Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota
Abstract
1. Caenorhabditis elegans Responses to Microbiota
2. Genetic Variation in Caenorhabditis elegans as the Basis to Understand Microbiota Interactions
3. Caenorhabditis elegans–Bacteria Interactions
4. Caenorhabditis elegans-Microsporidia Interactions
5. Caenorhabditis elegans–Virus Interactions
6. Conclusion and Future Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marsh, E.K.; May, R.C. Caenorhabditis elegans, a model organism for investigating immunity. Appl. Environ. Microbiol. 2012, 78, 2075–2081. [Google Scholar] [CrossRef]
- Frezal, L.; Felix, M.A.C. C. elegans outside the Petri dish. Elife 2015, 4, e05849. [Google Scholar] [CrossRef] [PubMed]
- Gammon, D.B. Caenorhabditis elegans as an Emerging Model for Virus–Host Interactions. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, J.; Obeng, N.; Yang, W.; Pees, B.; Petersen, C.; Waschina, S.; Kissoyan, K.A.; Aidley, J.; Hoeppner, M.P.; Bunk, B.; et al. The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans. ISME J. 2020, 14, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Schulenburg, H.; Felix, M.A. The Natural Biotic Environment of Caenorhabditis elegans. Genetics 2017, 206, 55–86. [Google Scholar] [CrossRef] [PubMed]
- Sterken, M.G.; Snoek, L.B.; Kammenga, J.E.; Andersen, E.C. The laboratory domestication of Caenorhabditis elegans. Trends Genet. 2015, 31, 224–231. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Johnke, J.; Dirksen, P.; Schulenburg, H. Community assembly of the native C. elegans microbiome is influenced by time, substrate and individual bacterial taxa. Environ. Microbiol. 2020, 22, 1265–1279. [Google Scholar] [CrossRef]
- Marchesi, J.R. Advancing microbiome research. Microbiology 2018, 164, 1005–1006. [Google Scholar] [CrossRef]
- Cassidy, L.; Petersen, C.; Treitz, C.; Dierking, K.; Schulenburg, H.; Leippe, M.; Tholey, A. The Caenorhabditis elegans Proteome Response to Naturally Associated Microbiome Members of the Genus Ochrobactrum. Proteomics 2018, 18, e1700426. [Google Scholar] [CrossRef]
- Gaertner, B.E.; Phillips, P.C. Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet. Res. 2010, 92, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.W.; Sterken, M.G.; Uit de Bos, J.; van Creij, J.; Kamble, R.; Snoek, B.L.; Kammenga, J.E.; Houtkooper, R.H. Natural genetic variation in C. elegans identified genomic loci controlling metabolite levels. Genome Res. 2018, 28, 1296–1308. [Google Scholar] [CrossRef] [PubMed]
- Snoek, B.L.; Volkers, R.J.M.; Nijveen, H.; Petersen, C.; Dirksen, P.; Sterken, M.G.; Nakad, R.; Riksen, J.A.G.; Rosenstiel, P.; Stastna, J.J.; et al. A multi–parent recombinant inbred line population of C. elegans allows identification of novel QTLs for complex life history traits. BMC Biol. 2019, 17, 24. [Google Scholar] [CrossRef]
- Cook, D.E.; Zdraljevic, S.; Roberts, J.P.; Andersen, E.C. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res. 2017, 45, D650–D657. [Google Scholar] [CrossRef] [PubMed]
- Snoek, B.L.; Sterken, M.G.; Hartanto, M.; van Zuilichem, A.J.; Kammenga, J.E.; de Ridder, D.; Nijveen, H. WormQTL2: An interactive platform for systems genetics in Caenorhabditis elegans. Database 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Sterken, M.G. Building towards A Multi–Dimensional Genetic Architecture in Caenorhabditis Elegans; Wageningen University: Wageningen, The Netherlands, 2016. [Google Scholar]
