Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = CendR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1418 KB  
Article
Shock Absorption Capacity of High-Performance Polymers for Dental Implant-Supported Restorations: In Vitro Study
by Maria Menini, Francesca Delucchi, Francesco Bagnasco, Domenico Baldi, Luigi Canullo, Paolo Setti, Marco Migliorati, Enrico Simetti and Paolo Pesce
Dent. J. 2024, 12(4), 111; https://doi.org/10.3390/dj12040111 - 17 Apr 2024
Cited by 5 | Viewed by 2338
Abstract
Background: Restorative materials might significantly affect load transmission in peri-implant bone. The aim of the present study is to evaluate the shock absorption capacity of two different polymeric materials to be used for implant-supported prostheses. Methods: A masticatory robot was used to compare [...] Read more.
Background: Restorative materials might significantly affect load transmission in peri-implant bone. The aim of the present study is to evaluate the shock absorption capacity of two different polymeric materials to be used for implant-supported prostheses. Methods: A masticatory robot was used to compare the shock absorption capacity of veneered and non-veneered polyetherketoneketone (PEKK), Pekkton®ivory (Cendres+Mètaux), and the glass fiber-reinforced composite (GFRC), TRINIATM (Bicon). Five identical sample crowns for each of the three groups were tested. Forces transmitted at the simulated peri-implant bone were recorded and statistically analyzed. Results: The statistical analysis of forces transmitted at the simulated dental implant revealed significant differences between the materials tested and between these materials and zirconia, glass ceramic, composite resin, and acrylic resin. Only differences between PEKK and veneered PEKK and between PEKK and one of the previously tested composite resins were not statistically significant. PEKK samples demonstrated significantly greater shock absorption capacity compared to GFRC. Conclusions: PEKK revealed optimal shock absorption capacity. Further studies are needed to evaluate its efficacy in the case of long-span prostheses with reduced prosthetic volume. Full article
Show Figures

Graphical abstract

23 pages, 4939 KB  
Article
Glaucoma-Associated CDR1 Peptide Promotes RGC Survival in Retinal Explants through Molecular Interaction with Acidic Leucine Rich Nuclear Phosphoprotein 32A (ANP32A)
by Carsten Schmelter, Kristian Nzogang Fomo, Alina Brueck, Natarajan Perumal, Sascha D. Markowitsch, Gokul Govind, Thomas Speck, Norbert Pfeiffer and Franz H. Grus
Biomolecules 2023, 13(7), 1161; https://doi.org/10.3390/biom13071161 - 22 Jul 2023
Viewed by 4089
Abstract
Glaucoma is a complex, multifactorial optic neuropathy mainly characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, resulting in a decline of visual function. The pathogenic molecular mechanism of glaucoma is still not well understood, and therapeutic strategies specifically [...] Read more.
Glaucoma is a complex, multifactorial optic neuropathy mainly characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, resulting in a decline of visual function. The pathogenic molecular mechanism of glaucoma is still not well understood, and therapeutic strategies specifically addressing the neurodegenerative component of this ocular disease are urgently needed. Novel immunotherapeutics might overcome this problem by targeting specific molecular structures in the retina and providing direct neuroprotection via different modes of action. Within the scope of this research, the present study showed for the first time beneficial effects of the synthetic CDR1 peptide SCTGTSSDVGGYNYVSWYQ on the viability of RGCs ex vivo in a concentration-dependent manner compared to untreated control explants (CTRL, 50 µg/mL: p < 0.05 and 100 µg/mL: p < 0.001). Thereby, this specific peptide was identified first as a potential biomarker candidate in the serum of glaucoma patients and was significantly lower expressed in systemic IgG molecules compared to healthy control subjects. Furthermore, MS-based co-immunoprecipitation experiments confirmed the specific interaction of synthetic CDR1 with retinal acidic leucine-rich nuclear phosphoprotein 32A (ANP32A; p < 0.001 and log2 fold change > 3), which is a highly expressed protein in neurological tissues with multifactorial biological functions. In silico binding prediction analysis revealed the N-terminal leucine-rich repeat (LRR) domain of ANP32A as a significant binding site for synthetic CDR1, which was previously reported as an important docking site for protein-protein interactions (PPI). In accordance with these findings, quantitative proteomic analysis of the retinae ± CDR1 treatment resulted in the identification of 25 protein markers, which were significantly differentially distributed between both experimental groups (CTRL and CDR1, p < 0.05). Particularly, acetyl-CoA biosynthesis I-related enzymes (e.g., DLAT and PDHA1), as well as cytoskeleton-regulating proteins (e.g., MSN), were highly expressed by synthetic CDR1 treatment in the retina; on the contrary, direct ANP32A-interacting proteins (e.g., NME1 and PPP2R4), as well as neurodegenerative-related markers (e.g., CEND1), were identified with significant lower abundancy in the CDR1-treated retinae compared to CTRL. Furthermore, retinal protein phosphorylation and histone acetylation were also affected by synthetic CDR1, which are both partially controlled by ANP32A. In conclusion, the synthetic CDR1 peptide provides a great translational potential for the treatment of glaucoma in the future by eliciting its neuroprotective mechanism via specific interaction with ANP32A’s N terminal LRR domain. Full article
(This article belongs to the Special Issue Functional Peptides and Their Interactions)
Show Figures

