Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = Centella Asiatica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3414 KiB  
Article
In Vitro Neuroprotective Effects of a Mixed Extract of Bilberry, Centella asiatica, Hericium erinaceus, and Palmitoylethanolamide
by Rebecca Galla, Sara Ferrari, Ivana Miletto, Simone Mulè and Francesca Uberti
Foods 2025, 14(15), 2678; https://doi.org/10.3390/foods14152678 - 30 Jul 2025
Viewed by 284
Abstract
Oxidative stress, driven by impaired antioxidant defence systems, is a major contributor to cognitive decline and neurodegenerative processes in brain ageing. This study investigates the neuroprotective effects of a natural compound mixture—composed of Hericium erinaceus, Palmitoylethanolamide, Bilberry extract, and Centella asiatica—using [...] Read more.
Oxidative stress, driven by impaired antioxidant defence systems, is a major contributor to cognitive decline and neurodegenerative processes in brain ageing. This study investigates the neuroprotective effects of a natural compound mixture—composed of Hericium erinaceus, Palmitoylethanolamide, Bilberry extract, and Centella asiatica—using a multi-step in vitro strategy. An initial evaluation in a 3D intestinal epithelial model demonstrated that the formulation preserves barrier integrity and may be bioaccessible, as evidenced by transepithelial electrical resistance (TEER) and the expression of tight junctions. Subsequent analysis in an integrated gut–brain axis model under oxidative stress conditions revealed that the formulation significantly reduces inflammatory markers (NF-κB, TNF-α, IL-1β, and IL-6; about 1.5-fold vs. H2O2), reactive oxygen species (about 2-fold vs. H2O2), and nitric oxide levels (about 1.2-fold vs. H2O2). Additionally, it enhances mitochondrial activity while also improving antioxidant responses. In a co-culture of neuronal and astrocytic cells, the combination upregulates neurotrophic factors such as BDNF and NGF (about 2.3-fold and 1.9-fold vs. H2O2). Crucially, the formulation also modulates key biomarkers associated with cognitive decline, reducing APP and phosphorylated tau levels (about 98% and 1.6-fold vs. H2O2) while increasing Sirtuin 1 and Nrf2 expression (about 3.6-fold and 3-fold vs. H2O2). These findings suggest that this nutraceutical combination may support the cellular pathways involved in neuronal resilience and healthy brain ageing, offering potential as a functional food ingredient or dietary supplement. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

31 pages, 1909 KiB  
Review
Centella asiatica: Advances in Extraction Technologies, Phytochemistry, and Therapeutic Applications
by Zaw Myo Hein, Prarthana Kalerammana Gopalakrishna, Anil Kumar Kanuri, Warren Thomas, Farida Hussan, Venkatesh R. Naik, Nisha Shantakumari, Muhammad Danial Che Ramli, Mohamad Aris Mohd Moklas, Che Mohd Nasril Che Mohd Nassir and Thirupathirao Vishnumukkala
Life 2025, 15(7), 1081; https://doi.org/10.3390/life15071081 - 9 Jul 2025
Viewed by 1463
Abstract
Centella asiatica (C. asiatica) has attracted significant scientific interest due to its extensive medicinal properties and long-established use in traditional medicine. This review synthesizes recent advances in the technological exploitation of C. asiatica, covering the extraction of bioactive constituents to [...] Read more.
Centella asiatica (C. asiatica) has attracted significant scientific interest due to its extensive medicinal properties and long-established use in traditional medicine. This review synthesizes recent advances in the technological exploitation of C. asiatica, covering the extraction of bioactive constituents to product development. Modern extraction techniques such as supercritical fluid extraction (SFE) and microwave-assisted extraction (MAE) have substantially improved the yield, selectivity, and preservation of key phytochemicals, particularly triterpenoids, saponins, and flavonoids. These compounds are now routinely characterized using advanced analytical platforms, ensuring product quality, consistency, and standardization. Moreover, the use of innovative formulation technologies and advanced delivery systems has facilitated the development of C. asiatica-based products tailored for various therapeutic areas, including pharmaceuticals, nutraceuticals, and cosmeceuticals targeting neuroprotection, wound healing, skin aging, and stress modulation. Alongside these developments, stringent quality control protocols, toxicological evaluations, and adherence to evolving regulatory standards enhance the safety and efficacy of C. asiatica-derived interventions. This review highlights the integration of traditional knowledge with modern science across the domains of extraction, analysis, formulation, and regulation. It serves as a comprehensive resource for researchers, formulators, and regulatory stakeholders aiming to develop high-quality, evidence-based C. asiatica products with improved bioavailability and therapeutic value. Full article
Show Figures

