˚

ÿ

paCDOM412 measured´ aCDOM412 predictedq2 (7)

where n = number of samples.
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The %RMSE was determined using:

%RMSE “

c

1
n
˚

ř

paCDOM412 measured´ aCDOM412 predictedq2˚
100 ˚ n

ř

aCDOM412measured

(8)

2.4. Salinity Model Development

Following a procedure similar to the development of the CDOM absorption model, the salinity
algorithm was derived from linear regression of surface salinities (ranging from S < 5 to S > 20) against
measured aCDOM412 values from NB (1999–2000), NR (2006–2008) and PB (2009–2010). The model
was validated using a subset of spectral and laboratory data not used during model creation collected
from NB (1999–2000 and 2003–2005), NR (2006–2007), SAB (2011), SJB (2011), CB (2009–2011) and
PB (2010–2011) as well as published literature values from the northwestern Gulf of Mexico inner
continental shelf (D’ Sa and DiMarco [47]; Tehrani et al. [27]).

A scatter diagram of between predicted and measured salinity values was produced to explore
the relationship indicated by the data. Using Model II linear regression analysis, the strength of the
relationship was determined from the R2 of the values and the slope of the regression line (Laws [47]).
The uncertainty associated with the model was determined from the RMSE.

2.5. Validation of CDOM and Salinity Algorithm Performance

We used hyperspectral data from HICO to derive estimates of aCDOM412 and salinity. These
values were compared with in situ optical data and CDOM absorption coefficients from the Gulf
coast estuaries to determine algorithm performance. Validation match-ups used data from inland
brackish water environments as well as coastal locations to measure the performance of the CDOM
and salinity algorithms. HICO images were previously acquired from Oregon State University as
radiometrically calibrated Level 1B top-of-atmosphere (TOA) at-sensor radiances. These images were
processed using EXELIS ENVI version 4.7 software to retrieve Rrs values (Keith et al. [39]). During
processing, each image was atmospherically corrected using the dark pixel subtraction method to
remove atmospheric effects (Keith et al. [39]; Tufillaro et al. [48]; Chavez [49]). The Rrs values retrieved
from image processing were used in the algorithms to create scatterplots of measured and predicted
values. Using Model II linear regression analysis, the strength of the relationships between these
observations was determined from the R2 values and the slope of the regression line.

2.6. Application Example

A MERIS image was used as an example to show the portability of the validated algorithms
when applied to a multispectral data product to predict and map the distribution of CDOM
absorptions and salinities in a U.S. East coast estuary. For this example, radiometrically calibrated and
atmospherically-corrected, full resolution (300 m pixel size) Level 2 top-of-atmosphere (TOA) at-sensor
radiances were acquired from the European Space Agency, and atmospherically corrected according to
Sokoletsky et al. [38].

3. Results

3.1. Spectral Measurements

Coastal and estuarine waters are considered to be optically complex because CDOM and mineral
particles can make a significant contribution to water color and brightness. The average remote sensing
reflectance curves are presented for NB, NR and PB (Figure 2). Results indicated that these estuaries
are spectrally similar with reflectance curves that are characteristic of coastal and estuarine waters.
All curves showed low reflectances in the blue end of the spectrum due to light absorption by CDOM,
suspended matter, and phytoplankton pigments and reflectance peaks around 550 nm due to detrital
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backscatter. While NB and PB have very similar curves, the higher reflectances of the PB curve around
550 nm indicated these estuarine waters are more turbid relative to the New England counterpart.
In comparison, NR showed low reflectances, similar to NB and PB, in the blue end of the spectrum
but elevated reflectances between 550 and 660 nm which are a function of high turbidity. A large
phytoplankton reflectance peak in the red and near infrared portion of the spectrum near 700 nm
indicated high chl a concentrations.Remote Sens. 2016, 8, 283 10 of 21 
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East and Gulf coasts.
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Figure 3. Relationship between laboratory measured colored dissolved organic matter absorptions at
412 and 440 nm and salinity (n = 176) from water samples collected from NB, NR, and SAB (see Table 1
for estuary abbreviations).