Figure 1

15 pages, 4047 KB  
Article
Targeting of Tomato Bushy Stunt Virus with a Genetically Fused C-End Rule Peptide
by Luca Marchetti, Lorena Simon-Gracia, Chiara Lico, Mariateresa Mancuso, Selene Baschieri, Luca Santi and Tambet Teesalu
Nanomaterials 2023, 13(8), 1428; https://doi.org/10.3390/nano13081428 - 21 Apr 2023
Cited by 4 | Viewed by 2943
Abstract
Homing peptides are widely used to improve the delivery of drugs, imaging agents, and nanoparticles (NPs) to their target sites. Plant virus-based particles represent an emerging class of structurally diverse nanocarriers that are biocompatible, biodegradable, safe, and cost-effective. Similar to synthetic NPs, these [...] Read more.
Homing peptides are widely used to improve the delivery of drugs, imaging agents, and nanoparticles (NPs) to their target sites. Plant virus-based particles represent an emerging class of structurally diverse nanocarriers that are biocompatible, biodegradable, safe, and cost-effective. Similar to synthetic NPs, these particles can be loaded with imaging agents and/or drugs and functionalized with affinity ligands for targeted delivery. Here we report the development of a peptide-guided Tomato Bushy Stunt Virus (TBSV)-based nanocarrier platform for affinity targeting with the C-terminal C-end rule (CendR) peptide, RPARPAR (RPAR). Flow cytometry and confocal microscopy demonstrated that the TBSV-RPAR NPs bind specifically to and internalize in cells positive for the peptide receptor neuropilin-1 (NRP-1). TBSV-RPAR particles loaded with a widely used anticancer anthracycline, doxorubicin, showed selective cytotoxicity on NRP-1-expressing cells. Following systemic administration in mice, RPAR functionalization conferred TBSV particles the ability to accumulate in the lung tissue. Collectively, these studies show the feasibility of the CendR-targeted TBSV platform for the precision delivery of payloads. Full article
(This article belongs to the Special Issue Advances in Nanoscale Materials in Biomedicine)
Show Figures