Figure 1

30 pages, 7589 KiB  
Article
Plant-Based ZnO Nanoparticles for Green Nanobiocontrol of a Highly Virulent Bacterial Leaf Blight Pathogen: Mechanistic Insights and Biocompatibility Evaluation
by Preeda Chanthapong, Duangkamol Maensiri, Paweena Rangsrisak, Thanee Jaiyan, Kanchit Rahaeng, Atcha Oraintara, Kunthaya Ratchaphonsaenwong, Jirawat Sanitchon, Piyada Theerakulpisut and Wuttipong Mahakham
Nanomaterials 2025, 15(13), 1011; https://doi.org/10.3390/nano15131011 - 30 Jun 2025
Viewed by 983
Abstract
Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), poses a serious threat to rice cultivation. This study presents the green synthesis of zinc oxide nanoparticles (ZnO NPs) using an aqueous leaf extract of the medicinal plant Centella asiatica [...] Read more.
Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), poses a serious threat to rice cultivation. This study presents the green synthesis of zinc oxide nanoparticles (ZnO NPs) using an aqueous leaf extract of the medicinal plant Centella asiatica (L.) Urban and evaluates their potential as dual-function nanopesticides. The synthesized CA-ZnO NPs exhibited high crystallinity, a hexagonal to quasi-spherical morphology, and nanoscale dimensions (~22.5 nm), as confirmed by UV–Vis spectroscopy, XRD, FTIR, SEM, TEM, and SAED analyses. These nanoparticles demonstrated potent antibacterial activity against a highly virulent, field-derived Thai Xoo strain, with a minimum inhibitory concentration (MIC) of 8 µg/mL. Mechanistic investigations revealed substantial membrane disruption, intracellular nanoparticle penetration, and elevated reactive oxygen species (ROS) generation in treated cells. Cytotoxicity testing using human dermal fibroblasts (HDFs) revealed excellent biocompatibility, with no statistically significant reduction in cell viability at concentrations up to 500 µg/mL. In contrast, viability markedly declined at 1000 µg/mL. These findings underscore the selective antibacterial efficacy and minimal mammalian cytotoxicity of CA-ZnO NPs. Overall, CA-ZnO NPs offer a promising green nanopesticide platform that integrates potent antibacterial activity with biocompatibility, supporting future applications in sustainable crop protection and biomedical nanotechnology. Full article
(This article belongs to the Topic Nano-Enabled Innovations in Agriculture)
Show Figures

