Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (975)

Search Parameters:
Keywords = Cd deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4291 KB  
Article
New CdS–Bentonite Composites with Photocatalytic Properties
by Anca Dumbrava, Cristian Matei, Florin Moscalu, Diana Jecu and Daniela Berger
Appl. Sci. 2026, 16(2), 649; https://doi.org/10.3390/app16020649 - 8 Jan 2026
Abstract
Cadmium sulfide is an important II-VI semiconductor known for its valuable photocatalytic properties ascribable to its band gap energy, which allows light absorption in the visible domain. Nonetheless, the application of cadmium sulfide in wastewater organic pollutant degradation is restricted due to its [...] Read more.
Cadmium sulfide is an important II-VI semiconductor known for its valuable photocatalytic properties ascribable to its band gap energy, which allows light absorption in the visible domain. Nonetheless, the application of cadmium sulfide in wastewater organic pollutant degradation is restricted due to its high toxicity to humans, soil, and marine life. To address this issue, we developed new composite materials by depositing CdS on a bentonite support in a 1:9 mass ratio to develop a photocatalyst with lower toxicity. In the first step, bentonite was activated using an aqueous HCl solution; for the deposition of CdS powder, we proposed the trituration method and compared it with chemical precipitation and hydrothermal synthesis, using thioacetamide as a sulfide ion source. The modified bentonite underwent characterization using X-ray diffraction, scanning electron microscopy, X-ray fluorescence, UV-Vis, and FTIR spectroscopy. The photocatalytic activity was tested in the degradation of Congo red (CR), a persistent diazo dye. The efficiency of removing CR with CdS–bentonite composites depended on the deposition method of CdS, and it was higher than that of pristine CdS and of only adsorption onto acid-activated bentonite. The photocatalytic degradation mechanism was estimated by the scavenger test using ethylenediaminetetraacetic acid disodium salt, ascorbic acid, ethanol, and silver nitrate as radical scavengers. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends, 2nd Edition)
Show Figures

Figure 1

14 pages, 2867 KB  
Article
Efficacy of Modified Talc Powder in Experimental Rat Model of Pleurodesis
by Murat Kilic, Onural Ozhan, Azibe Yildiz, Süleyman Koytepe, Mustafa Akyuz, Yusuf Turkoz, Nurcan Gokturk, Merve Biyikli, Rumeysa Sonmez, Idil Karaca Acari and Hakan Parlakpinar
Biomolecules 2026, 16(1), 104; https://doi.org/10.3390/biom16010104 - 7 Jan 2026
Abstract
Background: Pleurodesis is a treatment method that aims to create permanent adhesion between the pleural layers to prevent recurrent fluid or air accumulation in the pleural cavity. Talc, one of the most commonly preferred agents in this procedure, is widely used in clinical [...] Read more.
Background: Pleurodesis is a treatment method that aims to create permanent adhesion between the pleural layers to prevent recurrent fluid or air accumulation in the pleural cavity. Talc, one of the most commonly preferred agents in this procedure, is widely used in clinical practice. In this study, a new talc formulation with a modified surface to impart antibacterial and analgesic properties was experimentally evaluated for the first time. The main objective of the study was to comparatively assess the inflammatory and fibrotic responses following standard talc and modified talc applications. Methods: Thirty-six 12-week-old female Wistar albino rats were simply randomly divided into three different groups: control (n = 12), standard talc (n = 12), and modified talc (n = 12). Under anesthesia, 1 mL of physiological saline containing 17 mg of talc was injected intrapleurally into the right hemithorax. The presence of pneumothorax after the procedure was assessed by chest radiography. After a 12-day follow-up period, the animals were euthanized. Bronchoalveolar lavage (BAL) fluid samples, blood samples, and lung and pleural tissue samples were collected for biochemical, histopathological, and immunohistochemical analyses. Results: Modified talc application resulted in a significant increase in both visceral and parietal pleural thickness (p < 0.05). Granulation tissue formation and collagen deposition were significantly higher in the modified talc group. In addition, TGF-β expression and CD68-positive macrophage count increased significantly in the modified talc group (p < 0.05). Inflammatory changes in the lung parenchyma were limited and not statistically significant. Conclusions: The modified talc formulation enriched with lidocaine and antibacterial agents produced a stronger inflammatory and fibrotic response compared to standard talc. These findings indicate that modified talc may increase the effectiveness of pleurodesis. Furthermore, the absence of significant lung parenchymal damage suggests that this treatment is locally effective and feasible. However, further long-term and advanced studies are needed to translate these results into clinical use. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