- Noble, L.M.; Chelo, I.; Guzella, T.; Afonso, B.; Riccardi, D.D.; Ammerman, P.; Dayarian, A.; Carvalho, S.; Crist, A.; Pino-Querido, A.; et al. Polygenicity and Epistasis Underlie Fitness–Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) Panel. Genetics 2017, 207, 1663–1685. [Google Scholar]
- Schulenburg, H.; Muller, S. Natural variation in the response of Caenorhabditis elegans towards Bacillus thuringiensis. Parasitology 2004, 128 Pt 4, 433–443. [Google Scholar] [CrossRef]
- Reddy, K.C.; Andersen, E.C.; Kruglyak, L.; Kim, D.H. A polymorphism in npr–1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 2009, 323, 382–384. [Google Scholar] [CrossRef]
- Glater, E.E.; MRockman, V.; Bargmann, C.I. Multigenic natural variation underlies Caenorhabditis elegans olfactory preference for the bacterial pathogen Serratia marcescens. G3 2014, 4, 265–276. [Google Scholar] [CrossRef]
- Balla, K.M.; Lazetic, V.; Troemel, E.R. Natural variation in the roles of C. elegans autophagy components during microsporidia infection. PLoS ONE 2019, 14, e0216011. [Google Scholar] [CrossRef]
- Reinke, A.W.; Balla, K.M.; Bennett, E.J.; Troemel, E.R. Identification of microsporidia host–exposed proteins reveals a repertoire of rapidly evolving proteins. Nat. Commun. 2017, 8, 14023. [Google Scholar] [CrossRef] [PubMed]
- Balla, K.M.; Andersen, E.C.; Kruglyak, L.; Troemel, E.R. A wild C. elegans strain has enhanced epithelial immunity to a natural microsporidian parasite. PLoS Pathog. 2015, 11, e1004583. [Google Scholar] [CrossRef] [PubMed]
- Felix, M.A.; Ashe, A.; Piffaretti, J.; Wu, G.; Nuez, I.; Belicard, T.; Jiang, Y.; Zhao, G.; Franz, C.J.; Goldstein, L.D.; et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 2011, 9, e1000586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Berg, M.; Dierking, K.; Felix, M.A.; Shapira, M.; Samuel, B.S.; Schulenburg, H. Caenorhabditis elegans as a Model for Microbiome Research. Front. Microbiol. 2017, 8, 485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Holdorf, A.D.; Walhout, A.J.C. C. elegans and its bacterial diet as a model for systems–level understanding of host–microbiota interactions. Curr. Opin. Biotechnol. 2017, 46, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Samuel, B.S.; Rowedder, H.; Braendle, C.; Felix, M.A.; Ruvkun, G. Caenorhabditis elegans responses to bacteria from its natural habitats. Proc. Natl. Acad. Sci. USA 2016, 113, E3941–E3949. [Google Scholar] [CrossRef]
- Kissoyan, K.A.B.; Drechsler, M.; Stange, E.L.; Zimmermann, J.; Kaleta, C.; Bode, H.B.; Dierking, K. Natural C. elegans Microbiota Protects against Infection via Production of a Cyclic Lipopeptide of the Viscosin Group. Curr. Biol. 2019, 29, 1030–1037. [Google Scholar] [CrossRef]
- Moore, R.S.; Kaletsky, R.; Murphy, C.T. Piwi/PRG–1 Argonaute and TGF–beta Mediate Transgenerational Learned Pathogenic Avoidance. Cell 2019, 177, 1827–1841. [Google Scholar] [CrossRef]
- Osman, G.A.; Fasseas, M.K.; Koneru, S.L.; Essmann, C.L.; Kyrou, K.; Srinivasan, M.A.; Zhang, G.; Sarkies, P.; Felix, M.A.; Barkoulas, M. Natural Infection of C. elegans by an Oomycete Reveals a New Pathogen–Specific Immune Response. Curr. Biol. 2018, 28, 640–648. [Google Scholar] [CrossRef]
- Burton, N.O.; Riccio, C.; Dallaire, A.; Price, J.; Jenkins, B.; Koulman, A.; Miska, E.A.C. C. elegans heritably adapts to P. vranovensis infection via a mechanism that requires the cysteine synthases cysl–1 and cysl–2. bioRxiv 2019. [Google Scholar] [CrossRef]