Graphical abstract

21 pages, 6155 KiB  
Article
Plants Utilization and Perceptions in the Context of Novel Indigenous Food Spicing and Flavoring Among the Vhavenḓa People in the Vhembe Biosphere Reserve, South Africa
by Mueletshedzi Manyaga, Ncobile Pretty Mhlongo, Maropeng Erica Matlala, Nonhlanhla Prudence Lubisi, Vhuhwavho Gelebe, Christeldah Mkhonto, Elizabeth Kola, Wilfred Otang Mbeng, Peter Tshepiso Ndhlovu, Salmina Ngoakoana Mokgehle, Maakanye Millicent Matlanyane, Ndivhuwo Liuvha, Nomusa Rhoda Dlamini and Luambo Jeffrey Ramarumo
Plants 2025, 14(13), 1962; https://doi.org/10.3390/plants14131962 - 26 Jun 2025
Viewed by 416
Abstract
Local innovations regarding plant-derived spice and flavorant formulations and preparation techniques are mostly recorded nowhere and usually passed on generationally through word of mouth. This study aimed to inventory the utilization of plants and perceptions of novel indigenous food spicing and flavoring among [...] Read more.
Local innovations regarding plant-derived spice and flavorant formulations and preparation techniques are mostly recorded nowhere and usually passed on generationally through word of mouth. This study aimed to inventory the utilization of plants and perceptions of novel indigenous food spicing and flavoring among the Vhavenḓa people in South Africa. This study adopted face-to-face interviews with 360 participants using semi-structured questionnaires. This study investigated a total of twenty-seven plant species used to spice-flavor novel indigenous Venḓa foods, including mukokoroshi meat stew, mopane worms, vegetables, homemade achar, eggs, samp meal, potatoes, and sweet potatoes. Based on the perceptions by participants from different age groups, indigenous foods spicing and favoring significantly improved food taste and nutrition (43.1%), providing medicinal benefits (33.3%) and cultural identity (23.6%). No study had ever reported the uses of Lannea edulis (Sond.) Engl., Mangifera indica L., Centella asiatica (L.) Urb., Warburgia salutaris (G.Bertol.) Chiov., Plectranthus fruticosus L′Hér., Hibiscus sabdariffa subsp. Cannabinus L., Oxalis semiloba subsp. semiloba, and Ziziphus mucronata subsp. mucronata and their preparational techniques for novel indigenous foods, spicing, and flavoring before, in South Africa, or elsewhere. The current study provided insights about spice and flavoring plants that could be used to develop alternative marketable commercial products. The findings of this study provide necessary baseline information for evaluating and profiling the nutritional content of spice-making and flavoring plants in the Vhembe Region. Full article
Show Figures

Figure 1

16 pages, 1441 KiB  
Article
Clinical Efficacy and Safety Evaluation of a Centella asiatica (CICA)-Derived Extracellular Vesicle Formulation for Anti-Aging Skincare
by Hannah S. Park and Sehyun Shin
Cosmetics 2025, 12(4), 135; https://doi.org/10.3390/cosmetics12040135 - 25 Jun 2025
Viewed by 1429
Abstract
Centella asiatica (CICA)-derived exosomes have emerged as bioactive agents for skin rejuvenation due to their regenerative and anti-inflammatory properties. This study evaluated the safety and efficacy of a topical ampoule containing CICA-derived extracellular vesicles (EVs) in healthy Korean adults. This human application study [...] Read more.
Centella asiatica (CICA)-derived exosomes have emerged as bioactive agents for skin rejuvenation due to their regenerative and anti-inflammatory properties. This study evaluated the safety and efficacy of a topical ampoule containing CICA-derived extracellular vesicles (EVs) in healthy Korean adults. This human application study was conducted over a 15-day period, during which the test formulation was topically applied to the skin following a controlled regimen. A 24-h patch test with 30 participants confirmed non-irritation (irritation index: 0.00). In a separate two-week trial (n = 20; mean age 50.7 years), 3D imaging and ultrasound assessed five-dimensional pore improvement (area, density, volume, filling, texture), wrinkle depth reduction in five facial regions, dermal hydration at 0.5, 1.5, and 2.5 mm depths, and skin density. Significant reductions were observed in mean pore area (−17.9%) and pore density (−26.9%), with a 9.0% decrease in surface roughness. Wrinkle depths decreased by 7.8–18.8% across the forehead, glabella, crow’s feet, nasolabial folds, and neck. Hydration increased by 7.9% at 0.5 mm, and dermal density improved by 12.7% (p < 0.05). These findings highlight the excellent skin compatibility and multifaceted cosmetic benefits of the formulation containing CICA-derived exosomes and other active ingredients, underscoring its potential as a safe, effective, and innovative anti-aging cosmetic agent. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

