Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = Carthamus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5319 KiB  
Article
Exogenous Sucrose Improves the Vigor of Aged Safflower Seeds by Mediating Fatty Acid Metabolism and Glycometabolism
by Tang Lv, Lin Zhong, Juan Li, Cuiping Chen, Bin Xian, Tao Zhou, Chaoxiang Ren, Jiang Chen, Jin Pei and Jie Yan
Plants 2025, 14(15), 2301; https://doi.org/10.3390/plants14152301 - 25 Jul 2025
Viewed by 207
Abstract
Safflower (Carthamus tinctorius L.) seeds, rich in triacylglycerols, have poor fatty acid-to-sugar conversion during storage, affecting longevity and vigor. Previous experiments have shown that the aging of safflower seeds is mainly related to the impairment of energy metabolism pathways such as glycolysis, [...] Read more.
Safflower (Carthamus tinctorius L.) seeds, rich in triacylglycerols, have poor fatty acid-to-sugar conversion during storage, affecting longevity and vigor. Previous experiments have shown that the aging of safflower seeds is mainly related to the impairment of energy metabolism pathways such as glycolysis, fatty acid degradation, and the tricarboxylic acid cycle. The treatment with exogenous sucrose can partially promote the germination of aged seeds. However, the specific pathways through which exogenous sucrose promotes the germination of aged safflower seeds have not yet been elucidated. This study aimed to explore the molecular mechanism by which exogenous sucrose enhances the vitality of aged seeds. Phenotypically, it promoted germination and seedling establishment in CDT-aged seeds but not in unaged ones. Biochemical analyses revealed increased soluble sugars and fatty acids in aged seeds with sucrose treatment. Enzyme activity and transcriptome sequencing showed up-regulation of key enzymes and genes in related metabolic pathways in aged seeds, not in unaged ones. qPCR confirmed up-regulation of genes for triacylglycerol and fatty acid-to-sugar conversion. Transmission electron microscopy showed a stronger connection between the glyoxylate recycler and oil bodies, accelerating oil body degradation. In conclusion, our research shows that exogenous sucrose promotes aged safflower seed germination by facilitating triacylglycerol hydrolysis, fatty acid conversion, and glycometabolism, rather than simply serving as a source of energy to supplement the energy deficiency of aged seeds. These findings offer practical insights for aged seeds, especially offering an effective solution to the aging problem of seeds with high oil content. Full article
(This article belongs to the Special Issue Molecular Regulation of Seed Development and Germination)
Show Figures

Figure 1

13 pages, 1520 KiB  
Article
Dynamic vs. Static Light Scattering: Evaluating the Tandem Use of Dynamic Light Scattering and Optical Microscopy as an Attractive Alternative for Oleosomes Size Characterization
by Idit Yuli, Lotan Ben Yakov, Ariel Gliksberg and Paul Salama
Cosmetics 2025, 12(4), 158; https://doi.org/10.3390/cosmetics12040158 - 25 Jul 2025
Viewed by 354
Abstract
Accurate characterization of oleosome particle size distribution is needed for understanding their functionality in various applications. Traditionally, high-cost methods such as static laser diffraction and confocal or electron microscopy have been used. The current study presents a cost-effective alternative by combining optical microscopy [...] Read more.
Accurate characterization of oleosome particle size distribution is needed for understanding their functionality in various applications. Traditionally, high-cost methods such as static laser diffraction and confocal or electron microscopy have been used. The current study presents a cost-effective alternative by combining optical microscopy (OM) with image analysis and dynamic light scattering (DLS) to evaluate particle size distribution in safflower (Carthamus tinctorius) oleosomes. Monodisperse and polydisperse standards (2 µm and 1–10 µm, respectively) were selected to validate instrument performance. The use of a smaller cuvette with a shorter path length in DLS extended its detection capabilities by minimizing multiple scattering and thermal effects. DLS and OM produced relatively consistent results, accurate particles’ diameters and distribution widths that agreed well with the standards. In contrast, static light scattering (SLS) showed strong sensitivity to the weighting method used (by number vs. by volume). In the case of polydisperse standard, volume-weighted SLS overestimated the particle size and yielded a broader distribution with a span of 2.2 compared to a span value of 0.8 as reported by the supplier. These findings highlight the importance of method selection and demonstrate the potential of combining DLS and OM as a practical and reliable approach for oleosome characterization. Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

