Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Chobe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3615 KiB  
Article
Soil Organic Carbon Mapping Through Remote Sensing and In Situ Data with Random Forest by Using Google Earth Engine: A Case Study in Southern Africa
by Javier Bravo-García, Juan Mariano Camarillo-Naranjo, Francisco José Blanco-Velázquez and María Anaya-Romero
Land 2025, 14(7), 1436; https://doi.org/10.3390/land14071436 - 9 Jul 2025
Viewed by 389
Abstract
This study, conducted within the SteamBioAfrica project, assessed the potential of Digital Soil Mapping (DSM) to estimate Soil Organic Carbon (SOC) across key regions of southern Africa: Otjozondjupa and Omusati (Namibia), Chobe (Botswana), and KwaZulu-Natal (South Africa). Random Forest (RF) models were implemented [...] Read more.
This study, conducted within the SteamBioAfrica project, assessed the potential of Digital Soil Mapping (DSM) to estimate Soil Organic Carbon (SOC) across key regions of southern Africa: Otjozondjupa and Omusati (Namibia), Chobe (Botswana), and KwaZulu-Natal (South Africa). Random Forest (RF) models were implemented in the Google Earth Engine (GEE) environment, integrating multi-source datasets including real-time Sentinel-2 imagery, topographic variables, climatic data, and regional soil samples. Three model configurations were evaluated: (A) climatic, topographic, and spectral data; (B) topographic and spectral data; and (C) spectral data only. Model A achieved the highest overall accuracy (R2 up to 0.78), particularly in Otjozondjupa, whereas Model B resulted in the lowest RMSE and MAE. Model C exhibited poorer performance, underscoring the importance of multi-source data integration. SOC variability was primarily influenced by elevation, precipitation, temperature, and Sentinel-2 bands B11 and B8. However, data scarcity and inconsistent sampling, especially in Chobe, reduced model reliability (R2: 0.62). The originality of this study lay in the scalable integration of real-time Sentinel-2 data with regional datasets in an open-access framework. The resulting SOC maps provided actionable insights for land-use planning and climate adaptation in savanna ecosystems. Full article
(This article belongs to the Special Issue Digital Earth and Remote Sensing for Land Management)
Show Figures

Figure 1

19 pages, 3709 KiB  
Article
Impacts of Wildlife Artificial Water Provisioning in an African Savannah Ecosystem: A Spatiotemporal Analysis
by Morati Mpalo, Lenyeletse Vincent Basupi and Gizaw Mengistu Tsidu
Land 2024, 13(5), 690; https://doi.org/10.3390/land13050690 - 15 May 2024
Cited by 1 | Viewed by 2845
Abstract
The use of artificial water points for wildlife in African savannah ecosystems has been widely criticised for affecting the distribution of wildlife and initiating changes in the heterogeneity of natural landscapes. We examined the spatiotemporal variations in the landscape before and after the [...] Read more.
The use of artificial water points for wildlife in African savannah ecosystems has been widely criticised for affecting the distribution of wildlife and initiating changes in the heterogeneity of natural landscapes. We examined the spatiotemporal variations in the landscape before and after the installation of an artificial water point by integrating the analysis of vegetation and soil spectral response patterns with a supervised learning random forest model between 2002 and 2022 in Chobe Enclave, Northern Botswana. Our results revealed that the study area is characterised by animal species such as Equus quagga, Aepyceros melampus, and Loxodonta africana. The findings also showed that the main vegetation species in the study area landscape include Combretum elaeagnoides, Vachellia luederitzii, and Combretum hereroense. The artificial water point induced disturbances on a drought-vulnerable landscape which affected vegetation heterogeneity by degrading the historically dominant vegetation cover types such as Colophospermum mopane, Dichrostachys cinerea, and Cynodon dactylon. The immediate years following the artificial water point installation demonstrated the highest spectral response patterns by vegetation and soil features attributed to intense landscape disturbances due to abrupt high-density aggregation of wildlife around the water point. Landscapes were strongly homogenised in later years (2022), as shown by overly overlapping spectral patterns owing to an increase in dead plant-based material and senescent foliage due to vegetation toppling and trampling. The landscape disturbances disproportionately affected mopane-dominated woodlands compared to other vegetation species as indicated by statistically significant land cover change obtained from a random forest classification. The woodlands declined significantly (p < 0.05) within 0–0.5 km, 0.5–1 km, 1–5 km, and 5–10 km distances after the installation of the water point. The results of this study indicate that continuous nonstrategic and uninformed use of artificial water points for wildlife will trigger ecological alterations in savannah ecosystems. Full article
Show Figures