39 pages, 2355 KB  
Review
Life-Cycle Assessment of Innovative Industrial Processes for Photovoltaic Production: Process-Level LCIs, Scale-Up Dynamics, and Recycling Implications
by Kyriaki Kiskira, Nikitas Gerolimos, Georgios Priniotakis and Dimitrios Nikolopoulos
Appl. Sci. 2026, 16(1), 501; https://doi.org/10.3390/app16010501 - 4 Jan 2026
Viewed by 99
Abstract
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module [...] Read more.
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module level. Although many life-cycle assessment (LCA) studies compare silicon, cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and perovskite technologies, most rely on aggregated indicators and database-level inventories. Few studies systematically compile and harmonize process-level life-cycle inventories (LCIs) for the manufacturing steps that differentiate emerging industrial routes, such as solution coating, R2R processing, atomic layer deposition, low-temperature annealing, and advanced encapsulation–metallization strategies. In addition, inconsistencies in functional units, system boundaries, electricity-mix assumptions, and scale-up modeling continue to limit meaningful cross-study comparison. To address these gaps, this review (i) compiles and critically analyzes process-resolved LCIs for innovative PV manufacturing routes across laboratory, pilot, and industrial scales; (ii) quantifies sensitivity to scale-up, yield, throughput, and electricity carbon intensity; and (iii) proposes standardized methodological rules and open-access LCI templates to improve reproducibility, comparability, and integration with techno-economic and prospective LCA models. The review also synthesizes current evidence on recycling, circularity, and critical-material management. It highlights that end-of-life (EoL) benefits for emerging PV technologies are highly conditional and remain less mature than for crystalline-silicon systems. By shifting the analytical focus from technology class to manufacturing process and life-cycle configuration, this work provides a harmonized evidence base to support scalable, circular, and low-carbon industrial pathways for next-generation PV technologies. Full article
(This article belongs to the Special Issue Life Cycle Assessment in Sustainable Materials Manufacturing)
Show Figures

Graphical abstract

17 pages, 3124 KB  
Article
Nonthermal Atmospheric Plasma Modulates Palatal Wound Healing in Rats: A Morphometric, Histopathologic and Immunohistochemical Analysis
by Basak Kusakci Seker, Hakan Ozdemir and Suna Karadeniz Saygili
Biomedicines 2026, 14(1), 89; https://doi.org/10.3390/biomedicines14010089 - 1 Jan 2026
Viewed by 274
Abstract
Background/Objectives: Non-thermal atmospheric plasma (NTAP) has recently gained attention as a promising tool for tissue regeneration due to its ability to modulate cellular signaling and enhance wound repair. However, its effects on oral mucosal healing and associated molecular pathways remain insufficiently characterized. This [...] Read more.
Background/Objectives: Non-thermal atmospheric plasma (NTAP) has recently gained attention as a promising tool for tissue regeneration due to its ability to modulate cellular signaling and enhance wound repair. However, its effects on oral mucosal healing and associated molecular pathways remain insufficiently characterized. This study aimed to investigate the histological and immunohistochemical effects of NTAP on palatal wound healing in rats and to evaluate key biomarkers involved in angiogenesis, proliferation, and extracellular matrix remodeling. Methods: Sixty rats were randomly assigned to three groups: Saline Control Group (SCG), Chlorhexidine Gluconate Group (CHG), and NTAP-Treated Group (NTAPG). Standardized full-thickness excisional wounds were created in the central palatal mucosa. Animals were sacrificed on postoperative days 7, 14, and 21. Histological assessments included vascularization, inflammatory cell infiltration, collagen fiber organization, and epithelial gap measurements. Immunohistochemical analyses were performed using antibodies targeting VEGF-A, TGF-β, FGF-2, CD34, α-SMA, and Ki67 to evaluate angiogenesis, fibroblast activity, and cellular proliferation. Results: NTAP treatment significantly elevated TGF-β levels at all time points and increased α-SMA-positive cell counts on days 7 and 14. FGF-2 expression was the highest in NTAPG, while VEGF-A and CD34 levels were significantly elevated, indicating robust angiogenic activity. NTAP also reduced inflammatory cell infiltration relative to the other groups. NTAPG exhibited enhanced fibroblast proliferation, increased collagen deposition, improved vascularization, and accelerated re-epithelialization compared with SCG and CHG. Conclusions: NTAP significantly promoted palatal wound healing by enhancing proliferative activity, stimulating growth factor expression, and accelerating tissue repair. These findings suggest that NTAP may serve as an effective therapeutic approach for improving oral mucosal wound healing. Full article
Show Figures

