Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Casparian bands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5491 KiB  
Article
Characterization of Microbotryum lychnidis-dioicae Secreted Effector Proteins, Their Potential Host Targets, and Localization in a Heterologous Host Plant
by Ming-Chang Tsai, Michelle T. Barati, Venkata S. Kuppireddy, William C. Beckerson, Grace Long and Michael H. Perlin
J. Fungi 2024, 10(4), 262; https://doi.org/10.3390/jof10040262 - 30 Mar 2024
Cited by 1 | Viewed by 1952
Abstract
Microbotryum lychnidis-dioicae is an obligate fungal species colonizing the plant host, Silene latifolia. The fungus synthesizes and secretes effector proteins into the plant host during infection to manipulate the host for completion of the fungal lifecycle. The goal of this study was [...] Read more.
Microbotryum lychnidis-dioicae is an obligate fungal species colonizing the plant host, Silene latifolia. The fungus synthesizes and secretes effector proteins into the plant host during infection to manipulate the host for completion of the fungal lifecycle. The goal of this study was to continue functional characterization of such M. lychnidis-dioicae effectors. Here, we identified three putative effectors and their putative host-plant target proteins. MVLG_02245 is highly upregulated in M. lychnidis-dioicae during infection; yeast two-hybrid analysis suggests it targets a tubulin α-1 chain protein ortholog in the host, Silene latifolia. A potential plant protein interacting with MVLG_06175 was identified as CASP-like protein 2C1 (CASPL2C1), which facilitates the polymerization of the Casparian strip at the endodermal cells. Proteins interacting with MVLG_05122 were identified as CSN5a or 5b, involved in protein turnover. Fluorescently labelled MVLG_06175 and MVLG_05122 were expressed in the heterologous plant, Arabidopsis thaliana. MVLG_06175 formed clustered granules at the tips of trichomes on leaves and in root caps, while MVLG_05122 formed a band structure at the base of leaf trichomes. Plants expressing MVLG_05122 alone were more resistant to infection with Fusarium oxysporum. These results indicate that the fungus might affect the formation of the Casparian strip in the roots and the development of trichomes during infection as well as alter plant innate immunity. Full article
(This article belongs to the Special Issue Functional Understanding of Smut Biology)
Show Figures

Figure 1

23 pages, 6482 KiB  
Article
A Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Pogostemon cablin in Response to p-HBA-Induced Continuous Cropping Obstacles
by Yating Su, Muhammad Zeeshan Ul Haq, Xiaofeng Liu, Yang Li, Jing Yu, Dongmei Yang, Yougen Wu and Ya Liu
Plants 2023, 12(22), 3901; https://doi.org/10.3390/plants12223901 - 19 Nov 2023
Cited by 10 | Viewed by 2111
Abstract
Casparian strip membrane domain protein-like (CASPL) genes are key genes for the formation and regulation of the Casparian strip and play an important role in plant abiotic stress. However, little research has focused on the members, characteristics, and biological functions of [...] Read more.
Casparian strip membrane domain protein-like (CASPL) genes are key genes for the formation and regulation of the Casparian strip and play an important role in plant abiotic stress. However, little research has focused on the members, characteristics, and biological functions of the patchouli PatCASPL gene family. In this study, 156 PatCASPL genes were identified at the whole-genome level. Subcellular localization predicted that 75.6% of PatCASPL proteins reside on the cell membrane. A phylogenetic analysis categorized PatCASPL genes into five subclusters alongside Arabidopsis CASPL genes. In a cis-acting element analysis, a total of 16 different cis-elements were identified, among which the photo-responsive element was the most common in the CASPL gene family. A transcriptome analysis showed that p-hydroxybenzoic acid, an allelopathic autotoxic substance, affected the expression pattern of PatCASPLs, including a total of 27 upregulated genes and 30 down-regulated genes, suggesting that these PatCASPLs may play an important role in the regulation of patchouli continuous cropping obstacles by affecting the formation and integrity of Casparian strip bands. These results provided a theoretical basis for exploring and verifying the function of the patchouli PatCASPL gene family and its role in continuous cropping obstacles. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