20 pages, 2168 KiB  
Article
Controlled Application of Far-Red Light to Improve Growth and Bioactive Compound Yield in Centella asiatica
by Yu Kyeong Shin, Jae Woo Song and Jun Gu Lee
Horticulturae 2025, 11(7), 728; https://doi.org/10.3390/horticulturae11070728 - 23 Jun 2025
Viewed by 330
Abstract
This study examined how far-red (FR) light supplementation influences triterpene glycoside accumulation in Centella asiatica grown under different light intensities (50–200 μmol·m−2·s−1) over 5 weeks. Four major compounds—madecassoside, asiaticoside, madecassic acid, and asiatic acid—were quantified. Results from three-way ANOVA [...] Read more.
This study examined how far-red (FR) light supplementation influences triterpene glycoside accumulation in Centella asiatica grown under different light intensities (50–200 μmol·m−2·s−1) over 5 weeks. Four major compounds—madecassoside, asiaticoside, madecassic acid, and asiatic acid—were quantified. Results from three-way ANOVA showed that light intensity and time significantly affected the accumulation of all compounds, with FR light selectively enhancing glycoside levels but not triterpene acids. Although total glycoside content declined over time, plants under 200FR conditions retained the highest levels by week 5. Principal component analysis suggested that FR light modulates resource allocation between growth and secondary metabolism. These findings advance our understanding of light-mediated regulation in phytochemical biosynthesis and offer a basis for optimizing cultivation strategies in controlled environments. Notably, the compound-specific responses to FR suggest differential regulation within the triterpene biosynthetic pathway, opening avenues for targeted enhancement of medicinally important compounds. Full article
Show Figures

Graphical abstract

12 pages, 5002 KiB  
Article
Natural Plant-Based Rejuvenating Compositions: Human Study on Astragalus membranaceus and Centella asiatica Saponins for Skin Health
by Leong-Perng Chan and Chia-Hua Liang
Cosmetics 2025, 12(4), 131; https://doi.org/10.3390/cosmetics12040131 - 20 Jun 2025
Viewed by 1409
Abstract
This study aimed to evaluate the effects of a proprietary plant-based formulation of Astragalus membranaceus and Centella asiatica saponins (ACS) on skin health, as both a cosmetic ingredient and a functional supplement. In this randomized, double-blind, placebo-controlled trial, 150 healthy adults were assigned [...] Read more.
This study aimed to evaluate the effects of a proprietary plant-based formulation of Astragalus membranaceus and Centella asiatica saponins (ACS) on skin health, as both a cosmetic ingredient and a functional supplement. In this randomized, double-blind, placebo-controlled trial, 150 healthy adults were assigned to groups using topical ACS cream, oral ACS capsules, combined treatments, or corresponding placebos. Skin brightness, moisture, elasticity, melanin value, pore count, texture, and collagen content were assessed over 4 to 12 weeks. After 4 weeks of topical ACS application, skin brightness improved by 2.5%, elasticity by 6.5%, melanin decreased by 5.2%, pores reduced by 10.6%, and collagen increased by 8.7% (p < 0.05). After 12 weeks of oral ACS, brightness, elasticity, texture, and collagen significantly improved (p < 0.05). The combined treatment group showed the greatest improvements, including a 4.2% increase in brightness, 12.9% increase in moisture, 9.0% elasticity increase, and a 28.5% reduction in pore count (p < 0.05). ACS, whether used topically, orally, or in combination, effectively enhances skin health and offers a natural solution for skin rejuvenation. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

26 pages, 4668 KiB  
Article
CO2 Enrichment Alters the Phytochemical Composition of Centella asiatica: GC-MS Analysis
by Sakkarin Wangkahart, Chaiyan Junsiri, Aphichat Srichat, Kittipong Laloon, Kaweepong Hongtong, Phaiboon Boupha, Somporn Katekaew and Sahassawas Poojeera
Horticulturae 2025, 11(6), 692; https://doi.org/10.3390/horticulturae11060692 - 16 Jun 2025
Viewed by 990
Abstract
Centella asiatica (L.) Urban is a medicinal herb containing valuable bioactive compounds widely used in pharmaceutical, cosmetic, and traditional medicine applications. This study investigated the effects of elevated CO2 levels (1000, 800, and 600 ppm compared to ambient ~420 ppm) on secondary [...] Read more.
Centella asiatica (L.) Urban is a medicinal herb containing valuable bioactive compounds widely used in pharmaceutical, cosmetic, and traditional medicine applications. This study investigated the effects of elevated CO2 levels (1000, 800, and 600 ppm compared to ambient ~420 ppm) on secondary metabolite composition in C. asiatica using GC-MS analysis of ethyl acetate extracts. Significant treatment effects (p < 0.001) were observed across nine identified compounds, with α-copaene showing the most pronounced response. At 1000 ppm CO2, sesquiterpene hydrocarbons, including α-copaene (10.60%) and trans-caryophyllene (8.97%), reached their highest concentrations, representing 232% and 413% increases over ambient conditions, respectively. Germacrene D demonstrated optimal synthesis at 800 ppm (8.12%) while remaining undetectable under ambient conditions. In contrast, the diterpene neophytadiene (16.84%) and the oxygenated sesquiterpene caryophyllene oxide (11.27%) exhibited maximum concentrations under ambient conditions. Principal Component Analysis confirmed distinct metabolic profiles, with the first two components explaining 84.38% of the total variance. Correlation analysis revealed strong positive relationships (r > 0.85, p < 0.001) between structurally related sesquiterpenes. These findings establish a foundation for optimizing cultivation conditions to enhance specific bioactive compound production in C. asiatica, with potential applications in pharmaceutical production systems targeting sesquiterpene-derived medicines. The research demonstrates that atmospheric CO2 modulation offers a promising strategy for targeted enhancement of secondary metabolite synthesis, though further investigation of molecular mechanisms and environmental interactions is necessary for commercial implementation. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