3.3. CDOM Absorption Algorithm

To predict the CDOM absorption coefficients from coastal and estuarine water color, in situ and
above-water remotely sensed reflectances at 665 and 490 nm were regressed against laboratory derived
absorption values at 412 nm to predict aCDOM412 over the entire absorption range found in our study
areas (Figure 4, Table 2). Using laboratory measured CDOM absorption values and concurrently
acquired in situ spectral data from NB, NR, NBH, SJB, and PB (Table 1) the following equation was
derived for application to nearshore marine and estuarine environments.

aCDOM412 “ 1.3499ˆpRrs665{Rrs489q´ 0.1124 (9)
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Figure 4. Relationship between measured colored dissolved organic matter absorption (aCDOM412)
and remotely sensed reflectance (Rrs665/Rrs489) from water samples (n = 74) from NB, NR, NBH, SJB,
and PB. Dashed line is the 1:1 line.

Table 2. Algorithms derived to estimate CDOM absorption and salinity from atmospherically corrected
remotely sensed reflectances (Rrs) from NB, NR, and PB estuaries. Shown are the units of measurement;
the number of samples used (n1) to derive the algorithm using linear regression; statistical significance
(p value); and goodness of fit (R2) of the relationship used to derive the model. Please see Table 1 for
estuary abbreviations.

Indicator Model n p Value R2

aCDOM412 (m´1) 1.3307 ˆ (Rrs665/Rrs489) ´ 0.1246 74 <0.0001 0.83
Salinity (S) 33.686 ˆ exp(´0.374 ˆ aCDOM412) 183 <0.0001 0.81
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Comparisons between measured CDOM absorption values and the ratio of Rrs values at 665
and 490 nm showed an excellent relationship (R2 = 0.83; Figure 4). Results from Model II linear
regression analysis indicated robust correlations (r = 0.97) for absorption values <7 m´1 and a strong
goodness of fit (R2 = 0.95) between measured absorptions and those predicted by the algorithm, and
a %RMSE = 29.4 (Table 3; Figure 5).

Table 3. Model II regression statistics from the validation of CDOM absorption and salinity values
derived from the algorithms and field data from NB, NR, CB, SAB, SJB, PB, and NW Gulf of Mexico
inner continental shelf waters. Please see Table 1 for estuary abbreviations. Shown are the units
of measurement; the number of samples used (n) to validate the algorithm; goodness of fit (R2) of
the relationship between measured and predicted values; the slope (m) of the line of measured and
predicted values; and the root-mean-square error of measured and predicted values.

Indicator Model n R2 m RMSE (m´1) %RMSE

aCDOM412 (m´1) 1.3307 ˆ (Rrs665/Rrs489) ´ 0.1246 91 0.95 0.95 0.20 29.4
Salinity (S) 33.686 ˆ exp(´0.374 ˆ aCDOM412) 331 0.76 0.88 3.60 15.9
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3.4. Salinity Algorithm

The following equation was derived from locations in the NB, NR, and PB (Table 1):

Salinity “ 33.686ˆ exp p´0.374ˆ aCDOM412q (10)

Results showed an excellent relationship (R2 = 0.81) between measured CDOM absorption and
measured salinities (Figure 6a,b, Table 2). Results from Model II linear regression analysis indicated
a strong goodness of fit (R2 = 0.76) between measured and predicted salinities, an RSME for S = 3.6
and %RMSE for S = 15.9 (Figure 7; Table 3).
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3.5. Validation of CDOM and Salinity Algorithm Performance