Figure 1

21 pages, 4696 KiB  
Article
Geothermal Resource Mapping in Northern Botswana Inferred from Three-Dimensional Magnetotelluric Inversion
by Calistus Ramotoroko, Anneke Thiede, Andreas Junge and Elisha Shemang
Appl. Sci. 2023, 13(20), 11236; https://doi.org/10.3390/app132011236 - 12 Oct 2023
Cited by 1 | Viewed by 1990
Abstract
A set of magnetotelluric (MT) data collected from 28 stations at the Kasane Hot Spring in northern Botswana was used to derive a 3-D model of the electrical resistivity distribution around deep geologic structures that we associated with geothermal resources. The dimensionality analysis [...] Read more.
A set of magnetotelluric (MT) data collected from 28 stations at the Kasane Hot Spring in northern Botswana was used to derive a 3-D model of the electrical resistivity distribution around deep geologic structures that we associated with geothermal resources. The dimensionality analysis results revealed that 3-D modeling should be used to determine the electrical structure. The resistivity models revealed a conductive layer with an average thickness of 200 m, representing the overlying sediments of the Proterozoic volcanic rocks. The thick high-resistivity zone (>100 Ωm) below the conductive layer can be associated with Mesoproterozoic bedrock. The MT measurements in this area show a tube-shaped conductive anomaly that could serve as a fluid pathway feeding the hot spring. A fracture-controlled meteoric fluid circulation presumably determines the existence of the Kasane Hot Spring system. Full article
Show Figures

Figure 1

15 pages, 1272 KiB  
Article
Maternal and Infant Histo-Blood Group Antigen (HBGA) Profiles and Their Influence on Oral Rotavirus Vaccine (RotarixTM) Immunogenicity among Infants in Zambia
by Adriace Chauwa, Samuel Bosomprah, Natasha Makabilo Laban, Bernard Phiri, Mwelwa Chibuye, Obvious Nchimunya Chilyabanyama, Sody Munsaka, Michelo Simuyandi, Innocent Mwape, Cynthia Mubanga, Masuzyo Chirwa Chobe, Caroline Chisenga and Roma Chilengi
Vaccines 2023, 11(8), 1303; https://doi.org/10.3390/vaccines11081303 - 31 Jul 2023
Viewed by 5004
Abstract
Live-attenuated, oral rotavirus vaccines have significantly reduced rotavirus-associated diarrhoea morbidity and infant mortality. However, vaccine immunogenicity is diminished in low-income countries. We investigated whether maternal and infant intrinsic susceptibility to rotavirus infection via histo-blood group antigen (HBGA) profiles influenced rotavirus (ROTARIX®) [...] Read more.
Live-attenuated, oral rotavirus vaccines have significantly reduced rotavirus-associated diarrhoea morbidity and infant mortality. However, vaccine immunogenicity is diminished in low-income countries. We investigated whether maternal and infant intrinsic susceptibility to rotavirus infection via histo-blood group antigen (HBGA) profiles influenced rotavirus (ROTARIX®) vaccine-induced responses in Zambia. We studied 135 mother–infant pairs under a rotavirus vaccine clinical trial, with infants aged 6 to 12 weeks at pre-vaccination up to 12 months old. We determined maternal and infant ABO/H, Lewis, and secretor HBGA phenotypes, and infant FUT2 HBGA genotypes. Vaccine immunogenicity was measured as anti-rotavirus IgA antibody titres. Overall, 34 (31.3%) children were seroconverted at 14 weeks, and no statistically significant difference in seroconversion was observed across the various HBGA profiles in early infant life. We also observed a statistically significant difference in rotavirus-IgA titres across infant HBGA profiles at 12 months, though no statistically significant difference was observed between the study arms. There was no association between maternal HBGA profiles and infant vaccine immunogenicity. Overall, infant HBGAs were associated with RV vaccine immunogenicity at 12 months as opposed to in early infant life. Further investigation into the low efficacy of ROTARIX® and appropriate intervention is key to unlocking the full vaccine benefits for U5 children. Full article
(This article belongs to the Special Issue Bacterial and Viral Immunity and Vaccination)
Show Figures