24 pages, 8298 KiB  
Article
Native Grasses Enhance Topsoil Organic Carbon and Nitrogen by Improving Soil Aggregates and Microbial Communities in Navel Orange Orchards in China
by Wenqian Wang, Zhaoyan Ren, Jianjun Wang, Ying Dai, Jingwen Huang, Yang Yang, Xia Zhuang, Mujun Ye, Zhonglan Yang, Fengxian Yao and Chen Cheng
Horticulturae 2025, 11(5), 560; https://doi.org/10.3390/horticulturae11050560 - 21 May 2025
Viewed by 498
Abstract
In Gannan navel orange (Citrus sinensis) orchards—a typical sloped farmland ecosystem—selected native grasses outperform conventional green manure due to their stronger ecological adaptability and lower management requirements. However, few studies have investigated how native grasses enhance soil organic carbon and nitrogen [...] Read more.
In Gannan navel orange (Citrus sinensis) orchards—a typical sloped farmland ecosystem—selected native grasses outperform conventional green manure due to their stronger ecological adaptability and lower management requirements. However, few studies have investigated how native grasses enhance soil organic carbon and nitrogen contents at the soil aggregate level. A 5-year field study was carried out to analyze the impacts of the native grasses practice on the accumulation of soil organic carbon and nitrogen and the physicochemical properties and microbial communities of soil aggregates in navel orange orchards. Three treatments were tested: (i) clean tillage (CK); (ii) intercropping Centella asiatica (L.) Urban (CA); (iii) intercropping Stellaria media (L.) Cvr. (SM). Our work found that, compared to CK, the soil physical properties improved under the long-term management of native grasses, and the content of nutrients in the soil increased. The contents of SOC (+118.3–184.2%) and total nitrogen (TN) (+73.3–81.5%) changed significantly. The proportion of soil macro-aggregates and the stability of soil aggregates increased, and the contents of SOC and TN in the soil aggregates increased. In addition, under the long-term management of native grasses, the community diversity of beneficial microbes and the abundance of functional genes related to nitrogen cycling increased significantly in the soil aggregates. Native grasses increased the content of nutrients in the soil aggregates by increasing aggregate stability and the abundance of related microorganisms, altering the microbial community structure, and increasing the abundance of related genes for nutrient cycling, thereby enhancing the sequestration of SOC and TN in topsoil. Our results will provide a theoretical basis for the carbon enhancement and fertilization of native grasses as green manure in navel orange orchards and their popularization and application. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