13 pages, 3446 KiB  
Article
Influence of Plant Growth-Promoting Rhizobacteria on the Formation of Apoplastic Barriers and Uptake of Water and Potassium by Wheat Plants
by Zarina Akhtyamova, Elena Martynenko, Tatiana Arkhipova, Oksana Seldimirova, Ilshat Galin, Andrey Belimov, Lidiya Vysotskaya and Guzel Kudoyarova
Microorganisms 2023, 11(5), 1227; https://doi.org/10.3390/microorganisms11051227 - 6 May 2023
Cited by 17 | Viewed by 2914
Abstract
The formation of apoplastic barriers is important for controlling the uptake of water and ions by plants, thereby influencing plant growth. However, the effects of plant growth-promoting bacteria on the formation of apoplastic barriers, and the relationship between these effects and the ability [...] Read more.
The formation of apoplastic barriers is important for controlling the uptake of water and ions by plants, thereby influencing plant growth. However, the effects of plant growth-promoting bacteria on the formation of apoplastic barriers, and the relationship between these effects and the ability of bacteria to influence the content of hormones in plants, have not been sufficiently studied. The content of cytokinins, auxins and potassium, characteristics of water relations, deposition of lignin and suberin and the formation of Casparian bands in the root endodermis of durum wheat (Triticum durum Desf.) plants were evaluated after the introduction of the cytokinin-producing bacterium Bacillus subtilis IB-22 or the auxin-producing bacterium Pseudomonas mandelii IB-Ki14 into their rhizosphere. The experiments were carried out in laboratory conditions in pots with agrochernozem at an optimal level of illumination and watering. Both strains increased shoot biomass, leaf area and chlorophyll content in leaves. Bacteria enhanced the formation of apoplastic barriers, which were most pronounced when plants were treated with P. mandelii IB-Ki14. At the same time, P. mandelii IB-Ki14 caused no decrease in the hydraulic conductivity, while inoculation with B. subtilis IB-22, increased hydraulic conductivity. Cell wall lignification reduced the potassium content in the roots, but did not affect its content in the shoots of plants inoculated with P. mandelii IB-Ki14. Inoculation with B. subtilis IB-22 did not change the potassium content in the roots, but increased it in the shoots. Full article
(This article belongs to the Special Issue Plant Microbiome and Host Tolerance to Biotic and Abiotic Stresses)
Show Figures

Figure 1

25 pages, 1477 KiB  
Review
Salt Stress—Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context
by Yingying Lu and Wieland Fricke
Int. J. Mol. Sci. 2023, 24(9), 8070; https://doi.org/10.3390/ijms24098070 - 29 Apr 2023
Cited by 49 | Viewed by 8292
Abstract
This review focuses on the regulation of root water uptake in plants which are exposed to salt stress. Root water uptake is not considered in isolation but is viewed in the context of other potential tolerance mechanisms of plants—tolerance mechanisms which relate to [...] Read more.
This review focuses on the regulation of root water uptake in plants which are exposed to salt stress. Root water uptake is not considered in isolation but is viewed in the context of other potential tolerance mechanisms of plants—tolerance mechanisms which relate to water relations and gas exchange. Plants spend between one third and half of their lives in the dark, and salt stress does not stop with sunset, nor does it start with sunrise. Surprisingly, how plants deal with salt stress during the dark has received hardly any attention, yet any growth response to salt stress over days, weeks, months and years is the integrative result of how plants perform during numerous, consecutive day/night cycles. As we will show, dealing with salt stress during the night is a prerequisite to coping with salt stress during the day. We hope to highlight with this review not so much what we know, but what we do not know; and this relates often to some rather basic questions. Full article
(This article belongs to the Special Issue Molecular Regulation of Drought and Salinity Tolerance in Plants)
Show Figures