Figure 1

22 pages, 34505 KiB  
Article
Modeling Large River Basins and Flood Plains with Scarce Data: Development of the Large Basin Data Portal
by Riham K. Abu-Saymeh, Adil Godrej and Kathleen A. Alexander
Hydrology 2023, 10(4), 87; https://doi.org/10.3390/hydrology10040087 - 6 Apr 2023
Cited by 3 | Viewed by 3406
Abstract
Hydrological modeling of large river basins and flood plains continues to be challenged by the low availability and quality of observed data for modeling input and model calibration. Global datasets are often used to bridge this gap, but are often difficult and time [...] Read more.
Hydrological modeling of large river basins and flood plains continues to be challenged by the low availability and quality of observed data for modeling input and model calibration. Global datasets are often used to bridge this gap, but are often difficult and time consuming to acquire, particularly in low resource regions of the world. Numerous calls have been made to standardize and share data to increase local basin modeling capacities and reduce redundancy in efforts, but barriers still exist. We discuss the challenges of hydrological modeling in data-scarce regions and describe a freely available online tool site developed to enable users to extract input data for any basin of any size. The site will allow users to visualize, map, interpolate, and reformat the data as needed for the intended application. We used our hydrological model of the Upper Zambezi basin and the Chobe-Zambezi floodplains to illustrate the use of this online toolset. Increasing access and dissemination of hydrological modeling data is a critical need, particularly among users where data requirements and access continue to impede locally driven management of hydrological systems. Full article
(This article belongs to the Special Issue Advances in River and Floodplain Interactions)
Show Figures

Figure 1

12 pages, 1114 KiB  
Article
Evaluation of ROTARIX® Booster Dose Vaccination at 9 Months for Safety and Enhanced Anti-Rotavirus Immunity in Zambian Children: A Randomised Controlled Trial
by Natasha Makabilo Laban, Samuel Bosomprah, Michelo Simuyandi, Mwelwa Chibuye, Adriace Chauwa, Masuzyo Chirwa-Chobe, Nsofwa Sukwa, Chikumbutso Chipeta, Rachel Velu, Katanekwa Njekwa, Cynthia Mubanga, Innocent Mwape, Martin Rhys Goodier and Roma Chilengi
Vaccines 2023, 11(2), 346; https://doi.org/10.3390/vaccines11020346 - 3 Feb 2023
Cited by 5 | Viewed by 3104
Abstract
Oral rotavirus vaccines show diminished immunogenicity in low-resource settings where rotavirus burden is highest. This study assessed the safety and immune boosting effect of a third dose of oral ROTARIX® (GlaxoSmithKline) vaccine administered at 9 months of age. A total of 214 [...] Read more.
Oral rotavirus vaccines show diminished immunogenicity in low-resource settings where rotavirus burden is highest. This study assessed the safety and immune boosting effect of a third dose of oral ROTARIX® (GlaxoSmithKline) vaccine administered at 9 months of age. A total of 214 infants aged 6 to 12 weeks were randomised to receive two doses of ROTARIX® as per standard schedule with other routine vaccinations or an additional third dose of ROTARIX® administered at 9 months old concomitantly with measles/rubella vaccination. Plasma collected pre-vaccination, 1 month after first- and second-dose vaccination, at 9 months old before receipt of third ROTARIX® dose and/or measles/rubella vaccination, and at 12 months old were assayed for rotavirus-specific IgA (RV-IgA). Geometric mean RV-IgA at 12 months of age and the incidence of clinical adverse events 1 month following administration of the third dose of ROTARIX® among infants in the intervention arm were compared between infants in the two arms. We found no significant difference in RV-IgA titres at 12 months between the two arms. Our findings showed that rotavirus vaccines are immunogenic in Zambian infants but with modest vaccine seroconversion rates in low-income settings. Importantly, however, a third dose of oral ROTARIX® vaccine was shown to be safe when administered concomitantly with measles/rubella vaccine at 9 months of age in Zambia. This speaks to opportunities for enhancing rotavirus vaccine immunity within feasible schedules in the national immunization program. Full article
(This article belongs to the Special Issue Bacterial and Viral Immunity and Vaccination)
Show Figures