25 pages, 2931 KiB  
Article
Antioxidant, Polyphenol, Physical, and Sensory Changes in Myofibrillar Protein Gels Supplemented with Polyphenol-Rich Plant-Based Additives
by Katarzyna Leicht, Charles Odilichukwu R. Okpala, Paulina Nowicka, José Angel Pérez-Alvarez and Małgorzata Korzeniowska
Nutrients 2025, 17(7), 1232; https://doi.org/10.3390/nu17071232 - 1 Apr 2025
Viewed by 964
Abstract
Background: Plant-based additives such as blackcurrant juice and pomace, as well as herbal extracts from Melissa officinalis and Centella asiatica, possess well-established health-promoting properties. This study aimed to investigate how the incorporation of polyphenol-rich plant-based additives into a myofibrillar protein matrix could [...] Read more.
Background: Plant-based additives such as blackcurrant juice and pomace, as well as herbal extracts from Melissa officinalis and Centella asiatica, possess well-established health-promoting properties. This study aimed to investigate how the incorporation of polyphenol-rich plant-based additives into a myofibrillar protein matrix could enhance the nutritional value, antioxidant potential, and sensory quality of novel food gels. Methods: Myofibrillar protein gels were enriched with selected plant-based additives. Antioxidant properties were assessed using the ABTS radical cation decolorization assay, DPPH radical scavenging assay, and the Ferric Reducing Antioxidant Power (FRAP) assay. Polyphenol profiles were determined with emphasis on flavonols, flavan-3-ols, and chlorogenic acids. Physicochemical properties including pH, color, texture, energetic value, dry matter, and ash contents were measured. Sensory evaluation was conducted using consumer preference tests and descriptive sensory profiling. Results: Enriched gels contained bioactive compounds such as catechins, procyanidins, chlorogenic acids, and anthocyanins, whose presence correlated with distinct antioxidant activities. Blackcurrant pomace significantly elevated both total polyphenol content and antioxidant capacity, imparting a vivid red-purple color that influenced consumer perception. Melissa officinalis extract enhanced antioxidant potential and introduced a mild, pleasant aroma. Centella asiatica extract further improved the nutritional profile and oxidative stability of the gels, demonstrating additive and synergistic effects in both functional and sensory dimensions. Conclusions: Polyphenol-rich plant-based additives, particularly blackcurrant pomace and extracts from M. officinalis and C. asiatica, markedly improve the antioxidant capacity, nutritional value, and sensory appeal of myofibrillar protein-based food gels. These findings support their potential application in the development of functional food products tailored to consumer expectations. Full article
Show Figures

Figure 1

25 pages, 1272 KiB  
Systematic Review
Cholinesterase Inhibitors from Plants and Their Potential in Alzheimer’s Treatment: Systematic Review
by Maryam N. ALNasser, Ghadir M. Alboraiy, Eman M. Alsowig and Fatimah M. Alqattan
Brain Sci. 2025, 15(2), 215; https://doi.org/10.3390/brainsci15020215 - 19 Feb 2025
Viewed by 2524
Abstract
Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline, primarily due to dysfunction of acetylcholine caused by acetylcholinesterase and butyrylcholinesterase. While synthetic cholinesterase inhibitors like donepezil, rivastigmine, and galantamine are commonly used, they have notable side effects, [...] Read more.
Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline, primarily due to dysfunction of acetylcholine caused by acetylcholinesterase and butyrylcholinesterase. While synthetic cholinesterase inhibitors like donepezil, rivastigmine, and galantamine are commonly used, they have notable side effects, prompting interest in natural alternatives. Medicinal plants, rich in bioactive compounds like flavonoids and alkaloids, have shown potential as cholinesterase inhibitors with additional antioxidants and anti-inflammatory benefits. This study aimed to evaluate the cholinesterase-inhibiting effects of various plant species and their compounds to identify new therapeutic candidates and reduce side effects. Method: A PRISMA-compliant review was conducted, screening studies from multiple databases, with a final inclusion of 64 in vivo studies. Results: These studies highlighted plant extracts such as Ferula ammoniacum, Elaeagnus umbellata, Bacopa monnieri, and Centella asiatica, which improved memory, reduced oxidative stress, and provided neuroprotection. Some extracts also reduced amyloid plaques, enhanced neuronal integrity, and restored cholinesterase activity, indicating their potential as therapeutic agents for AD and other neurodegenerative diseases. Conclusions: The findings underscore the promise of plant-based compounds in treating cognitive decline and cholinergic dysfunction in AD, advocating for further research into their therapeutic potential. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