Figure 1

19 pages, 2744 KB  
Article
Weighted Gene Co-Expression Network Analysis and Alternative Splicing Analysis Reveal Key Genes Regulating Overfeeding-Induced Fatty Liver in Lion-Head Goose
by Jing Fu, Yezhi Lan, Yuwen Liang, Xiaoguang Yang, Ruize Tang, Yuchuan Wang, Yabiao Luo and Chunpeng Liu
Int. J. Mol. Sci. 2026, 27(1), 407; https://doi.org/10.3390/ijms27010407 - 30 Dec 2025
Viewed by 154
Abstract
Lion-head goose is a large-sized breed native to Guangdong Province, China, exhibits remarkable capacity for fatty liver production under overfeeding conditions and is highly valued by local farmers and consumers. However, the molecular mechanisms driving fatty liver development in this breed are still [...] Read more.
Lion-head goose is a large-sized breed native to Guangdong Province, China, exhibits remarkable capacity for fatty liver production under overfeeding conditions and is highly valued by local farmers and consumers. However, the molecular mechanisms driving fatty liver development in this breed are still unknown. In this study, we evaluated liver weight differences between normally fed and overfed Lion-head geese and further examined sex-specific differences following overfeeding. Overfeeding significantly increased liver weight more than 340%, and males possess a stronger capacity for lipid deposition under the same feeding regimen compared with females. RNA-Seq analysis identified 1476 differentially expressed genes (DEGs) shared by both sexes, which were mainly enriched in lipid and energy metabolism, oxidative stress, and mitochondrial pathways. In addition, 627 male-specific and 420 female-specific DEGs revealed sex-dependent differences, with males showing stronger transcriptional regulation and females exhibiting enhanced antioxidant and detoxification responses. Weighted gene co-expression network analysis (WGCNA) revealed 320 co-hub genes enriched in lipid and energy metabolism in overfeeding-induced fatty liver, along with 9 co-hub genes related to sex differences. Alternative splicing (AS) analysis detected 131 differentially spliced genes (DSGs). Integration of both approaches identified 7 overlapping genes, HYCC2 (Hyccin PI4KA lipid kinase complex subunit 2), AGL (Amylo-Alpha-1,6-Glucosidase and 4-Alpha-Glucanotransferase), CCDC62 (Coiled-coil domain containing 62), IGSF5 (Immunoglobulin superfamily member 5), MGARP (Mitochondria-localized glutamic acid-rich protein), CD80 (Cluster of Differentiation 80), and FPGS (Folylpolyglutamate synthase), as potential key regulators. These findings provide new insights into transcriptional and post-transcriptional regulation of overfeeding-induced fatty liver in geese. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