- Masri, L.; Schulte, R.D.; Timmermeyer, N.; Thanisch, S.; Crummenerl, L.L.; Jansen, G.; Michiels, N.K.; Schulenburg, H. Sex differences in host defence interfere with parasite–mediated selection for outcrossing during host–parasite coevolution. Ecol. Lett. 2013, 16, 461–468. [Google Scholar] [CrossRef] [PubMed]
- de Bono, M.; Bargmann, C.I. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 1998, 94, 679–689. [Google Scholar] [CrossRef]
- Nakad, R.; Snoek, L.B.; Yang, W.; Ellendt, S.; Schneider, F.; Mohr, T.G.; Rosingh, L.; Masche, A.C.; Rosenstiel, P.C.; Dierking, K.; et al. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr–1. BMC Genom. 2016, 17, 280. [Google Scholar] [CrossRef] [PubMed]
- Bendesky, A.; Tsunozaki, M.; Rockman, M.V.; Kruglyak, L.; Bargmann, C.I. Catecholamine receptor polymorphisms affect decision–making in C. elegans. Nature 2011, 472, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Andersen, E.C.; Bloom, J.S.; Gerke, J.P.; Kruglyak, L. A variant in the neuropeptide receptor npr–1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genet. 2014, 10, e1004156. [Google Scholar] [CrossRef]
- Chang, H.C.; Paek, J.; Kim, D.H. Natural polymorphisms in C. elegans HECW–1 E3 ligase affect pathogen avoidance behaviour. Nature 2011, 480, 525–529. [Google Scholar] [CrossRef]
- Stentiford, G.D.; Becnel, J.J.; Weiss, L.M.; Keeling, P.J.; Didier, E.S.; Williams, B.A.P.; Bjornson, S.; Kent, M.L.; Freeman, M.A.; Brown, M.J.F.; et al. Microsporidia–Emergent Pathogens in the Global Food Chain. Trends Parasitol. 2016, 32, 657. [Google Scholar] [CrossRef]
- Balla, K.M.; Luallen, R.J.; Bakowski, M.A.; Troemel, E.R. Cell–to–cell spread of microsporidia causes Caenorhabditis elegans organs to form syncytia. Nat. Microbiol. 2016, 1, 16144. [Google Scholar] [CrossRef]
- Sowa, J.N.; Jiang, H.; Somasundaram, L.; Tecle, E.; Xu, G.; Wang, D.; Troemel, E.R. The Caenorhabditis elegans RIG–I Homolog DRH–1 Mediates the Intracellular Pathogen Response upon Viral Infection. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Reddy, K.C.; Dror, T.; Underwood, R.S.; Osman, G.A.; Elder, C.R.; Desjardins, C.A.; Cuomo, C.A.; Barkoulas, M.; Troemel, E.R. Antagonistic paralogs control a switch between growth and pathogen resistance in C. elegans. PLoS Pathog. 2019, 15, e1007528. [Google Scholar] [CrossRef]
- Zhang, G.; Sachse, M.; Prevost, M.C.; Luallen, R.J.; Troemel, E.R.; Felix, M.A. A Large Collection of Novel Nematode–Infecting Microsporidia and Their Diverse Interactions with Caenorhabditis elegans and Other Related Nematodes. PLoS Pathog. 2016, 12, e1006093. [Google Scholar] [CrossRef] [PubMed]
- Luallen, R.J.; Reinke, A.W.; Tong, L.; Botts, M.R.; Felix, M.A.; Troemel, E.R. Discovery of a Natural Microsporidian Pathogen with a Broad Tissue Tropism in Caenorhabditis elegans. PLoS Pathog. 2016, 12, e1005724. [Google Scholar] [CrossRef] [PubMed]
- Franz, C.J.; Zhao, G.; Felix, M.A.; Wang, D. Complete genome sequence of Le Blanc virus, a third Caenorhabditis nematode–Infecting Virus. J. Virol. 2012, 86, 11940. [Google Scholar] [CrossRef] [PubMed]
- Ashe, A.; Sarkies, P.; Le Pen, J.; Tanguy, M.; Miska, E.A. Antiviral RNA Interference against Orsay Virus Is neither Systemic nor Transgenerational in Caenorhabditis elegans. J. Virol. 2015, 89, 12035–12046. [Google Scholar] [CrossRef]