Figure 1

18 pages, 2968 KB  
Article
Impact of Troponin in Cardiomyopathy Development Caused by Mutations in Tropomyosin
by Victoria V. Nefedova, Galina V. Kopylova, Daniil V. Shchepkin, Anastasia M. Kochurova, Olga I. Kechko, Vera A. Borzova, Natalia S. Ryabkova, Ivan A. Katrukha, Vladimir A. Mitkevich, Sergey Y. Bershitsky, Dmitrii I. Levitsky and Alexander M. Matyushenko
Int. J. Mol. Sci. 2022, 23(24), 15723; https://doi.org/10.3390/ijms232415723 - 11 Dec 2022
Cited by 7 | Viewed by 2609
Abstract
Tropomyosin (Tpm) mutations cause inherited cardiac diseases such as hypertrophic and dilated cardiomyopathies. We applied various approaches to investigate the role of cardiac troponin (Tn) and especially the troponin T (TnT) in the pathogenic effects of Tpm cardiomyopathy-associated mutations M8R, K15N, A277V, M281T, [...] Read more.
Tropomyosin (Tpm) mutations cause inherited cardiac diseases such as hypertrophic and dilated cardiomyopathies. We applied various approaches to investigate the role of cardiac troponin (Tn) and especially the troponin T (TnT) in the pathogenic effects of Tpm cardiomyopathy-associated mutations M8R, K15N, A277V, M281T, and I284V located in the overlap junction of neighboring Tpm dimers. Using co-sedimentation assay and viscosity measurements, we showed that TnT1 (fragment of TnT) stabilizes the overlap junction of Tpm WT and all Tpm mutants studied except Tpm M8R. However, isothermal titration calorimetry (ITC) indicated that TnT1 binds Tpm WT and all Tpm mutants similarly. By using ITC, we measured the direct KD of the Tpm overlap region, N-end, and C-end binding to TnT1. The ITC data revealed that the Tpm C-end binds to TnT1 independently from the N-end, while N-end does not bind. Therefore, we suppose that Tpm M8R binds to TnT1 without forming the overlap junction. We also demonstrated the possible role of Tn isoform composition in the cardiomyopathy development caused by M8R mutation. TnT1 dose-dependently reduced the velocity of F-actin-Tpm filaments containing Tpm WT, Tpm A277V, and Tpm M281T mutants in an in vitro motility assay. All mutations impaired the calcium regulation of the actin–myosin interaction. The M281T and I284V mutations increased the calcium sensitivity, while the K15N and A277V mutations reduced it. The Tpm M8R, M281T, and I284V mutations under-inhibited the velocity at low calcium concentrations. Our results demonstrate that Tpm mutations likely implement their pathogenic effects through Tpm interaction with Tn, cardiac myosin, or other protein partners. Full article
(This article belongs to the Special Issue Striated Muscle Regulatory Proteins: Function Follows Structure)
Show Figures

Figure 1

16 pages, 4942 KB  
Article
Function-Related Asymmetry of the Interactions between Matrix Loops and Conserved Sequence Motifs in the Mitochondrial ADP/ATP Carrier
by Qiuzi Yi, Shihao Yao, Boyuan Ma and Xiaohui Cang
Int. J. Mol. Sci. 2022, 23(18), 10877; https://doi.org/10.3390/ijms231810877 - 17 Sep 2022
Cited by 2 | Viewed by 1982
Abstract
The ADP/ATP carrier (AAC) plays a central role in oxidative metabolism by exchanging ATP and ADP across the inner mitochondrial membrane. Previous experiments have shown the involvement of the matrix loops of AAC in its function, yet potential mechanisms remain largely elusive. One [...] Read more.
The ADP/ATP carrier (AAC) plays a central role in oxidative metabolism by exchanging ATP and ADP across the inner mitochondrial membrane. Previous experiments have shown the involvement of the matrix loops of AAC in its function, yet potential mechanisms remain largely elusive. One obstacle is the limited information on the structural dynamics of the matrix loops. In the current work, unbiased all-atom molecular dynamics (MD) simulations were carried out on c-state wild-type AAC and mutants. Our results reveal that: (1) two ends of a matrix loop are tethered through interactions between the residue of triplet 38 (Q38, D143 and Q240) located at the C-end of the odd-numbered helix and residues of the [YF]xG motif located before the N-end of the short matrix helix in the same domain; (2) the initial progression direction of a matrix loop is determined by interactions between the negatively charged residue of the [DE]G motif located at the C-end of the short matrix helix and the capping arginine (R30, R139 and R236) in the previous domain; (3) the two chemically similar residues D and E in the highly conserved [DE]G motif are actually quite different; (4) the N-end of the M3 loop is clamped by the [DE]G motif and the capping arginine of domain 2 from the two sides, which strengthens interactions between domain 2 and domain 3; and (5) a highly asymmetric stable core exists within domains 2 and 3 at the m-gate level. Moreover, our results help explain almost all extremely conserved residues within the matrix loops of the ADP/ATP carriers from a structural point of view. Taken together, the current work highlights asymmetry in the three matrix loops and implies a close relationship between asymmetry and ADP/ATP transport. Full article
(This article belongs to the Special Issue Transport Mechanisms of Mitochondrial Membrane Proteins)
Show Figures