Figure 1

13 pages, 4946 KiB  
Article
Effects of a Pseudomonas Strain on the Lipid Transfer Proteins, Appoplast Barriers and Activity of Aquaporins Associated with Hydraulic Conductance of Pea Plants
by Elena Martynenko, Tatiana Arkhipova, Guzel Akhiyarova, Guzel Sharipova, Ilshat Galin, Oksana Seldimirova, Ruslan Ivanov, Tatiana Nuzhnaya, Ekaterina Finkina, Tatiana Ovchinnikova and Guzel Kudoyarova
Membranes 2023, 13(2), 208; https://doi.org/10.3390/membranes13020208 - 8 Feb 2023
Cited by 6 | Viewed by 1795
Abstract
Lipid transfer proteins (LTPs) are known to be involved in suberin deposition in the Casparian bands of pea roots, thereby reinforcing apoplast barriers. Moreover, the Pseudomonas mandelii IB-Ki14 strain accelerated formation of the Casparian bands in wheat plants, although involvement of LTPs in [...] Read more.
Lipid transfer proteins (LTPs) are known to be involved in suberin deposition in the Casparian bands of pea roots, thereby reinforcing apoplast barriers. Moreover, the Pseudomonas mandelii IB-Ki14 strain accelerated formation of the Casparian bands in wheat plants, although involvement of LTPs in the process was not studied. Here, we investigated the effects of P. mandelii IB-Ki14 on LTPs, formation of the Casparian bands, hydraulic conductance and activity of aquaporins (AQPs) in pea plants. RT PCR showed a 1.6-1.9-fold up-regulation of the PsLTP-coding genes and an increase in the abundance of LTP proteins in the phloem of pea roots induced by the treatment with P. mandelii IB-Ki14. The treatment was accompanied with increased deposition of suberin in the Casparian bands. Hydraulic conductance did not decrease in association with the bacterial treatment despite strengthening of the apoplast barriers. At the same time, the Fenton reagent, serving as an AQPs inhibitor, decreased hydraulic conductance to a greater extent in treated plants relative to the control group, indicating an increase in the AQP activity by the bacteria. We hypothesize that P. mandelii IB-Ki14 stimulates deposition of suberin, in the biosynthesis of which LTPs are involved, and increases aquaporin activity, which in turn prevents a decrease in hydraulic conductance due to formation of the apoplast barriers in pea roots. Full article
(This article belongs to the Special Issue Membrane Interaction between Lipids, Proteins and Peptides)
Show Figures

Figure 1

12 pages, 1579 KiB  
Article
The Effects of Rhizosphere Inoculation with Pseudomonas mandelii on Formation of Apoplast Barriers, HvPIP2 Aquaporins and Hydraulic Conductance of Barley
by Tatiana Arkhipova, Guzel Sharipova, Guzel Akhiyarova, Ludmila Kuzmina, Ilshat Galin, Elena Martynenko, Oksana Seldimirova, Tatyana Nuzhnaya, Arina Feoktistova, Maxim Timergalin and Guzel Kudoyarova
Microorganisms 2022, 10(5), 935; https://doi.org/10.3390/microorganisms10050935 - 29 Apr 2022
Cited by 18 | Viewed by 2323
Abstract
Pseudomonas mandelii strain IB-Ki14 has recently been shown to strengthen the apoplastic barriers of salt-stressed plants, which prevents the entry of toxic sodium. It was of interest to find out whether the same effect manifests itself in the absence of salinity and how [...] Read more.
Pseudomonas mandelii strain IB-Ki14 has recently been shown to strengthen the apoplastic barriers of salt-stressed plants, which prevents the entry of toxic sodium. It was of interest to find out whether the same effect manifests itself in the absence of salinity and how this affects the hydraulic conductivity of barley plants. Berberine staining confirmed that the bacterial treatment enhanced the deposition of lignin and suberin and formation of Casparian bands in the roots of barley plants. The calculation of hydraulic conductance by relating transpiration to leaf water potential showed that it did not decrease in bacteria-treated plants. We hypothesized that reduced apoplastic conductivity could be compensated by the higher conductivity of the water pathway across the membranes. This assumption was confirmed by the results of the immunolocalization of HvPIP2;5 aquaporins with specific antibodies, showing their increased abundance around the areas of the endodermis and exodermis of bacteria-treated plants. The immunolocalization with antibodies against auxins and abscisic acid revealed elevated levels of these hormones in the roots of plants treated with bacteria. This root accumulation of hormones is likely to be associated with the ability of Pseudomonas mandelii IB-Ki14 to synthesize these hormones. The involvement of abscisic acid in the control of aquaporin abundance and auxins—in the regulation of and formation of apoplast barriers—is discussed. Full article
(This article belongs to the Special Issue Interactions between Plant Beneficial Pseudomonas spp. and Their Host)
Show Figures