Figure 1

17 pages, 15297 KiB  
Article
1,5-Benzothiazepine Derivatives: Green Synthesis, In Silico and In Vitro Evaluation as Anticancer Agents
by Michelyne Haroun, Santosh S. Chobe, Rajasekhar Reddy Alavala, Savita M. Mathure, Risy Namratha Jamullamudi, Charushila K. Nerkar, Vijay Kumar Gugulothu, Christophe Tratrat, Mohammed Monirul Islam, Katharigatta N. Venugopala, Mohammed Habeebuddin, Mallikarjun Telsang, Nagaraja Sreeharsha and Md. Khalid Anwer
Molecules 2022, 27(12), 3757; https://doi.org/10.3390/molecules27123757 - 10 Jun 2022
Cited by 13 | Viewed by 3685
Abstract
Considering the importance of benzothiazepine pharmacophore, an attempt was carried out to synthesize novel 1,5-benzothiazepine derivatives using polyethylene glycol-400 (PEG-400)-mediated pathways. Initially, different chalcones were synthesized and then subjected to a cyclization step with benzothiazepine in the presence of bleaching clay and PEG-400. [...] Read more.
Considering the importance of benzothiazepine pharmacophore, an attempt was carried out to synthesize novel 1,5-benzothiazepine derivatives using polyethylene glycol-400 (PEG-400)-mediated pathways. Initially, different chalcones were synthesized and then subjected to a cyclization step with benzothiazepine in the presence of bleaching clay and PEG-400. PEG-400-mediated synthesis resulted in a yield of more than 95% in less than an hour of reaction time. Synthesized compounds 2a–2j were investigated for their in vitro cytotoxic activity. Moreover, the same compounds were subjected to systematic in silico screening for the identification of target proteins such as human adenosine kinase, glycogen synthase kinase-3β, and human mitogen-activated protein kinase 1. The compounds showed promising results in cytotoxicity assays; among the tested compounds, 2c showed the most potent cytotoxic activity in the liver cancer cell line Hep G-2, with an IC50 of 3.29 ± 0.15 µM, whereas the standard drug IC50 was 4.68 ± 0.17 µM. In the prostate cancer cell line DU-145, the compounds displayed IC50 ranges of 15.42 ± 0.16 to 41.34 ± 0.12 µM, while the standard drug had an IC50 of 21.96 ± 0.15 µM. In terms of structural insights, the halogenated phenyl substitution on the second position of benzothiazepine was found to significantly improve the biological activity. This characteristic feature is supported by the binding patterns on the selected target proteins in docking simulations. In this study, 1,5-benzothiazepines have been identified as potential anticancer agents which can be further exploited for the development of more potent derivatives. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 800 KiB  
Article
Surveillance Studies Reveal Diverse and Potentially Pathogenic-Incriminated Vector Mosquito Species across Major Botswana Touristic Hotspots
by Mmabaledi Buxton, Casper Nyamukondiwa, Ryan J. Wasserman, Victor Othenin-Girard, Romain Pigeault, Philippe Christe and Olivier Glaizot
Insects 2021, 12(10), 913; https://doi.org/10.3390/insects12100913 - 6 Oct 2021
Cited by 1 | Viewed by 3013
Abstract
Vector mosquitoes contribute significantly to the global burden of diseases in humans, livestock and wildlife. As such, the spatial distribution and abundance of mosquito species and their surveillance cannot be ignored. Here, we surveyed mosquito species across major tourism hotspots in semi-arid Botswana, [...] Read more.
Vector mosquitoes contribute significantly to the global burden of diseases in humans, livestock and wildlife. As such, the spatial distribution and abundance of mosquito species and their surveillance cannot be ignored. Here, we surveyed mosquito species across major tourism hotspots in semi-arid Botswana, including, for the first time, the Central Kalahari Game Reserve. Our results reported several mosquito species across seven genera, belonging to Aedes, Anopheles, Culex, Mansonia, Mimomyia, Coquillettidia and Uranotaenia. These results document a significant species inventory that may inform early warning vector-borne disease control systems and likely help manage the risk of emerging and re-emerging mosquito-borne infections. Full article
Show Figures