Figure 1

7 pages, 1144 KB  
Communication
Conservation and Enhanced Binding of SARS-CoV-2 Omicron Spike Protein to Coreceptor Neuropilin-1 Predicted by Docking Analysis
by Piyush Baindara, Dinata Roy, Santi M. Mandal and Adam G. Schrum
Infect. Dis. Rep. 2022, 14(2), 243-249; https://doi.org/10.3390/idr14020029 - 29 Mar 2022
Cited by 23 | Viewed by 4256
Abstract
The Omicron variant of SARS-CoV-2 bears peptide sequence alterations that correlate with a higher infectivity than was observed in the original SARS-CoV-2 isolated from Wuhan, China. We analyzed the CendR motif of spike protein and performed in silico molecular docking with neuropilin-1 (Nrp1), [...] Read more.
The Omicron variant of SARS-CoV-2 bears peptide sequence alterations that correlate with a higher infectivity than was observed in the original SARS-CoV-2 isolated from Wuhan, China. We analyzed the CendR motif of spike protein and performed in silico molecular docking with neuropilin-1 (Nrp1), a receptor–ligand interaction known to support infection by the original variant. Our analysis predicts conserved and slightly increased energetic favorability of binding for Omicron CendR:Nrp1. We propose that the viral spike:Nrp1 coreceptor pathway may contribute to the infectivity of the Omicron variant of SARS-CoV-2. Full article
(This article belongs to the Section Viral Infections)
Show Figures

Figure 1

14 pages, 6398 KB  
Article
Novel Small-Molecule Inhibitors of the SARS-CoV-2 Spike Protein Binding to Neuropilin 1
by Anja Kolarič, Marko Jukič and Urban Bren
Pharmaceuticals 2022, 15(2), 165; https://doi.org/10.3390/ph15020165 - 28 Jan 2022
Cited by 24 | Viewed by 5846
Abstract
Furin cleavage of the SARS-CoV-2 spike protein results in a polybasic terminal sequence termed the C-end rule (CendR), which is responsible for the binding to neuropilin 1 (NRP1), enhancing viral infectivity and entry into the cell. Here we report the identification of 20 [...] Read more.
Furin cleavage of the SARS-CoV-2 spike protein results in a polybasic terminal sequence termed the C-end rule (CendR), which is responsible for the binding to neuropilin 1 (NRP1), enhancing viral infectivity and entry into the cell. Here we report the identification of 20 small-molecule inhibitors that emerged from a virtual screening of nearly 950,000 drug-like compounds that bind with high probability to the CendR-binding pocket of NRP1. In a spike NRP1 binding assay, two of these compounds displayed a stronger inhibition of spike protein binding to NRP1 than the known NRP1 antagonist EG00229, for which the inhibition of the CendR peptide binding to NRP1 was also experimentally confirmed. These compounds present a good starting point for the design of small-molecule antagonists against the SARS-CoV-2 viral entry. Full article
(This article belongs to the Special Issue COVID-19 in Pharmaceuticals)
Show Figures