20 pages, 3284 KiB  
Article
Oral Asiatic Acid Improves Cognitive Function and Modulates Antioxidant and Mitochondrial Pathways in Female 5xFAD Mice
by Samantha Varada, Stephen R. Chamberlin, Lillie Bui, Mikah S. Brandes, Noah Gladen-Kolarsky, Christopher J. Harris, Wyatt Hack, Cody J. Neff, Barbara H. Brumbach, Amala Soumyanath, Joseph F. Quinn and Nora E. Gray
Nutrients 2025, 17(4), 729; https://doi.org/10.3390/nu17040729 - 19 Feb 2025
Cited by 2 | Viewed by 1336
Abstract
Background/Objectives: Extracts of the plant Centella asiatica can enhance mitochondrial function, promote antioxidant activity and improve cognitive deficits. Asiatic acid (AA) is one of the constituent triterpene compounds present in the plant. In this study, we explore the effects of AA on brain [...] Read more.
Background/Objectives: Extracts of the plant Centella asiatica can enhance mitochondrial function, promote antioxidant activity and improve cognitive deficits. Asiatic acid (AA) is one of the constituent triterpene compounds present in the plant. In this study, we explore the effects of AA on brain mitochondrial function, antioxidant response and cognition in a beta-amyloid (Aβ)-overexpressing 5xFAD mouse line. Methods: Six- to seven-month-old 5xFAD mice were treated with 1% AA for 4 weeks. In the last week of treatment, associative memory was assessed along with mitochondrial bioenergetics and the expression of mitochondrial and antioxidant response genes from isolated cortical synaptosomes. The Aβ plaque burden was also evaluated. Results: AA treatment resulted in improvements in associative memory in female 5xFAD mice without altering the Aβ plaque burden. Cortical mitochondrial function and mitochondrial gene expression were increased in the AA-treated female 5xFAD mice, as was the expression of antioxidant genes. More modest effects of AA on cortical mitochondrial function and mitochondrial and antioxidant gene expression were observed in male 5xFAD mice. Conclusions: Oral AA treatment improved cognitive and mitochondrial function and activated antioxidant in Aβ-overexpressing mice. These changes occurred independent of alterations in Aβ plaque burden, suggesting that AA could have translational therapeutic relevance in later-stage AD when plaques are well established. Full article
Show Figures

Figure 1

14 pages, 2838 KiB  
Article
Protective Effects of Centella asiatica Against Senescence and Apoptosis in Epidermal Cells
by Yu Tan, Ailing Hu, Jingya Lu, Yunhai Lin, Xuejing Li, Takuji Yamaguchi, Masahiro Tabuchi, Zenji Kawakami, Yasushi Ikarashi and Hiroyuki Kobayashi
Biology 2025, 14(2), 202; https://doi.org/10.3390/biology14020202 - 14 Feb 2025
Cited by 2 | Viewed by 2037
Abstract
Centella asiatica, a traditional medicinal plant, possesses potent antioxidant activity and may therefore prevent cellular aging and exert antiapoptotic effects. However, these effects remain to be fully elucidated. This study aimed to investigate the protective effects of C. asiatica extract against cellular senescence [...] Read more.
Centella asiatica, a traditional medicinal plant, possesses potent antioxidant activity and may therefore prevent cellular aging and exert antiapoptotic effects. However, these effects remain to be fully elucidated. This study aimed to investigate the protective effects of C. asiatica extract against cellular senescence and apoptosis caused by hydrogen peroxide (H2O2)-induced oxidative stress in human epidermal keratinocytes (HaCaT cells). To evaluate the effects of H2O2 and C. asiatica on HaCaT cells, we measured cell viability as a marker of cell death; reactive oxygen species (ROS), radical scavenging, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase activities as markers of oxidative stress; senescence-associated β-galactosidase (SA-β-gal) activity as a marker of cellular senescence; and caspase-3/9 activities and apoptotic cells as markers of apoptosis. H2O2 induced cell death (decreased cell viability), oxidative stress (increased ROS activity, decreased radical scavenging, SOD, GPx, and catalase activities), cellular senescence (increased SA-β-gal activity), and apoptosis (increased early/late apoptotic cells and increased caspase-3/9 activities). C. asiatica significantly decreased all markers of H2O2-induced cell death, oxidative stress, cellular senescence, and apoptosis, suggesting its ability to prevent cellular senescence and apoptosis through its antioxidant activity. This mechanism of action may contribute to the prevention and improvement of skin aging. Full article
Show Figures