Figure 1

21 pages, 6802 KiB  
Article
Relationship between the Microbiome and Indoor Temperature/Humidity in a Traditional Japanese House with a Thatched Roof in Kyoto, Japan
by Makoto Kokubo, So Fujiyoshi, Daisuke Ogura, Makiko Nakajima, Ayako Fujieda, Jun Noda and Fumito Maruyama
Diversity 2021, 13(10), 475; https://doi.org/10.3390/d13100475 - 28 Sep 2021
Cited by 9 | Viewed by 5527
Abstract
In our living environment, there are various microorganisms that are thought to affect human health. It is expected that excessive microbial suppression can have a negative effect on human health and that the appropriate control of the microbiome is beneficial to health. To [...] Read more.
In our living environment, there are various microorganisms that are thought to affect human health. It is expected that excessive microbial suppression can have a negative effect on human health and that the appropriate control of the microbiome is beneficial to health. To understand how the physical environment, such as temperature and relative humidity, or housing itself affects the microbiome in a rural house, we measured temperature and humidity and collected microbial samples in a traditional Japanese house with a thatched roof. The relative humidity of outdoor air was over 60% most of the day throughout the year. Indoor and outdoor air temperature and humidity were closer to each other in summer than in winter. The DNA concentration of indoor surfaces correlated with the relative humidity, especially with the lowest annual relative humidity. In the thatched roof, outside surface relative humidity often reached 100%, and the occurrence of condensation can affect the DNA concentrations. A high percentage of archaea were detected in the house, which is not a common characteristic in houses. In addition, the microbial community was similar outdoors and indoors or in each room. These characteristics reflect the occupants’ behaviour, including opening the windows and partitions in summer. In the future, it will be necessary to conduct continuous surveys in various houses, including traditional and modern houses, in Japan. Full article
(This article belongs to the Special Issue Microorganisms of Indoor Environment (Human-Made Environment))
Show Figures

Figure 1

15 pages, 2697 KiB  
Article
Isolation and Characterization of Cold-Tolerant Hyper-ACC-Degrading Bacteria from the Rhizosphere, Endosphere, and Phyllosphere of Antarctic Vascular Plants
by Macarena A. Araya, Tamara Valenzuela, Nitza G. Inostroza, Fumito Maruyama, Milko A. Jorquera and Jacquelinne J. Acuña
Microorganisms 2020, 8(11), 1788; https://doi.org/10.3390/microorganisms8111788 - 14 Nov 2020
Cited by 28 | Viewed by 4279
Abstract
1-Aminociclopropane-1-carboxylate (ACC)-degrading bacteria having been widely studied for their use in alleviating abiotic stresses in plants. In the present study, we isolated and characterized ACC-degrading bacteria from the rhizosphere, phyllosphere, and endosphere of the Antarctic vascular plants Deschampsia antarctica and Colobanthus quitensis. [...] Read more.
1-Aminociclopropane-1-carboxylate (ACC)-degrading bacteria having been widely studied for their use in alleviating abiotic stresses in plants. In the present study, we isolated and characterized ACC-degrading bacteria from the rhizosphere, phyllosphere, and endosphere of the Antarctic vascular plants Deschampsia antarctica and Colobanthus quitensis. One hundred and eighty of the 578 isolates (31%) were able to grow on minimal medium containing ACC, with 101 isolates (23, 37, and 41 endosphere-, phyllosphere- and rhizosphere-associated isolates, respectively) identified as being genetically unique by enterobacterial repetitive intergenic consensus (ERIC)-PCR. Subsequently, freeze/thaw treatments and ice-recrystallization-inhibition (IRI) activity assays were performed, the results of which revealed that 77 (13%) of cold-tolerant isolates exhibited putative ACC deaminase activity. Significant (p ≤ 0.05) differences in IRI activity were also observed between the studied plant niches. Surprisingly, all the cold-tolerant isolates showed ACC deaminase activity, independent of the plant niches, with 12 isolates showing the highest ACC deaminase activities of 13.21–39.56 mmol α KB mg protein−1 h−1. These isolates were categorized as ‘cold-tolerant hyper-ACC-degrading bacteria’, and identified as members of Pseudomonas, Serratia, and Staphylococcus genera. The results revealed the occurrence of cold-tolerant hyper-ACC-degrading bacteria in diverse plant niches of Antarctic vascular plants, that could be investigated as novel microbial inoculants to alleviate abiotic stresses in plants. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