Graphical abstract

27 pages, 1166 KB  
Review
iRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery
by Sujin Kang, Sooyeun Lee and Soyeun Park
Polymers 2020, 12(9), 1906; https://doi.org/10.3390/polym12091906 - 24 Aug 2020
Cited by 93 | Viewed by 11640
Abstract
The unique structure and physiology of a tumor microenvironment impede intra-tumoral penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1 (NRP-1)-dependent transport to tumor tissues. Recent studies have focused on [...] Read more.
The unique structure and physiology of a tumor microenvironment impede intra-tumoral penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1 (NRP-1)-dependent transport to tumor tissues. Recent studies have focused on its dual-targeting ability to achieve enhanced penetration of chemotherapeutics for the efficient eradication of cancer cells. Both the covalent conjugation and the co-administration of iRGD with chemotherapeutic agents and engineered delivery vehicles have been explored. Interestingly, the iRGD-mediated drug delivery also enhances penetration through the blood–brain barrier (BBB). Recent studies have shown its synergistic effect with BBB disruptive techniques. The efficacy of immunotherapy involving immune checkpoint blockades has also been amplified by using iRGD as a targeting moiety. In this review, we presented the recent advances in iRGD technology, focusing on cancer treatment modalities, including the current clinical trials using iRGD. The iRGD-mediated nano-carrier system could serve as a promising strategy in drug delivery to the deeper tumor regions, and be combined with various therapeutic interventions due to its novel targeting ability. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

8 pages, 248 KB  
Review
Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota
by Yuqing Huang and Jan E. Kammenga
Microorganisms 2020, 8(4), 618; https://doi.org/10.3390/microorganisms8040618 - 24 Apr 2020
Cited by 5 | Viewed by 4234
Abstract
The bacterivorous nematode Caenorhabditis elegans is an important model species for understanding genetic variation of complex traits. So far, most studies involve axenic laboratory settings using Escherichia coli as the sole bacterial species. Over the past decade, however, investigations into the genetic variation [...] Read more.
The bacterivorous nematode Caenorhabditis elegans is an important model species for understanding genetic variation of complex traits. So far, most studies involve axenic laboratory settings using Escherichia coli as the sole bacterial species. Over the past decade, however, investigations into the genetic variation of responses to pathogenic microbiota have increasingly received attention. Quantitative genetic analyses have revealed detailed insight into loci, genetic variants, and pathways in C. elegans underlying interactions with bacteria, microsporidia, and viruses. As various quantitative genetic platforms and resources like C. elegans Natural Diversity Resource (CeNDR) and Worm Quantitative Trait Loci (WormQTL) have been developed, we anticipate that expanding C. elegans research along the lines of genetic variation will be a treasure trove for opening up new insights into genetic pathways and gene functionality of microbiota interactions. Full article
11 pages, 1193 KB  
Article
Does Cysteine Rule (CysR) Complete the CendR Principle? Increase in Affinity of Peptide Ligands for NRP-1 Through the Presence of N-Terminal Cysteine
by Anna K. Puszko, Piotr Sosnowski, Françoise Raynaud, Olivier Hermine, Gérard Hopfgartner, Yves Lepelletier and Aleksandra Misicka
Biomolecules 2020, 10(3), 448; https://doi.org/10.3390/biom10030448 - 13 Mar 2020
Cited by 11 | Viewed by 3823
Abstract
The structure-activity relationship of branched H-Lys(hArg)-Dab-Dhp-Arg-OH sequence analogues, modified with Cys-Asp or Cys at N-terminal amino acids (Lys, hArg), in VEGF-A165/Neuropilin-1 complex inhibition is presented. The addition of Cys residue led to a 100-fold decrease in the IC [...] Read more.
The structure-activity relationship of branched H-Lys(hArg)-Dab-Dhp-Arg-OH sequence analogues, modified with Cys-Asp or Cys at N-terminal amino acids (Lys, hArg), in VEGF-A165/Neuropilin-1 complex inhibition is presented. The addition of Cys residue led to a 100-fold decrease in the IC50 value, compared to the parent peptide. The change occurred regardless of coupling Cys to the free N-terminal amino group present in the main or the side chain. A few analogues extended by the attachment of Cys at the N-terminus of several potent NRP-1 peptide ligands documented in the literature are also presented. In all studied cases, the enhancement of inhibitory properties after the addition of Cys at the N-terminus is observed. It is particularly evident for the tetrapeptide derived from the C-terminus of VEGF-A165 (KPRR), suggesting that extending the K/RXXK/R motif (CendR) with the Cys moiety can significantly improve affinity to NRP-1 of CendR peptides. Full article
Show Figures