Using in situ Rrs665/Rrs490 and laboratory measured CDOM absorption values from NB
(1999–2000), SJB (2010), and PB (2011), comparisons were made between aCDOM412 values derived
from Equation (5) and aCDOM412 values derived from algorithms in Schaeffer et al. [43] and Twari and
Shanmugam [50] to validate algorithm performance. Both studies used the red to blue-green spectral
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band approach to estimate CDOM absorption (Table 4). Results indicated that the goodnesss of fit was
the same (R2 = 0.78) for all three models, however Equation (9) results had the lowest %RMSE (34.9%)
when compared to %RSME values derived from results produced by the and Schaeffer et al. [43] (84.4%)
and Twari and Shanmugam (118%) algorithms (Figure 8). Equation (9) also had a slope (1.1) closest to
unity when compared with Twari and Shanmugam (1.6) and Schaeffer et al. [43] (2.0) (Table 5).

Table 4. Algorithms used to compare acdom412 derived from Equation (4) and from the published.

Method Description

Twari and Shanmugam [50] acdom412 = 0.00411 + 2.0 ˆ (Rrs 670/Rrs 490)
Schaeffer et al. [43] acdom412 = 2.48 ˆ (Rrs 667/Rrs 488) ´ 0.82

Figure 8. Scatterplot of acdom412 absorptions derived from Equation (9) and published models using
spectral data and measured absorptions from NB (1990–2000, 2005), SJB (2010), and PB (2011).

Table 5. Comparison of statistical results of acdom412 absorptions derived from Equation (4) and
published models using spectral data and measured absorptions from NBE (1990–2000, 2005), SJBE
(2010), and PBE (2011).

Method n RMSE (m´1) %RMSE R2 m

Equation (9) 84 0.13 34.9 0.78 1.06
Twari and Shanmugam [50] 84 0.58 118.0 0.78 2.09

Schaeffer et al. [43] 84 0.41 84.4 0.78 2.63
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Hyperspectral data from HICO were also used in both algorithms to generate sensor-derived
aCDOM412 and salinity products for validation. There are only a few match-ups available for validating
these products because of limited number of overflights of the northern Gulf of Mexico and coincident
data sets of in situ spectral and field measurements. Atmospherically corrected images were acquired
on 2 June, 30 July, and 9 September 2011 from the lagoonal, brackish waters of PB and CB for CDOM
match-ups (Keith et al. [39]). HICO images were acquired on 2 June and 30 July 2011, and 14 April
2010 from PB, CB, and SAB for salinity match-ups (Keith et al. [39]).

For the CDOM and salinity match-ups, data collected within 5 h after a HICO over flight were
used for the validation. Model II linear regression of validation match-ups for CDOM absorption
showed an excellent correspondence between HICO-derived aCDOM412 versus measured aCDOM412
absorptions (R2 = 0.93; Figure 9a) and a slope of 1.4 (Table 6). RMSE analysis of predicted versus
measured absorptions resulted in an uncertainty of 0.84 m´1 (Table 6).

The salinity validation match-ups showed a strong correlation between HICO-derived salinities
versus in situ salinities (Figure 9b). RMSE analysis of predicted versus measured salinities resulted
in an uncertainty of 3.3 (%RMSE = 15.7%; Table 6). Model II linear regression of measured values
and those derived from HICO yielded an R2 = 0.70 and a slope of 1.27 (Table 6). Possible causes of
discrepancies observed between the HICO retrievals and the in situ data could be due to uncertainties
with the algorithms, sub-pixel heterogeneities in the images, and temporal differences in water
sampling, tidal phase, and sensor overflight.

Remote Sens. 2016, 8, 283 15 of 21 

 

Hyperspectral data from HICO were also used in both algorithms to generate sensor-derived 
aCDOM412 and salinity products for validation. There are only a few match-ups available for validating 
these products because of limited number of overflights of the northern Gulf of Mexico and 
coincident data sets of in situ spectral and field measurements. Atmospherically corrected images 
were acquired on 2 June, 30 July, and 9 September 2011 from the lagoonal, brackish waters of PB and 
CB for CDOM match-ups (Keith et al. [39]). HICO images were acquired on 2 June and 30 July 2011, 
and 14 April 2010 from PB, CB, and SAB for salinity match-ups (Keith et al. [39]). 