36 pages, 4168 KB  
Article
The Credit–Deposit Paradox in a High-Inflation, High-Interest-Rate Environment—Evidence from Poland and the Limits of Endogenous Money Theory
by Dominik Metelski and Janusz Sobieraj
Sustainability 2026, 18(1), 389; https://doi.org/10.3390/su18010389 - 30 Dec 2025
Viewed by 294
Abstract
The endogenous money creation paradigm posits that banks generate money through lending, with deposits serving as a byproduct. This study investigates the mechanism driving the “credit–deposit paradox” during Poland’s high-interest-rate environment, introducing innovative methodological approaches to quantify systemic monetary impairment. Using comprehensive monthly [...] Read more.
The endogenous money creation paradigm posits that banks generate money through lending, with deposits serving as a byproduct. This study investigates the mechanism driving the “credit–deposit paradox” during Poland’s high-interest-rate environment, introducing innovative methodological approaches to quantify systemic monetary impairment. Using comprehensive monthly data from 2006 to 2024, we employ a mixed-methods framework featuring: (1) Bayesian vector autoregression with Minnesota priors to test dynamic interdependencies; (2) a novel money shortage indicator (MSI) that operationalizes credit–deposit decoupling through three theoretically grounded components; (3) Markov regime-switching analysis to identify persistent monetary stress regimes. Key findings reveal a structural decoupling between deposit growth and credit creation, with robust evidence that exogenous money inflows accumulate as idle deposits rather than stimulating lending. The economy experienced significant periods of money shortage conditions, with the most severe impairment occurring during recent high-stress periods. The analysis confirms the dominance of cost-push inflation from energy and food prices, while monetary factors played a limited role. High interest rates amplified credit demand suppression, creating conditions consistent with endogenous money creation disruption. Methodologically, this study enables three key advances: (1) systematic measurement of monetary transmission breakdowns; (2) empirical identification of structural factors disrupting credit–deposit dynamics; (3) temporal characterization of monetary stress persistence patterns. These contributions advance the endogenous money framework by demonstrating its vulnerability to behavioral, policy-induced, and exogenous disruptions during high-stress periods. Practically, the MSI offers policymakers a real-time diagnostic tool for identifying monetary transmission breakdowns, while the regime analysis informs targeted countercyclical measures. Specific policy recommendations include developing sector-specific liquidity facilities, coordinating fiscal transfers with monetary policy to prevent deposit–loan decoupling, and prioritizing supply-side interventions during cost-push inflation episodes. By integrating post-Keynesian theory with empirical evidence from Poland, this study contributes to understanding money creation mechanisms in highly stressed economic environments. Full article
Show Figures

Figure 1

11 pages, 2082 KB  
Article
Highly Efficient and Stable Quantum Dot Light-Emitting Diodes Employing Sputtered SnO2 Layer as Electron Transport Layers
by Jaehwi Choi and Jiwan Kim
Nanomaterials 2026, 16(1), 31; https://doi.org/10.3390/nano16010031 - 25 Dec 2025
Viewed by 343
Abstract
We report a novel approach to fabricating high-performance and robust quantum dot light-emitting diodes (QLEDs) utilizing sputtered SnO2 thin films as the electron transport layer (ETL). While conventional solution-processed ZnMgO NP ETLs face limitations in mass production, the sputtering process offers advantages [...] Read more.
We report a novel approach to fabricating high-performance and robust quantum dot light-emitting diodes (QLEDs) utilizing sputtered SnO2 thin films as the electron transport layer (ETL). While conventional solution-processed ZnMgO NP ETLs face limitations in mass production, the sputtering process offers advantages for uniform and reproducible thin film deposition. Herein, the structural, optical, and electrical properties of SnO2 thin films were optimized by controlling the Ar/O2 ratio and substrate heating temperature during sputtering. SnO2 thin films with O2 gas improve charge balancing in QLEDs by lowering the conduction band minimum. Furthermore, it was observed that oxygen vacancies in SnO2 function as exciton quenching sites, which directly impacts the long-term stability of the device. QLEDs fabricated under optimal conditions (Ar/O2 = 35:5, 200 °C heating) achieved a peak luminance of 99,212 cd/m2 and a current efficiency of 21.17 cd/A with excellent device stability. The findings suggest that sputtered SnO2 ETLs are a highly promising technology for the commercial production of QLEDs. Full article
(This article belongs to the Special Issue Light-Emitting-Diodes Based on Quantum Dots)
Show Figures