Figure 1

11 pages, 3317 KiB  
Article
Effects of Phytohormone-Producing Rhizobacteria on Casparian Band Formation, Ion Homeostasis and Salt Tolerance of Durum Wheat
by Elena Martynenko, Tatiana Arkhipova, Vera Safronova, Oksana Seldimirova, Ilshat Galin, Zarina Akhtyamova, Dmitry Veselov, Ruslan Ivanov and Guzel Kudoyarova
Biomolecules 2022, 12(2), 230; https://doi.org/10.3390/biom12020230 - 29 Jan 2022
Cited by 27 | Viewed by 3742
Abstract
Inoculation with plant growth-promoting rhizobacteria can increase plant salt resistance. We aimed to reveal bacterial effects on the formation of apoplastic barriers and hormone concentration in relation to maintaining ion homeostasis and growth of salt-stressed plants. The rhizosphere of a durum wheat variety [...] Read more.
Inoculation with plant growth-promoting rhizobacteria can increase plant salt resistance. We aimed to reveal bacterial effects on the formation of apoplastic barriers and hormone concentration in relation to maintaining ion homeostasis and growth of salt-stressed plants. The rhizosphere of a durum wheat variety was inoculated with cytokinin-producing Bacillus subtilis and auxin-producing Pseudomonas mandelii strains. Plant growth, deposition of lignin and suberin and concentrations of sodium, potassium, phosphorus and hormones were studied in the plants exposed to salinity. Accumulation of sodium inhibited plant growth accompanied by a decline in potassium in roots and phosphorus in shoots of the salt-stressed plants. Inoculation with both bacterial strains resulted in faster appearance of Casparian bands in root endodermis and an increased growth of salt-stressed plants. B. subtilis prevented the decline in both potassium and phosphorus concentrations and increased concentration of cytokinins in salt-stressed plants. P. mandelii decreased the level of sodium accumulation and increased the concentration of auxin. Growth promotion was greater in plants inoculated with B. subtilis. Increased ion homeostasis may be related to the capacity of bacteria to accelerate the formation of Casparian bands preventing uncontrolled diffusion of solutes through the apoplast. We discuss the relative impacts of the decline in Na accumulation and maintenance of K and P content for growth improvement of salt-stressed plants and their possible relation to the changes in hormone concentration in plants. Full article
(This article belongs to the Special Issue Phytohormones 2021)
Show Figures

Figure 1

5 pages, 810 KiB  
Proceeding Paper
Effect of WGA on 24-Epibrassinolide-Induced Resistance of Wheat Plants and Cell Walls Reinforcement under the Influence of Cadmium Acetate
by Marina Bezrukova, Alsu Lubyanova and Farida Shakirova
Biol. Life Sci. Forum 2021, 4(1), 80; https://doi.org/10.3390/IECPS2020-08849 - 2 Dec 2020
Cited by 1 | Viewed by 1373
Abstract
The generally accepted approach for increasing plant resistance to heavy metals is the treatment by phytohormones of different natures. In particular, brassinosteroids are highly effective in decreasing the level of toxic ions damage effects on plant growth. ABA and wheat germ agglutinin (WGA) [...] Read more.
The generally accepted approach for increasing plant resistance to heavy metals is the treatment by phytohormones of different natures. In particular, brassinosteroids are highly effective in decreasing the level of toxic ions damage effects on plant growth. ABA and wheat germ agglutinin (WGA) contents were measured in the same plant with the help of enzyme immunoassay method. The localization of lignin and suberin on cross sections of wheat roots stained with berberine hemisulfate/toluidine blue was performed. The mitotic index was determined as percentage of mitotic cells of the total number of the cells. It was found that 0.4 μM 24-epibrassinolide (EBR) seed pretreatment under the influence of 1 mM cadmium acetate in the presence of fluridone (Fl) inhibited the stress-induced accumulation of ABA, while the WGA content in plants stayed higher than in stressed EBR-untreated wheat roots. Moreover, EBR-pretreated wheat plants under cadmium stress formed in the root cell walls’ Casparian bands and suberin lamellae, which are the critical locations in the apoplastic barriers of endodermis and exodermis. Pre-sowing EBR-treatment promoted acceleration of Casparian bands and suberin lamellae formation without inhibiting growth processes. We have demonstrated the involvement of wheat lectin in the realization of EBR-induced protective effect on plants under cadmium stress. An important contribution to EBR-induced strengthening the barrier properties of the cell walls of the studied tissues is the ability of EBR to induce ABA-independent accumulation of WGA, which further promotes the increasing lignin and suberin biopolymers deposition in the cell walls of wheat roots. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Plant Science)
Show Figures