Figure 1

31 pages, 2793 KiB  
Review
Asiaticoside-Loaded Multifunctional Bioscaffolds for Enhanced Hyperglycemic Wound Healing
by Raniya Razif, Nur Izzah Md Fadilah, Haslina Ahmad, Daniel Looi Qi Hao, Manira Maarof and Mh Busra Fauzi
Biomedicines 2025, 13(2), 277; https://doi.org/10.3390/biomedicines13020277 - 23 Jan 2025
Cited by 3 | Viewed by 2024
Abstract
The review explores the potential of asiaticoside-loaded bioscaffolds to improve the management of hyperglycemic wounds, particularly diabetic foot ulcers (DFUs). Asiaticoside, sourced from Centella asiatica, possesses properties that address DFUs’ healing challenges: insufficient angiogenesis, persistent inflammation, and delayed tissue regeneration. By incorporating [...] Read more.
The review explores the potential of asiaticoside-loaded bioscaffolds to improve the management of hyperglycemic wounds, particularly diabetic foot ulcers (DFUs). Asiaticoside, sourced from Centella asiatica, possesses properties that address DFUs’ healing challenges: insufficient angiogenesis, persistent inflammation, and delayed tissue regeneration. By incorporating asiaticoside into bioscaffold 3D designs including hydrogels, microneedle arrays, and nanofibrous meshes, therapeutic efficacy is optimized. This review examines the mechanisms of asiaticoside in wound healing (collagen production, angiogenesis modulation, inflammation reduction, and cell migration and proliferation) based on in vitro and in vivo studies. Asiaticoside also demonstrates synergistic abilities with other biomaterials, creating the possibility of more effective therapies. While preclinical research is promising, clinical trials are crucial to evaluate the efficacy and safety of asiaticoside-loaded bioscaffolds in patients with DFUs. Asiaticoside-loaded bioscaffolds are a significant development in wound healing and may aid in treating hyperglycemic wound complications. Their ability to offer individualized treatment plans has the potential to enhance the quality of life of those who suffer from diabetes. This review is based on a thorough literature search (2019–2024) across multiple databases, excluding secondary literature and non-English articles. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

19 pages, 3659 KiB  
Article
Optimisation of Ultrasound-Assisted Extraction of Total Phenolics and Flavonoids Content from Centella asiatica
by Vimolpa Hiranpradith, Nantawan Therdthai, Aussama Soontrunnarudrungsri and Oumaporn Rungsuriyawiboon
Foods 2025, 14(2), 291; https://doi.org/10.3390/foods14020291 - 17 Jan 2025
Cited by 8 | Viewed by 2654
Abstract
Centella asiatica (CA), known for its health-promoting properties, is rich in bioactive compounds. This study optimised ultrasound-assisted extraction (UAE) parameters to maximise total phenolic content (TPC) and total flavonoid content (TFC) using the response surface methodology (RSM). Ethanol concentration and solvent volume significantly [...] Read more.
Centella asiatica (CA), known for its health-promoting properties, is rich in bioactive compounds. This study optimised ultrasound-assisted extraction (UAE) parameters to maximise total phenolic content (TPC) and total flavonoid content (TFC) using the response surface methodology (RSM). Ethanol concentration and solvent volume significantly influenced TPC and TFC yields (p < 0.0001), while ultrasonic power had nonsignificant effects (p < 0.05). Time showed no significant effect on TPC (p > 0.05) but influenced TFC due to flavonoids’ sensitivity to degradation (p < 0.05). Variable interactions were negligible (p > 0.05). The relationship between responses (TPC and TFC) and independent parameters could be expressed as the quadratic models fitted with a Predicted R2 of 0.8263 for TPC and 0.9006 for TFC. Based on RSM, the optimal conditions—75% ethanol concentration, 87.5 W ultrasonic power, 30 min extraction time, and 20 mL solvent volume—yielded TPC and TFC values of 52.29 ± 1.65 mg/g and 43.71 ± 1.92 mg/g, closely aligning with model predictions at 95% confidence. Additionally, the optimal UAE condition provided asiaticoside of 37.56 ± 4.25 mg/g and madecassoside of 16.91 ± 1.28 mg/g. This study offers valuable insights into the factors influencing UAE efficiency, sustainability, and scalability for recovering bioactive compounds, underscoring its potential as a sustainable method for developing functional food ingredients from CA. Full article
Show Figures

Figure 1

Back to TopTop