Figure 1

19 pages, 2575 KB  
Article
Histopathological Characteristics of Placenta in Pregnancies Complicated by Intrauterine Growth Restriction—A Pilot Study
by Liviu Moraru, Raluca Moraru, Diana Maria Chiorean, Septimiu Voidăzan, Lorena Solovăstru and Melinda-Ildiko Mitranovici
Diagnostics 2026, 16(1), 60; https://doi.org/10.3390/diagnostics16010060 - 24 Dec 2025
Viewed by 253
Abstract
Background/Objectives: Intrauterine growth restriction (IUGR) is a condition in which a fetus does not reach its normal growth potential and is associated with increased neonatal morbidity. Surveillance relies on cardiotocography, a biophysical ultrasound, and a Doppler assessment, but placental pathology remains insufficiently [...] Read more.
Background/Objectives: Intrauterine growth restriction (IUGR) is a condition in which a fetus does not reach its normal growth potential and is associated with increased neonatal morbidity. Surveillance relies on cardiotocography, a biophysical ultrasound, and a Doppler assessment, but placental pathology remains insufficiently integrated into clinical evaluations. This study aimed to compare placentas from IUGR and normal pregnancies. Methods: This cohort included 34 pregnancies (16 IUGR, 18 controls) managed at Hunedoara County Hospital (Romania). The ultrasound and Doppler parameters were documented. The placentas were collected after delivery, fixed in formalin, and processed using standard histopathological protocols. The villous morphology and maternal vascular malperfusion features were assessed on H&E sections, focusing on syncytial knots, villous caliber reduction, stromal fibrosis, fibrin deposition, and infarctions. Immunohistochemistry for CD34, cytokeratin 7 (CK7), CD68, vascular endothelial growth factor (VEGF), and Hypoxian inducible factor 1 (HIF-1α)was performed using a semi-quantitative 0–3 scoring system. A statistical analysis was performed using chi-squared testing for categorical variables and t-tests for continuous variables. Results: The ultrasound evaluation showed an estimated fetal weight below the 10th percentile and abnormal Doppler indices in the IUGR group. The histopathology demonstrated a strong association between IUGR and villous abnormalities, including an increased number of syncytial knots, stromal fibrosis, a reduced villous caliber, and placental infarctions. The immunohistochemistry showed a marked overexpression of VEGF and HIF-1α and increased CD68-positive Hofbauer cells in IUGR placentas (p < 0.0001), while CD34 and CK7 displayed preserved strong staining in both groups. Conclusions: Placentas from IUGR pregnancies exhibited advanced maternal vascular malperfusion with consistent hypoxic and inflammatory changes, correlating with Doppler alterations. These findings highlight the diagnostic relevance of placental pathology in pregnancies with IUGR. Full article
Show Figures

Figure 1

26 pages, 2125 KB  
Article
Geochemical Profile Characterization of Mine Tailings by Exploited Element as Input for Receptor Models: Case of Chilean Tailings (Cu-Au-Ag-Mo-Fe-Zn-Pb-Kaolin-CaCO3)
by Felipe André Reyes Reyes, Sebastián Pérez Cortés and Ernesto Gramsch Labra
Minerals 2026, 16(1), 5; https://doi.org/10.3390/min16010005 - 20 Dec 2025
Viewed by 240
Abstract
Mine tailings management poses a major challenge, with up to 99% of the mined material remaining as finely ground residues. This study analyzes a SERNAGEOMIN database from 653 Chilean tailing deposits using a multivariate framework that integrates completeness assessments, descriptive statistics, and hierarchical [...] Read more.
Mine tailings management poses a major challenge, with up to 99% of the mined material remaining as finely ground residues. This study analyzes a SERNAGEOMIN database from 653 Chilean tailing deposits using a multivariate framework that integrates completeness assessments, descriptive statistics, and hierarchical clustering on log-transformed and standardized chemical concentrations of 56 elements in order to identify dominant geochemical patterns. This study aims to provide an integrated and systematic interpretation of the Chilean database, the most comprehensive public dataset on mine tailings in Chile. The results reveal four distinct geochemical profiles: (i) silicate copper tailings, rich in Cu and associated with a SiO2-Al2O3 matrix; (ii) Zn-Pb-Cd-As polymetallic tailings, with the highest concentrations of heavy metals and rare earth elements (REEs), representing both high environmental risk and potential economic value; (iii) carbonate-matrix tailings (CaCO3 and limestone), characterized by high CaO and loss of calcination (LOI) but low trace metal contents, suggesting buffering potential against acid mine drainage (AMD); and (iv) clay-rich tailings (kaolin and Au-Cu-Au), marked by high Al2O3 and anomalous Co enrichments, indicating unexploited potential for critical metal recovery. These profiles support applications such as their use as source signatures in receptor models and the classification of tailing deposits lacking geochemical information. Full article
Show Figures