23 pages, 52916 KiB  
Article
Land Cover Change in Northern Botswana: The Influence of Climate, Fire, and Elephants on Semi-Arid Savanna Woodlands
by John Tyler Fox, Mark E. Vandewalle and Kathleen A. Alexander
Land 2017, 6(4), 73; https://doi.org/10.3390/land6040073 - 25 Oct 2017
Cited by 17 | Viewed by 13826
Abstract
Complex couplings and feedback among climate, fire, and herbivory drive short- and long-term patterns of land cover change (LCC) in savanna ecosystems. However, understanding of spatial and temporal LCC patterns in these environments is limited, particularly for semi-arid regions transitional between arid and [...] Read more.
Complex couplings and feedback among climate, fire, and herbivory drive short- and long-term patterns of land cover change (LCC) in savanna ecosystems. However, understanding of spatial and temporal LCC patterns in these environments is limited, particularly for semi-arid regions transitional between arid and more mesic climates. Here, we use post-classification analysis of Landsat TM (1990), ETM+ (2003), and OLI (2013) satellite imagery to classify and assess net and gross LCC for the Chobe District, a 21,000 km2 area encompassing urban, peri-urban, rural, communally-managed (Chobe Enclave), and protected land (Chobe National Park, CNP, and six protected forest reserves). We then evaluate spatiotemporal patterns of LCC in relation to precipitation, fire detections (MCD14M, 2001–2013) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and dry season elephant (Loxodonta africana) aerial survey data (2003, 2006, 2012, 2013). Woodland cover declined over the study period by 1514 km2 (16.2% of initial class total), accompanied by expansion of shrubland (1305 km2, 15.7%) and grassland (265 km2, 20.3%). Net LCC differed importantly in protected areas, with higher woodland losses observed in forest reserves compared to the CNP. Loss of woodland was also higher in communally-managed land for the study period, despite gains from 2003–2013. Gross (class) changes were characterized by extensive exchange between woodland and shrubland during both time steps, and a large expansion of shrubland into grassland and bare ground from 2003–2013. MODIS active fire detections were highly variable from year to year and among the different protected areas, ranging from 1.8 fires*year−1/km2 in the Chobe Forest Reserve to 7.1 fires*year−1/km2 in the Kasane Forest Reserve Extension. Clustering and timing of dry season fires suggests that ignitions were predominately from anthropogenic sources. Annual fire count was significantly related to total annual rainfall (p = 0.009, adj. R2 = 0.50), with a 41% increase in average fire occurrence in years when rainfall exceeded long-term mean annual precipitation (MAP). Loss of woodland was significantly associated with fire in locations experiencing 15 or more ignitions during the period 2001–2013 (p = 0.024). Although elephant-mediated damage is often cited as a major cause of woodland degradation in northern Botswana, we observed little evidence of unsustainable pressure on woodlands from growing elephant populations. Our data indicate broad-scale LCC processes in semi-arid savannas in Southern Africa are strongly coupled to environmental and anthropogenic forcings. Increased seasonal variability is likely to have important effects on the distribution of savanna plant communities due to climate-fire feedbacks. Long-term monitoring of LCC in these ecosystems is essential to improving land use planning and management strategies that protect biodiversity, as well as traditional cultures and livelihoods under future climate change scenarios for Southern Africa. Full article
(This article belongs to the Special Issue Arid Land Systems: Sciences and Societies)
Show Figures