For the CDOM and salinity match-ups, data collected within 5 h after a HICO over flight were 
used for the validation. Model II linear regression of validation match-ups for CDOM absorption 
showed an excellent correspondence between HICO-derived aCDOM412 versus measured aCDOM412 
absorptions (R2 = 0.93; Figure 9a) and a slope of 1.4 (Table 6). RMSE analysis of predicted versus 
measured absorptions resulted in an uncertainty of 0.84 m−1 (Table 6). 

The salinity validation match-ups showed a strong correlation between HICO-derived salinities 
versus in situ salinities (Figure 9b). RMSE analysis of predicted versus measured salinities resulted in 
an uncertainty of 3.3 (%RMSE = 15.7%; Table 6). Model II linear regression of measured values and 
those derived from HICO yielded an R2 = 0.70 and a slope of 1.27 (Table 6). Possible causes of 
discrepancies observed between the HICO retrievals and the in situ data could be due to uncertainties 
with the algorithms, sub-pixel heterogeneities in the images, and temporal differences in water 
sampling, tidal phase, and sensor overflight. 

 

 
Figure 9. (a) Scatterplot of measured aCDOM412 and Hyperspectral Imager for the Coastal Ocean 
(HICO)-derived aCDOM412 in Pensacola and Choctawhatchee Bays (FL) estuaries from June, July, 
August and September 2011 (b) Scatterplot of measured salinities and HICO-derived salinities in the 

Figure 9. (a) Scatterplot of measured aCDOM412 and Hyperspectral Imager for the Coastal Ocean
(HICO)-derived aCDOM412 in Pensacola and Choctawhatchee Bays (FL) estuaries from June, July,
August and September 2011 (b) Scatterplot of measured salinities and HICO-derived salinities in the
previous estuaries over the same time period. Comparisons were made using data collected within 5 h
of a HICO overpass.
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Table 6. Type II regression statistics from matchups of CDOM absorption and salinity values derived
from HICO images and field data from PB and CB. Shown are the units of measurement; the number
of samples used (n) to validate the algorithm; goodness of fit (R2) of the relationship between
measured and predicted values; the slope (m) of the line of measured and predicted values; and
the root-mean-square error of measured and predicted values.

Indicator Model n R2 m RMSE (m´1) %RMSE

aCDOM412 (m´1) 1.3307 ˆ (Rrs665/Rrs489) ´ 0.1246 18 0.93 1.40 0.58 37.8
Salinity (S) 33.686 ˆ exp(´0.374 ˆ aCDOM412) 14 0.70 1.27 3.15 15.7