Graphical abstract

16 pages, 1888 KB  
Article
Creatinine Sensing with Reduced Graphene Oxide-Based Field Effect Transistors
by Melody L. Candia, Esteban Piccinini, Omar Azzaroni and Waldemar A. Marmisollé
Chemosensors 2026, 14(1), 3; https://doi.org/10.3390/chemosensors14010003 - 20 Dec 2025
Viewed by 289
Abstract
Creatinine (Crn) is a clinically relevant biomarker commonly used for the diagnosis and monitoring of kidney disease. In this work, we report the fabrication of reduced-graphene-oxide-based field-effect transistors (rGO FETs) for Crn detection. These devices were functionalized using a layer-by-layer (LbL) assembly, in [...] Read more.
Creatinine (Crn) is a clinically relevant biomarker commonly used for the diagnosis and monitoring of kidney disease. In this work, we report the fabrication of reduced-graphene-oxide-based field-effect transistors (rGO FETs) for Crn detection. These devices were functionalized using a layer-by-layer (LbL) assembly, in which polyethyleneimine (PEI) and creatinine deiminase (CD) were alternately deposited. This LbL strategy allows for the effective incorporation of CD without compromising its structural or functional integrity, while also taking advantage of the local pH changes caused by creatinine hydrolysis. It also benefits from the use of a polyelectrolyte that can amplify the enzymatic signal. Furthermore, it enables scalable and efficient fabrication. These transistors also address the challenges of point-of-care implementation in single-use cartridges. It is worth noting that the devices showed a linear relationship between the Dirac-point shift and the logarithm of the creatinine concentration in the 20–500 µM range in diluted simulated urine. The sensor response improved with increasing numbers of PEI/CD bilayers. Furthermore, the functionalized FETs demonstrated rapid detection dynamics and good long-term stability. Present results confirm the potential of these devices as practical biosensors for sample analysis under real-world conditions, making them ideal for implementation in practical settings. Full article
Show Figures

Figure 1

8 pages, 965 KB  
Brief Report
Integrated PbTe Quantum Dots for Two-Color Detection in II–VI Wide-Bandgap Diodes
by Jakub M. Głuch, Michał Szot and Grzegorz Karczewski
Nanomaterials 2026, 16(1), 7; https://doi.org/10.3390/nano16010007 - 19 Dec 2025
Viewed by 191
Abstract
Quantum dots (QDs) composed of the narrow-bandgap semiconductor PbTe were incorporated into the depletion region of p–n junctions based on wide-bandgap II–VI semiconductors (p-ZnTe/n-CdTe). The heterostructures were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates. The depletion region was engineered [...] Read more.
Quantum dots (QDs) composed of the narrow-bandgap semiconductor PbTe were incorporated into the depletion region of p–n junctions based on wide-bandgap II–VI semiconductors (p-ZnTe/n-CdTe). The heterostructures were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates. The depletion region was engineered by depositing 20 alternating thin layers of CdTe and PbTe, then thermal annealing under ultrahigh vacuum. As revealed by cross-sectional scanning electron microscopy (SEM), the initially continuous PbTe layers transformed into arrays of zero-dimensional nanostructures, namely PbTe QDs. The formation of PbTe QDs in a CdTe matrix arises from the structural mismatch between the zinc blende and rock-salt crystal structures of the two materials. Electron beam-induced current (EBIC) scans confirmed that the QDs are localized within the depleted charge region between the p-ZnTe and n-CdTe layers. The resulting wide-gap diodes containing narrow-band QDs show pronounced sensitivity to infrared radiation in the spectral range of 1–4.5 μm, with a peak responsivity of approximately 8 V/W at a wavelength of ~2.0 μm and a temperature of 200 K. A red-shift in the cutoff wavelength when temperature decreases indicates that the infrared (IR) response is governed by band-to-band optical transitions in the PbTe QDs. In addition, the devices show sensitivity to visible radiation, with a maximum responsivity of 20 V/W at 0.69 μm. These results demonstrate that wide-bandgap p–n junctions incorporating narrow-bandgap QDs can function as dual-wavelength (visible and infrared) photodetectors, with potential applications in two-color detection and infrared solar cells. Full article
(This article belongs to the Special Issue State-of-the-Art Nanostructured Photodetectors)
Show Figures