Graphical abstract

20 pages, 2737 KB  
Review
Systemically Administered, Target-Specific, Multi-Functional Therapeutic Recombinant Proteins in Regenerative Medicine
by Tero A.H. Järvinen and Toini Pemmari
Nanomaterials 2020, 10(2), 226; https://doi.org/10.3390/nano10020226 - 28 Jan 2020
Cited by 15 | Viewed by 5312
Abstract
Growth factors, chemokines and cytokines guide tissue regeneration after injuries. However, their applications as recombinant proteins are almost non-existent due to the difficulty of maintaining their bioactivity in the protease-rich milieu of injured tissues in humans. Safety concerns have ruled out their systemic [...] Read more.
Growth factors, chemokines and cytokines guide tissue regeneration after injuries. However, their applications as recombinant proteins are almost non-existent due to the difficulty of maintaining their bioactivity in the protease-rich milieu of injured tissues in humans. Safety concerns have ruled out their systemic administration. The vascular system provides a natural platform for circumvent the limitations of the local delivery of protein-based therapeutics. Tissue selectivity in drug accumulation can be obtained as organ-specific molecular signatures exist in the blood vessels in each tissue, essentially forming a postal code system (“vascular zip codes”) within the vasculature. These target-specific “vascular zip codes” can be exploited in regenerative medicine as the angiogenic blood vessels in the regenerating tissues have a unique molecular signature. The identification of vascular homing peptides capable of finding these unique “vascular zip codes” after their systemic administration provides an appealing opportunity for the target-specific delivery of therapeutics to tissue injuries. Therapeutic proteins can be “packaged” together with homing peptides by expressing them as multi-functional recombinant proteins. These multi-functional recombinant proteins provide an example how molecular engineering gives to a compound an ability to home to regenerating tissue and enhance its therapeutic potential. Regenerative medicine has been dominated by the locally applied therapeutic approaches despite these therapies are not moving to clinical medicine with success. There might be a time to change the paradigm towards systemically administered, target organ-specific therapeutic molecules in future drug discovery and development for regenerative medicine. Full article
(This article belongs to the Special Issue Protein Nanostructures for Biomedical Applications)
Show Figures