Graphical abstract

20 pages, 6996 KiB  
Article
Thermal Imagery-Derived Surface Inundation Modeling to Assess Flood Risk in a Flood-Pulsed Savannah Watershed in Botswana and Namibia
by Jeri J. Burke, Narcisa G. Pricope and James Blum
Remote Sens. 2016, 8(8), 676; https://doi.org/10.3390/rs8080676 - 20 Aug 2016
Cited by 19 | Viewed by 9091
Abstract
The Chobe River Basin (CRB), a sub-basin of the Upper Zambezi Basin shared by Namibia and Botswana, is a complex hydrologic system that lies at the center of the world’s largest transfrontier conservation area. Despite its regional importance for livelihoods and biodiversity, its [...] Read more.
The Chobe River Basin (CRB), a sub-basin of the Upper Zambezi Basin shared by Namibia and Botswana, is a complex hydrologic system that lies at the center of the world’s largest transfrontier conservation area. Despite its regional importance for livelihoods and biodiversity, its hydrology, controlled by the timing and relative contributions of water from two regional rivers, remains poorly understood. An increase in the magnitude of flooding in this region since 2009 has resulted in significant displacements of rural communities. We use an innovative approach that employs time-series of thermal imagery and station discharge data to model seasonal flooding patterns, identify the driving forces that control the magnitude of flooding and the high population density areas that are most at risk of high magnitude floods throughout the watershed. Spatio-temporal changes in surface inundation determined using NASA Moderate-resolution Imaging Spectroradiometer (MODIS) thermal imagery (2000–2015) revealed that flooding extent in the CRB is extremely variable, ranging from 401 km2 to 5779 km2 over the last 15 years. A multiple regression model of lagged discharge of surface contributor basins and flooding extent in the CRB indicated that the best predictor of flooding in this region is the discharge of the Zambezi River 64 days prior to flooding. The seasonal floods have increased drastically in magnitude since 2008 causing large populations to be displaced. Over 46,000 people (53% of Zambezi Region population) are living in high magnitude flood risk areas, making the need for resettlement planning and mitigation strategies increasingly important. Full article
(This article belongs to the Special Issue Earth Observations for a Better Future Earth)
Show Figures

Graphical abstract

17 pages, 6737 KiB  
Article
Utilizing Multiple Lines of Evidence to Determine Landscape Degradation within Protected Area Landscapes: A Case Study of Chobe National Park, Botswana from 1982 to 2011
by Hannah V. Herrero, Jane Southworth and Erin Bunting
Remote Sens. 2016, 8(8), 623; https://doi.org/10.3390/rs8080623 - 28 Jul 2016
Cited by 16 | Viewed by 7740
Abstract
The savannas of Southern Africa are an important dryland ecosystem as they cover up to 54% of the landscape and support a rich variety of biodiversity. This paper evaluates landscape change in savanna vegetation along Chobe Riverfront within Chobe National Park Botswana, from [...] Read more.
The savannas of Southern Africa are an important dryland ecosystem as they cover up to 54% of the landscape and support a rich variety of biodiversity. This paper evaluates landscape change in savanna vegetation along Chobe Riverfront within Chobe National Park Botswana, from 1982 to 2011 to understand what change may be occurring in land cover. Classifying land cover in savanna environments is challenging because the vegetation spectral signatures are similar across distinct vegetation covers. With vegetation species and even structural groups having similar signatures in multispectral imagery difficulties exist in making discrete classifications in such landscapes. To address this issue, a Random Forest classification algorithm was applied to predict land-cover classes. Additionally, time series vegetation indices were used to support the findings of the discrete land cover classification. Results indicate that a landscape level vegetation shift has occurred across the Chobe Riverfront, with results highlighting a shift in land cover towards more woody vegetation. This represents a degradation of vegetation cover within this savanna landscape environment, largely due to an increasing number of elephants and other herbivores utilizing the Riverfront. The forested area along roads at a further distance from the River has also had a loss of percent cover. The continuous analysis during 1982–2011, utilizing monthly AVHRR (Advanced Very High Resolution Radiometer) NDVI (Normalized Difference Vegetation Index) values, also verifies this change in amount of vegetation is a continuous and ongoing process in this region. This study provides land use planners and managers with a more reliable, efficient and relatively inexpensive tool for analyzing land-cover change across these highly sensitive regions, and highlights the usefulness of a Random Forest classification in conjunction with time series analysis for monitoring savanna landscapes. Full article
(This article belongs to the Special Issue Remote Sensing of Land Degradation and Drivers of Change)
Show Figures