Figure 1

17 pages, 4669 KB  
Article
One-Step Electrodeposition of Hybrid Semiconductive CdSe/Nitrogen-Doped Carbon Dots Thin Films
by Katerina Pappa, Maria Myrto Dardavila, Athanasios Tzanis, Adamantia Zourou, Christina Mitzithra, Stylianos Hamilakis, Zaphirios Loizos, Konstantinos Kordatos and Constantina Kollia
Materials 2025, 18(24), 5691; https://doi.org/10.3390/ma18245691 - 18 Dec 2025
Viewed by 217
Abstract
Novel hybrid semiconducting thin films comprising CdSe with the addition of nitrogen-doped carbon dots (NCDs) were developed onto titanium substrates using a one-step electrocodeposition technique. The deposition took place using an acidic aqueous electrolytic bath containing hydrothermally produced ΝCDs under direct and pulse [...] Read more.
Novel hybrid semiconducting thin films comprising CdSe with the addition of nitrogen-doped carbon dots (NCDs) were developed onto titanium substrates using a one-step electrocodeposition technique. The deposition took place using an acidic aqueous electrolytic bath containing hydrothermally produced ΝCDs under direct and pulse current regime. The specimens were studied using XRD, SEM-EDS, and UV-Vis spectroscopy techniques to determine their microstructural characteristics, surface morphology and composition and the energy gap, respectively. Their photochemical behavior was studied utilizing a photoelectrochemical cell (PEC). Variations in physical properties, along with significantly improved photoelectrochemical responses, were observed for the NCD-infused semiconductive thin films compared to their plain CdSe counterparts. These variations were highly affected by the incorporation rate of the NCDs in each thin film, as well as the imposed electrolysis conditions. Full article
(This article belongs to the Special Issue Design and Electrochemical Synthesis of Multifunctional Surfaces)
Show Figures

Figure 1

9 pages, 1579 KB  
Article
Prevalence and Underreporting of Crowned Dens Syndrome-Associated Calcifications on Cervical Spine CT in Patients with Neck Pain
by Shira Dor, Iris Eshed and Merav Lidar
J. Clin. Med. 2025, 14(24), 8954; https://doi.org/10.3390/jcm14248954 - 18 Dec 2025
Viewed by 264
Abstract
Background: Crowned dens syndrome (CDS) is characterized by acute neck pain and restricted motion due to calcium pyrophosphate (CPP) crystal deposition around the atlantoaxial joint. Although recognized as sufficient for the diagnosis of CPP deposition disease (CPPD), its prevalence remains uncertain. Given the [...] Read more.
Background: Crowned dens syndrome (CDS) is characterized by acute neck pain and restricted motion due to calcium pyrophosphate (CPP) crystal deposition around the atlantoaxial joint. Although recognized as sufficient for the diagnosis of CPP deposition disease (CPPD), its prevalence remains uncertain. Given the high prevalence of CPPD in the general population, CDS may be more common than currently appreciated among patients with neck pain undergoing cervical spine imaging. Methods: This retrospective study included patients aged ≥40 years who underwent cervical spine CT for evaluation of neck pain between 2022 and 2024. Of 500 consecutive scans, 195 were eligible after excluding trauma-related, post-operative, and metastatic cases. Results: Periodontoid calcifications were identified in 29.2% of patients (mean age 61.5 ± 11.7 years; 37.4% male). Prevalence increased significantly with age (p < 0.001), reaching nearly 50% in those over 70 years. Linear calcifications were rare before 60 years (1.2%) but present in 24.5% of patients over 70. Calcifications were mentioned in only 3.5% of radiology reports. Conclusions: Periodontoid calcifications are relatively common in patients with neck pain, affecting nearly one-third of individuals over 40 and almost half of those over 70. Their frequent underreporting highlights a critical gap in recognition. Greater awareness and systematic reporting are warranted, as CDS may represent a common, underdiagnosed, and treatable cause of neck pain. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