- Franz, C.J.; Renshaw, H.; Frezal, L.; Jiang, Y.; Felix, M.A.; Wang, D. Orsay, Santeuil and Le Blanc viruses primarily infect intestinal cells in Caenorhabditis nematodes. Virology 2014, 448, 255–264. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, D. The Microbial Zoo in the C. elegans Intestine: Bacteria, Fungi and Viruses. Viruses 2018, 10, 85. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, Y.; Fan, Y.; Tao, Y.J.; Zhong, W. Orsay delta Protein Is Required for Nonlytic Viral Egress. J. Virol. 2018, 92, e00745-18. [Google Scholar] [CrossRef]
- Felix, M.A.; Wang, D. Natural Viruses of Caenorhabditis Nematodes. Annu. Rev. Genet. 2019, 53, 313–326. [Google Scholar] [CrossRef]
- Guo, X.; Lu, R. Characterization of virus–encoded RNA interference suppressors in Caenorhabditis elegans. J. Virol. 2013, 87, 5414–5423. [Google Scholar] [CrossRef]
- Pukkila–Worley, R.; Ausubel, F.M. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Curr. Opin. Immunol. 2012, 24, 3–9. [Google Scholar] [CrossRef]
- Bakowski, M.A.; Desjardins, C.A.; Smelkinson, M.G.; Dunbar, T.L.; Lopez-Moyado, I.F.; Rifkin, S.A.; Cuomo, C.A.; Troemel, E.R. Ubiquitin–mediated response to microsporidia and virus infection in C. elegans. PLoS Pathog. 2014, 10, e1004200. [Google Scholar] [CrossRef] [PubMed]
- Ashe, A.; Belicard, T.; Le Pen, J.; Sarkies, P.; Frezal, L.; Lehrbach, N.J.; Felix, M.A.; Miska, E.A. A deletion polymorphism in the Caenorhabditis elegans RIG–I homolog disables viral RNA dicing and antiviral immunity. Elife 2013, 2, e00994. [Google Scholar] [CrossRef] [PubMed]
- Sterken, M.G.; Snoek, L.B.; Bosman, K.J.; Daamen, J.; Riksen, J.A.; Bakker, J.; Pijlman, G.P.; Kammenga, J.E. A heritable antiviral RNAi response limits Orsay virus infection in Caenorhabditis elegans N2. PLoS ONE 2014, 9, e89760. [Google Scholar] [CrossRef]
- Van Sluijs, L.; Pijlman, G.P.; Kammenga, J.E. Why do individuals differ in viral susceptibility? A story told by model organisms. Viruses 2017, 9, 284. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.T.; Vidal-Diez de Ulzurrun, G.; Goncalves, A.P.; Lin, H.C.; Chang, C.W.; Huang, T.Y.; Chen, S.A.; Lai, C.K.; Tsai, I.J.; Schroeder, F.C.; et al. Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode–trapping fungi. Proc. Natl. Acad. Sci. USA 2020, 117, 6762–6770. [Google Scholar] [CrossRef] [PubMed]
Microbiota | Species | Phenotypes | Strains of C. elegans | Reference |
---|---|---|---|---|
Bacteria | B. thuringiensis | Behavior response (evasion and reduced parasite ingestion) | Ten wild strains; RILs and ILs | [18] |
P. aeruginosa | Behavior response (oxygen-dependent behavioral avoidance) | RILs and ILs | [19] | |
S. marcescens | Odor attractiveness | CB4856 and N2 | [20] | |
Microsporidia | N. ironsii | Ability of clearing infection; initial colonization of Nematocida | CB4856 and N2 | [21,22] |
N. ironsii | Resistance in young L1 larvae | CB4856 and N2 | [21,22,23] | |
Virus | Orsay virus | Susceptibility | N2 and JU1580; ILs (GWAS) | [24] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Kammenga, J.E. Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota. Microorganisms 2020, 8, 618. https://doi.org/10.3390/microorganisms8040618
Huang Y, Kammenga JE. Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota. Microorganisms. 2020; 8(4):618. https://doi.org/10.3390/microorganisms8040618
Chicago/Turabian StyleHuang, Yuqing, and Jan E. Kammenga. 2020. "Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota" Microorganisms 8, no. 4: 618. https://doi.org/10.3390/microorganisms8040618
APA StyleHuang, Y., & Kammenga, J. E. (2020). Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota. Microorganisms, 8(4), 618. https://doi.org/10.3390/microorganisms8040618