Graphical abstract

29 pages, 9601 KiB  
Article
Spatio-Temporal Analysis of Vegetation Dynamics in Relation to Shifting Inundation and Fire Regimes: Disentangling Environmental Variability from Land Management Decisions in a Southern African Transboundary Watershed
by Narcisa G. Pricope, Andrea E. Gaughan, John D. All, Michael W. Binford and Lucas P. Rutina
Land 2015, 4(3), 627-655; https://doi.org/10.3390/land4030627 - 27 Jul 2015
Cited by 23 | Viewed by 9335
Abstract
Increasing temperatures and wildfire incidence and decreasing precipitation and river runoff in southern Africa are predicted to have a variety of impacts on the ecology, structure, and function of semi-arid savannas, which provide innumerable livelihood resources for millions of people. This paper builds [...] Read more.
Increasing temperatures and wildfire incidence and decreasing precipitation and river runoff in southern Africa are predicted to have a variety of impacts on the ecology, structure, and function of semi-arid savannas, which provide innumerable livelihood resources for millions of people. This paper builds on previous research that documents change in inundation and fire regimes in the Chobe River Basin (CRB) in Namibia and Botswana and proposes to demonstrate a methodology that can be applied to disentangle the effect of environmental variability from land management decisions on changing and ecologically sensitive savanna ecosystems in transboundary contexts. We characterized the temporal dynamics (1985–2010) of vegetation productivity for the CRB using proxies of vegetation productivity and examine the relative importance of shifts in flooding and fire patterns to vegetation dynamics and effects of the association of phases of the El Niño—Southern Oscillation (ENSO) on vegetation greenness. Our results indicate that vegetation in these semi-arid environments is highly responsive to climatic fluctuations and the long-term trend is one of increased but heterogeneous vegetation cover. The increased cover and heterogeneity during the growing season is especially noted in communally-managed areas of Botswana where long-term fire suppression has been instituted, in contrast to communal areas in Namibia where heterogeneity in vegetation cover is mostly increasing primarily outside of the growing season and may correspond to mosaic early dry season burns. Observed patterns of increased vegetation productivity and heterogeneity may relate to more frequent and intense burning and higher spatial variability in surface water availability from both precipitation and regional inundation patterns, with implications for global environmental change and adaptation in subsistence-based communities. Full article
Show Figures

Figure 1

17 pages, 1210 KiB  
Article
Poverty Alleviation through Pro-Poor Tourism: The Role of Botswana Forest Reserves
by Haretsebe Manwa and Farai Manwa
Sustainability 2014, 6(9), 5697-5713; https://doi.org/10.3390/su6095697 - 28 Aug 2014
Cited by 61 | Viewed by 15090
Abstract
Both government and international donor agencies now promote the use of tourism to alleviate poverty. The Botswana government has embraced tourism as a meaningful and sustainable economic activity and diversification opportunity, which now ranks second after mining in its contribution to the country’s [...] Read more.
Both government and international donor agencies now promote the use of tourism to alleviate poverty. The Botswana government has embraced tourism as a meaningful and sustainable economic activity and diversification opportunity, which now ranks second after mining in its contribution to the country’s gross domestic product. The study reported in this paper investigates perceptions of stakeholders on the opportunities that would be created for the poor by opening up Botswana’s forest reserves for ecotourism. Data was collected through mixed methods involving in-depth interviews with government departments, traditional leaders, quasi-government organisations and the Hospitality and Tourism Association of Botswana. Focus group discussions were also held with village development committees, Chobe Enclave Conservation Trust (CECT) and Kasane, Lesoma and Pandematenga Trust (KALEPA) members, and a consultative national workshop of stakeholders was also held. The findings indicate that opening up forest reserves for ecotourism has the potential to alleviate poverty among the disadvantaged groups living adjacent to forest reserves through direct (employment, small- and medium-sized enterprises (SMEs)), secondary (linkages/partnerships) and dynamic effects (sustainable livelihoods). The study concludes by cautioning that whilst pro-poor tourism may yield short- and medium-term benefits, in keeping with sustainability objectives, participants in the programme need to be mindful of forestry encroachment and come up with strategies to ensure the sustainability of the Botswana forest reserves. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

Back to TopTop