20 pages, 3953 KB  
Article
Sequential Dengue Virus Infection in Marmosets: Histopathological and Immune Responses in the Liver
by Daniele Freitas Henriques, Livia M. N. Casseb, Milene S. Ferreira, Larissa S. Freitas, Hellen T. Fuzii, Carla Pagliari, Luciane Kanashiro, Paulo H. G. Castro, Gilmara A. Siva, Orlando Pereira Amador Neto, Valter M. Campos, Beatriz C. Belvis, Flavia B. dos Santos, Lilian R. M. de Sá and Pedro Fernando da Costa Vasconcelos
Viruses 2025, 17(12), 1619; https://doi.org/10.3390/v17121619 - 15 Dec 2025
Viewed by 303
Abstract
This study evaluated hepatic pathological and phenotypic alterations, along with the inflammatory response, following sequential dengue virus (DENV) infection in Callithrix penicillata, a relevant model for human endemic scenarios. Twenty-six animals were initially infected subcutaneously with DENV-3. Thirteen were euthanized between 1 and [...] Read more.
This study evaluated hepatic pathological and phenotypic alterations, along with the inflammatory response, following sequential dengue virus (DENV) infection in Callithrix penicillata, a relevant model for human endemic scenarios. Twenty-six animals were initially infected subcutaneously with DENV-3. Thirteen were euthanized between 1 and 7 days post-infection (dpi) to assess the acute phase, and up to 60 dpi for the convalescent phase. The remaining animals received a secondary DENV-2 infection two months later. Liver samples underwent histopathological and immunohistochemical analysis. Viral antigens were identified in hepatocytes, Kupffer cells, and Councilman bodies. Observed liver changes included apoptosis, lytic necrosis, midzonal inflammation, Kupffer cell hyperplasia and hypertrophy, sinusoidal dilation, and hemosiderin deposition. Both primary and secondary infections increased activated macrophages, NK cells, S-100 protein, and B lymphocytes. Primary infection was associated with elevated CD4+ T cells, IFN-γ, TGF-β, IL-10, and Fas expression, whereas secondary infection induced higher IFN-γ, TNF-α, IL-8, Fas, and VCAM levels. These findings mirror hepatic alterations in severe human dengue cases and underscore the role of direct viral effects and immune dysregulation in liver injury. The results support C. penicillata as a suitable non-human primate model for studying DENV pathogenesis. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

19 pages, 5149 KB  
Article
Priority Control of Agricultural and Traffic Sources of Soil Heavy Metals: An Integrated Source-Oriented Risk Assessment in the Drawdown Zone of the Danjiangkou Reservoir
by Houkuan Ding, Dahai Zeng, Yunni Gao, Xucong Lyu, Jialin Jin, Huatao Yuan, Jingxiao Zhang, Jing Dong, Xiaofei Gao, Penghui Zhu, Xuejun Li and Michele Burford
Toxics 2025, 13(12), 1073; https://doi.org/10.3390/toxics13121073 - 13 Dec 2025
Viewed by 420
Abstract
In recent years, the public environmental protection consciousness has improved regarding the source of drinking water. However, the risk status and sources of heavy metals (HMs) in the soil around drinking water sources remain unclear. The typical Drawdown Zone (DZ) of Danjiangkou Reservoir [...] Read more.
In recent years, the public environmental protection consciousness has improved regarding the source of drinking water. However, the risk status and sources of heavy metals (HMs) in the soil around drinking water sources remain unclear. The typical Drawdown Zone (DZ) of Danjiangkou Reservoir is taken as an example in this study. Pollution levels of HMs and associated ecological and human health risks were evaluated under four land-use types during the low-water-level period. The sources of 10 HMs were determined using the positive matrix factorization (PMF) model and correlation analysis. Quantitative source-oriented risk identification was then conducted by integrating risk characteristics with source apportionment. The results indicate that soils in the study area are generally slightly polluted, with comprehensive potential ecological risks at a medium level. Farmland soils exhibit the highest pollution and ecological risk levels, particularly for Hg and Cd. Our Monte Carlo simulation-based human health risk assessment shows that, compared with non-carcinogenic risks, carcinogenic risks should be given further attention. Farmland poses higher health risks than other land-use types, and children are more vulnerable than adults. Four main sources were identified: transportation sources (29.5%), agricultural activities (32%), natural sources (19.3%), and atmospheric deposition (19.2%). The source-oriented risk assessment indicates that agricultural activities are the priority control source for ecological risks (64.7%), with Hg as the primary control element. Transportation and agricultural sources are the primary contributors to carcinogenic risks in children (57.1%) and adults (57.1%), with Ni as the primary control element. Full article
Show Figures

Graphical abstract

Back to TopTop