3.6. Application Example

Spectral data retrieved from a full resolution (300 m pixel size) MERIS image (1 January 2008)
of the Pamlico Sound (NC) estuary system were applied to Equations (5) and (6) to illustrate how
multispectral data can be transformed into maps to illustrate CDOM absorption and salinity variability
on large and fine spatial scales in a coastal setting (Figures 10 and 11). The satellite-based imagery
clearly illustrates that the highest aCDOM412 values (1.5–3.7 m´1) occurred in the uppermost regions
of the larger Neuse and Pamlico River estuaries, smaller estuaries (Newport and North Rivers) and
Jarrett Bay along the southern coastline (Figure 10). Values decreased (~1.9–1.2 m´1) along the middle
reaches of the Neuse and Tar-Pamlico River systems due to mixing of freshwaters with the more saline
waters of Pamlico Sound. Inshore of the Outer Banks barrier island system, high absorption values
(~3.7–1.5 m´1) are associated with freshwater drainage from emergent wetland complexes. In Core
Sound, values ranged from 0.8 m´1 in the middle of the bay to 1.4 m´1 along adjoining coasts. An east
to west absorption gradient (from ~1.2–0.8 m´1) occurred along Bogue Sound as coastal ocean water
mixed with brackish bay waters. Lowest absorption values (~0.23–0.5 m´1) were characteristic of the
more saline waters of the Atlantic Ocean (Figure 10). The 300 m pixel resolution of the MERIS image
also made it possible to observe the transport of dissolved organic matter through Beaufort Inlet along
the south shore into the Atlantic Ocean (Figure 10 inset).
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Figure 10. aCDOM412 distribution in the Pamlico Sound (NC) estuary system and along the southern
coast retrieved from a full resolution (300 m pixel) MERIS image (1 January 2008). Inset shows fine
scale CDOM gradients in local rivers, Bogue Sound and Jarrett Bay. Note the plume of DOM leaving
Beaufort Inlet.
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The CDOM product was transformed into a map of the spatial distribution of salinity in the MERIS
image (Figure 11). Characteristically, the lowest salinities (S = 11.4 to 19.8) are associated with areas
of highest CDOM absorption in the Newport and North River estuaries and in Jarrett Bay (Figure 11
inset). Salinities increased inversely as CDOM absorption decreased (e.g., Bogue Sound) with highest
salinities (S = 25.6–26.9) occurring in Pamlico Sound, in the middle of Core Sound (Figure 10 insert)
and in the coastal Atlantic Ocean (S = 27–28.5) (Figure 11).
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low salinity plume leaving Beaufort Inlet and lower salinities offshore of the adjoining barrier island.

4. Discussion

In order to determine the absorption coefficients needed for developing the CDOM and salinity
algorithms, water samples were collected in several estuaries by USEPA field programs and analyzed
in laboratory settings according to published, standardized operating procedures. As a part of these
protocols, water samples collected from the estuaries in this study were routinely filtered using 0.22 µm
Millipore filters or Whatman GF/F 0.7 µm filters. The use of these different pore sizes has raised
discussions concerning the comparability of absorption data from the sampled estuaries. A study
by Ferrari and Tassan [51] directly addressed any concerns by comparing the use of Whatman GF/F
0.7 µm and Millipore 0.22 µm filters for chlorophyll, particle, and absorption measurements. Their
study found no statistical difference between these filter types and concluded that performance of both
filters to be comparable.

We also investigated which wavelength was appropriate, either 412 or 440 nm, for estimating
salinity from CDOM absorption in near coastal and estuarine waters along the US East and Gulf
coasts. As presented earlier, aCDOM440 was the wavelength of choice of several remote sensing studies
in ocean and nearshore waters. This selection was supported by results obtained by the Ocean
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Physics Laboratory during the HyCODE 2000 experiment which showed that aCDOM440 was the
only property of the bio-optical and oceanographic parameters measured (e.g., chl a concentration,
aCDOM440, total particle scattering and total light attenuation) along the New Jersey continental shelf
that had a significant relationship with salinity (R2 = 0.78; Coble et al. [4]). However, a search of the
scientific literature has also revealed studies that indicated a high correlation existed between in situ
salinities and laboratory measured CDOM absorptions towards UV-blue wavelengths (e.g., 355, 400,
412 nm) in Chesapeake Bay, the Gulf of Mexico, Clyde Sea, and the East China Sea (Haltrin et al. [52];
Bowers et al. [33]; Ahn et al. [53]; D’Sa and DiMarco [47]; Du et al. [54]; Tehrani et al. [27]; Bai et al. [55]).
In this study, aCDOM412 was chosen as the absorption wavelength for development of the salinity
algorithm based on the strong statistical relationship between measured CDOM absorptions at 412 nm
and measured salinities in the sampled estuaries. This selection is also appropriate because 412 nm
which is one of the more commonly found wavelengths in ocean color satellite sensor data.