Figure 1

16 pages, 2574 KiB  
Article
Exodermis and Endodermis Respond to Nutrient Deficiency in Nutrient-Specific and Localized Manner
by Jiří Namyslov, Zuzana Bauriedlová, Jana Janoušková, Aleš Soukup and Edita Tylová
Plants 2020, 9(2), 201; https://doi.org/10.3390/plants9020201 - 6 Feb 2020
Cited by 20 | Viewed by 5555
Abstract
The exodermis is a common apoplastic barrier of the outer root cortex, with high environmentally-driven plasticity and a protective function. This study focused on the trade-off between the protective advantages provided by the exodermis and its disadvantageous reduction of cortical membrane surface area [...] Read more.
The exodermis is a common apoplastic barrier of the outer root cortex, with high environmentally-driven plasticity and a protective function. This study focused on the trade-off between the protective advantages provided by the exodermis and its disadvantageous reduction of cortical membrane surface area accessible by apoplastic route, thus limiting nutrient acquisition from the rhizosphere. We analysed the effect of nutrient deficiency (N, P, K, Mg, Ca, K, Fe) on exodermal and endodermal differentiation in maize. To differentiate systemic and localized effects, nutrient deficiencies were applied in three different approaches: to the root system as a whole, locally to discrete parts, or on one side of a single root. Our study showed that the establishment of the exodermis was enhanced in low–N and low–P plants, but delayed in low-K plants. The split-root cultivation proved that the effect is non-systemic, but locally coordinated for individual roots. Within a single root, localized deficiencies didn’t result in an evenly differentiated exodermis, in contrast to other stress factors. The maturation of the endodermis responded in a similar way. In conclusion, N, P, and K deficiencies strongly modulated exodermal differentiation. The response was nutrient specific and integrated local signals of current nutrient availability from the rhizosphere. Full article
(This article belongs to the Special Issue Plant Anatomy and Biochemistry)
Show Figures

Figure 1

12 pages, 4949 KiB  
Article
Role of Pea LTPs and Abscisic Acid in Salt-Stressed Roots
by Guzel R. Akhiyarova, Ekaterina I. Finkina, Tatiana V. Ovchinnikova, Dmitry S. Veselov and Guzel R. Kudoyarova
Biomolecules 2020, 10(1), 15; https://doi.org/10.3390/biom10010015 - 20 Dec 2019
Cited by 13 | Viewed by 3562
Abstract
Lipid transfer proteins (LTPs) are a class of small, cationic proteins that bind and transfer lipids and play an important role in plant defense. However, their precise biological role in plants under adverse conditions including salinity and possible regulation by stress hormone abscisic [...] Read more.
Lipid transfer proteins (LTPs) are a class of small, cationic proteins that bind and transfer lipids and play an important role in plant defense. However, their precise biological role in plants under adverse conditions including salinity and possible regulation by stress hormone abscisic acid (ABA) remains unknown. In this work, we studied the localization of LTPs and ABA in the roots of pea plants using specific antibodies. Presence of LTPs was detected on the periphery of the cells mainly located in the phloem. Mild salt stress (50 mM NaCI) led to slowing plant growth and higher immunostaining for LTPs in the phloem. The deposition of suberin in Casparian bands located in the endoderma revealed with Sudan III was shown to be more intensive under salt stress and coincided with the increased LTP staining. All obtained data suggest possible functions of LTPs in pea roots. We assume that these proteins can participate in stress-induced pea root suberization or in transport of phloem lipid molecules. Salt stress increased ABA immunostaining in pea root cells but its localization was different from that of the LTPs. Thus, we failed to confirm the hypothesis regarding the direct influence of ABA on the level of LTPs in the salt-stressed root cells. Full article
(This article belongs to the Special Issue Phytohormones)
Show Figures

Figure 1

12 pages, 5796 KiB  
Article
Phenotypic Plasticity in the Structure of Fine Adventitious Metasequoia glyptostroboides Roots Allows Adaptation to Aquatic and Terrestrial Environments
by Chaodong Yang, Xia Zhang, Ting Wang, Shuangshuang Hu, Cunyu Zhou, Jian Zhang and Qingfeng Wang
Plants 2019, 8(11), 501; https://doi.org/10.3390/plants8110501 - 14 Nov 2019
Cited by 23 | Viewed by 3960
Abstract
Metasequoia glyptostroboides (Cupressaceae) is a rare deciduous conifer which grows successfully in both aquatic and terrestrial environments. This tree has a narrow natural distribution in central China but is cultivated worldwide. Using histochemical staining and microscopy (both brightfield and epifluorescent), we investigated whether [...] Read more.
Metasequoia glyptostroboides (Cupressaceae) is a rare deciduous conifer which grows successfully in both aquatic and terrestrial environments. This tree has a narrow natural distribution in central China but is cultivated worldwide. Using histochemical staining and microscopy (both brightfield and epifluorescent), we investigated whether the phenotypic anatomical and histochemical plasticity in the fine adventitious roots of M. glyptostroboides has promoted the adaptation of this plant to aquatic and terrestrial environments. The fine root development and cortex sloughing of M. glyptostroboides occurs later in aquatic habitats than in terrestrial habitats. Anatomical and histochemical analyses have revealed that the apoplastic barriers in the primary growth of the fine roots consist of the endodermis and exodermis with Casparian bands, suberin lamellae, and secondarily lignified cell walls. There were also lignified phi (Φ) thickenings in the cortex. In both aquatic and terrestrial roots, secondary growth was observed in the vascular cambium, which produced secondary xylem and phloem, as well as in the phellogen, which produced cork. As compared to terrestrial adventitious roots, aquatic adventitious roots had multiple lignified Φ thickenings throughout the cortex, larger air spaces, dilated parenchyma, and dense suberin and lignin depositions in the exodermis. Our results thus indicate that phenotypic plasticity in the anatomical features of the fine adventitious roots, including apoplastic barriers, air spaces, and lignified Φ thickenings, might support the adaptation of M. glyptostroboides to both aquatic and terrestrial environments. Full article
(This article belongs to the Special Issue Root Development)
Show Figures