Graphical abstract

13 pages, 401 KB  
Article
Structure–Activity Prediction of ACE Inhibitory/Bitter Dipeptides—A Chemometric Approach Based on Stepwise Regression
by Monika Hrynkiewicz, Anna Iwaniak, Justyna Bucholska, Piotr Minkiewicz and Małgorzata Darewicz
Molecules 2019, 24(5), 950; https://doi.org/10.3390/molecules24050950 - 8 Mar 2019
Cited by 18 | Viewed by 3919
Abstract
Forward and backward stepwise regression (FR and BR, respectively) was applied for the structure–bioactivity prediction of angiotensin converting enzyme (ACE)-inhibitory/bitter-tasting dipeptides. The datasets used in this study consisted of 28 sequences and numerical variables reflecting dipeptides’ physicochemical nature. The data were acquired from [...] Read more.
Forward and backward stepwise regression (FR and BR, respectively) was applied for the structure–bioactivity prediction of angiotensin converting enzyme (ACE)-inhibitory/bitter-tasting dipeptides. The datasets used in this study consisted of 28 sequences and numerical variables reflecting dipeptides’ physicochemical nature. The data were acquired from the BIOPEP-UWM, Biological Magnetic Resonance Databank, ProtScale, and AAindex databases. The calculations were computed using STATISTICA®13.1. FR/BR models differed in R2 (0.91/0.76, respectively). The impact of C-atC(−) and N-Molw(+) on the dual function of dipeptides was observed. Positive (+) and negative (−) correlations with log IC50 are presented in parens. Moreover, C-Bur(+), N-atH(+), and N-Pol(−) were also found to be important in the FR model. The additional statistical significance of N-bul(−), N-Bur(−), and N-Hdr(+) was reported in the BR model. These attributes reflected the composition of the dipeptides. We report that the “ideal” bitter ACE inhibitor should be composed of P, Y, F (C-end) and G, V, I, L (N-end). Functions: log Rcaf. = f (observed log IC50) and log Rcaf. = f (predicted log IC50) revealed no direct relationships between ACE inhibition and the bitterness of the dipeptides. It probably resulted from some structural discrepancies between the ACE inhibitory/bitter peptides and/or the measure of activity describing one of the two bioactivities. Our protocol can be applicable for the structure–bioactivity prediction of other bioactivities peptides. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

16 pages, 2941 KB  
Article
Peptide Nucleic Acids as miRNA Target Protectors for the Treatment of Cystic Fibrosis
by Federica Zarrilli, Felice Amato, Carmine Marco Morgillo, Brunella Pinto, Giuliano Santarpia, Nicola Borbone, Stefano D’Errico, Bruno Catalanotti, Gennaro Piccialli, Giuseppe Castaldo and Giorgia Oliviero
Molecules 2017, 22(7), 1144; https://doi.org/10.3390/molecules22071144 - 8 Jul 2017
Cited by 36 | Viewed by 6808
Abstract
Cystic Fibrosis (CF) is one of the most common life shortening conditions in Caucasians. CF is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene which result in reduced or altered CFTR functionality. Several microRNAs (miRNAs) downregulate the expression of CFTR, [...] Read more.
Cystic Fibrosis (CF) is one of the most common life shortening conditions in Caucasians. CF is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene which result in reduced or altered CFTR functionality. Several microRNAs (miRNAs) downregulate the expression of CFTR, thus causing or exacerbating the symptoms of CF. In this context, the design of anti-miRNA agents represents a valid functional tool, but its translation to the clinic might lead to unpredictable side effects because of the interference with the expression of other genes regulated by the same miRNAs. Herein, for the first time, is proposed the use of peptide nucleic acids (PNAs) to protect specific sequences in the 3’UTR (untranslated region) of the CFTR messenger RNA (mRNA) by action of miRNAs. Two PNAs (7 and 13 bases long) carrying the tetrapeptide Gly-SerP-SerP-Gly at their C-end, fully complementary to the 3’UTR sequence recognized by miR-509-3p, have been synthesized and the structural features of target PNA/RNA heteroduplexes have been investigated by spectroscopic and molecular dynamics studies. The co-transfection of the pLuc-CFTR-3´UTR vector with different combinations of PNAs, miR-509-3p, and controls in A549 cells demonstrated the ability of the longer PNA to rescue the luciferase activity by up to 70% of the control, thus supporting the use of suitable PNAs to counteract the reduction in the CFTR expression. Full article
(This article belongs to the Special Issue Molecular Properties and the Applications of Peptide Nucleic Acids)
Show Figures

Figure 1

Back to TopTop