The relationship between laboratory measured CDOM absorption values at 412 nm and in situ
salinities showed that, in general, the inverse relationship observed in previous studies was robust
across the range of coastal environments in this study. Results showed that salinities exponentially
decreased as CDOM absorption increased from salinities ranging from S = 2–33. The relationship
also appeared to consist of two trends that may be related to freshwater input and mixing processes
characteristic of New England, Mid-Atlantic, and Gulf coast estuaries (Figure 6a). The first trend
consisted of a cluster of data points, between S = 28–3, representative of the low freshwater input into
NB from adjoining watersheds. The second trend consisted of an increase in the scatter as salinity
decreased and CDOM absorption increased in response to increased freshwater input to coastal and
estuarine waters in the mesohaline and oligohaline environments of the NR and northern Gulf Coast
estuaries and shelf areas. Using these relationships, we selected spectral data from several overflights
of Pensacola Bay (Florida) by the Hyperspectral Imager for the Coastal Ocean (HICO) for algorithm
validation purposes. Results showed that the salinity model had a strong fit between measured and
predicted values (R2 = 0.70) and low error in estimation (RSME ˘ 3.3) relative to the range of surface
salinities (~1.0 to 33.0) observed from CTD data. The CDOM model had an excellent fit between
measured and predicted values (R2 = 0.93) and low uncertainty (RMSE ˘ 0.84 m´1) relative to the
range of absorptions (0.1 to ~7 m´1) observed in the laboratory data.

To illustrate the coastal dynamics that can be observed from spectral data when applied to the
algorithms, we selected a Medium Resolution Imaging Spectrometer (MERIS) of the Neuse River
estuary (North Carolina). Generally, the distribution of CDOM and salinities derived from MERIS
imagery of the Neuse River estuary followed the inverse relationship characteristic of these properties
in coastal waters. Predicted CDOM distributions made it possible to observe the transport of dissolved
organic matter from adjoining watersheds into local waters and through coastal inlets into the Atlantic
Ocean. Salinities increased as CDOM absorption decreased.

While the HICO and MERIS sensors are no longer operational, these sensors have provided
a wealth of legacy ocean color images for examination and study. For almost a decade, the coastal
remote sensing community has relied heavily on MERIS and Moderate Imaging Spectroradiometer
(MODIS) multispectral sensors to understand coastal dynamics and processes. However, the 1000 m
spatial resolution of MODIS color bands is too coarse to observe the spectral character of most estuaries
and bays. MERIS (300 m resolution) and HICO (95 m resolution), the first spaceborne imaging
spectrometer designed to sample estuaries and the coastal ocean, were ideally suited for environmental
monitoring and algorithm development in estuaries and coastal bays.

5. Conclusions

Using a simple band ratio approach, algorithms were derived for use with estuarine and
ocean color data to retrieve accurate estimates of surface CDOM absorption and salinity values
in estuarine waters which are often below the pixel resolution of sensors on ocean color satellites.
When hyperspectral and multispectral spectral data from HICO and MERIS, respectively, were applied
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to these algorithms, the resulting products showed strong spatial gradients in CDOM absorption and
salinity distribution which were consistent with observed patterns as freshwater/brackish waters are
transported from inland systems to the coastal ocean. These models were successfully validated against
published algorithms which were also based on the band ratio approach. Within an environmental
monitoring context, the data produced by these models, when mapped over scales and long time
periods, could illustrate and resolve the response of estuarine systems to increasing freshwater runoff
from surrounding watersheds due to anthropogenic activities and climatic events. This study is unique
because we have used in situ spectral and field data as well as laboratory analyses from hundreds of
samples collected over a twelve year time period to derive a set of algorithms which are optimized
for the range of absorptions and salinities characteristic of estuaries along the US East and Gulf
coasts. Although the performance of the algorithms was relatively stable along both the East and Gulf
coastal estuaries studied, additional research is needed to further evaluate performance for extended
geographical applications.
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