Figure 1

18 pages, 7139 KiB  
Article
THROUGH THE LOOKING GLASS: Real-Time Imaging in Brachypodium Roots and Osmotic Stress Analysis
by Zaeema Khan, Hande Karamahmutoğlu, Meltem Elitaş, Meral Yüce and Hikmet Budak
Plants 2019, 8(1), 14; https://doi.org/10.3390/plants8010014 - 8 Jan 2019
Cited by 8 | Viewed by 6120
Abstract
To elucidate dynamic developmental processes in plants, live tissues and organs must be visualised frequently and for extended periods. The development of roots is studied at a cellular resolution not only to comprehend the basic processes fundamental to maintenance and pattern formation but [...] Read more.
To elucidate dynamic developmental processes in plants, live tissues and organs must be visualised frequently and for extended periods. The development of roots is studied at a cellular resolution not only to comprehend the basic processes fundamental to maintenance and pattern formation but also study stress tolerance adaptation in plants. Despite technological advancements, maintaining continuous access to samples and simultaneously preserving their morphological structures and physiological conditions without causing damage presents hindrances in the measurement, visualisation and analyses of growing organs including plant roots. We propose a preliminary system which integrates the optical real-time visualisation through light microscopy with a liquid culture which enables us to image at the tissue and cellular level horizontally growing Brachypodium roots every few minutes and up to 24 h. We describe a simple setup which can be used to track the growth of the root as it grows including the root tip growth and osmotic stress dynamics. We demonstrate the system’s capability to scale down the PEG-mediated osmotic stress analysis and collected data on gene expression under osmotic stress. Full article
Show Figures

Figure 1

12 pages, 2898 KiB  
Article
Evidence for the Root-Uptake of Arsenite at Lateral Root Junctions and Root Apices in Rice (Oryza sativa L.)
by Angelia L. Seyfferth, Jean Ross and Samuel M. Webb
Soils 2017, 1(1), 3; https://doi.org/10.3390/soils1010003 - 14 Aug 2017
Cited by 11 | Viewed by 5338
Abstract
The uptake of arsenite (As(III)i) at the Casparian band via Lsi1 and Lsi2 Si transporters is responsible for ~75% of shoot As(III)i uptake in rice and, therefore, ~25% of shoot As(III)i is taken up by other transport pathways. We [...] Read more.
The uptake of arsenite (As(III)i) at the Casparian band via Lsi1 and Lsi2 Si transporters is responsible for ~75% of shoot As(III)i uptake in rice and, therefore, ~25% of shoot As(III)i is taken up by other transport pathways. We hypothesized that areas devoid of Casparian bands—lateral root junctions and root apices—can transport As(III)i into roots. We analyzed the elemental distribution and As concentration, speciation, and localization in rice roots from soil-grown and solution-grown plants. With solution-grown plants dosed with As(III)i, we sectioned roots as a function of distance from the root apex and analyzed the cross-sections using confocal microscopy coupled to synchrotron X-ray fluorescence imaging and spectroscopy. We observed elevated As(III)i associated with lateral root junctions and root apices in rice. As(III)i entered the stele at lateral root junctions and radially permeated the root interior in cross-sections 130–140 µm from the root apex that are devoid of Casparian bands. Our findings suggest that lateral root junctions and rice root apices are hot-spots for As(III)i transport into rice roots, but the contribution to shoot As requires further research. Full article
(This article belongs to the Special Issue Rhizosphere Processes)
Show Figures

Figure 1

Back to TopTop