20 pages, 5477 KiB  
Article
Genome-Wide Identification of the CtNF-Y Gene Family and Expression Analysis of Different Flower Colours and Different Flowering Stages in Carthamus tinctorius L.
by Jianhang Zhang, Shuwei Qin, Lili Wang, Mengyuan Ma, Wanting Yang, Wenjie Shen, Yaqian Lu, Mingqiang Bao, Meng Zhao, Hongbin Li, Asigul Ismayil and Aiping Cao
Plants 2025, 14(14), 2111; https://doi.org/10.3390/plants14142111 - 9 Jul 2025
Viewed by 347
Abstract
Safflower (Carthamus tinctorius L.) is a plant in the family of Asteraceae, and the dried tubular flowers are used as medicine, which contain active ingredients such as safflower yellow pigment and safflower glycosides. They play important roles in many fields. NF-Y, as [...] Read more.
Safflower (Carthamus tinctorius L.) is a plant in the family of Asteraceae, and the dried tubular flowers are used as medicine, which contain active ingredients such as safflower yellow pigment and safflower glycosides. They play important roles in many fields. NF-Y, as an important transcription factor in plants, regulates a variety of plant life activities. In this study, we identified and analysed 11 CtNF-Y gene family members from safflower for the first time. Their core motifs, which are conserved structural domains, gene structures, and cis-acting elements, are described in this study. In addition, there was good collinearity between safflower CtNF-Y and other species. Protein–protein interaction network analysis showed that the CtNF-YA1 and CtNF-YB subfamilies were the core proteins of the interaction network. Real-time quantitative PCR (qRT-PCR) studies showed that the expression level of the CtNF-Y gene was regulated by safflower flower colour and safflower flowering period. Subcellular localisation results showed that three CtNF-Y proteins were located in the nucleus, the cellular regulatory centre of the plant. This study will provide valuable insights into the selection of key candidate genes in the network of regulatory mechanisms for the formation of safflower flower colour and flowering time. Full article
Show Figures

Figure 1

14 pages, 1317 KiB  
Article
Role of Agricultural Management in Short-Term Monitoring of Arthropod Diversity at Field Scale
by Simone Bergonzoli, Luca Cozzolino, Elio Romano and Luigi Pari
Ecologies 2025, 6(3), 45; https://doi.org/10.3390/ecologies6030045 - 23 Jun 2025
Viewed by 376
Abstract
In recent decades, a significant decline in arthropods’ abundance and biodiversity, as a consequence of intensive agricultural practices and reductions in their natural environments, has been observed. While landscape-scale biodiversity studies are well documented in the literature, the impact of field-level agricultural management [...] Read more.
In recent decades, a significant decline in arthropods’ abundance and biodiversity, as a consequence of intensive agricultural practices and reductions in their natural environments, has been observed. While landscape-scale biodiversity studies are well documented in the literature, the impact of field-level agricultural management remains less understood. To address this gap, a sampling of diversity was carried out through Malaise traps on five agricultural surfaces with different management schemes: two characterized by the presence of trees (Populus L. spp. and Eucalyptus spp.), two herbaceous fields in different development stages (flowering Carthamus tinctorius L. and stubble of Triticum aestivum), and one mixed system (an agroforestry plantation composed of Populus L. spp. and Carthamus tinctorius L.). Data collection focused on evaluating the total animal biomass (weight and number) and the richness and evenness components of diversity using Shannon and Simpson indices at the Order level. The sampled arthropods belonged to six Orders of Insecta and one Order of Arachnida. The agroforestry system had a higher total animal biomass, in terms of weight, than the other treatments (61.24% higher than in the eucalyptus system, 58.91% higher than in the wheat stubble, 42.63% higher than in the flowering safflower system, and 11.63% higher than in the poplar plantation), with the number of total arthropods following a similar trend. The results demonstrated that the biomass, richness, and evenness of the collected arthropods varied according to the management practices applied, and higher values were recorded in the agroforestry system. Although preliminary, the findings suggest the suitability of mixed systems for sustaining higher diversity than traditional monoculture management schemes. Full article
Show Figures

Figure 1

19 pages, 3271 KiB  
Article
Investigation of In Vitro and In Silico Anti-Inflammatory Potential of Carthamus caeruleus L. Root Juice
by Idir Moualek, Hamdi Bendif, Ali Dekir, Karima Benarab, Yousra Belounis, Walid Elfalleh, Karim Houali and Gregorio Peron
Int. J. Mol. Sci. 2025, 26(13), 5965; https://doi.org/10.3390/ijms26135965 - 21 Jun 2025
Viewed by 430
Abstract
This study aimed to evaluate the anti-inflammatory properties of Carthamus caeruleus L. root juice (CRJ), which is used in the traditional medicine of Algeria. The product was characterized by colorimetric assays (total polyphenols, flavonoids, and tannins) and by RP-HPLC-DAD analysis. Experiments were conducted [...] Read more.
This study aimed to evaluate the anti-inflammatory properties of Carthamus caeruleus L. root juice (CRJ), which is used in the traditional medicine of Algeria. The product was characterized by colorimetric assays (total polyphenols, flavonoids, and tannins) and by RP-HPLC-DAD analysis. Experiments were conducted in vitro to assess the ability of CRJ to stabilize human erythrocyte membranes under various stress conditions and inhibit albumin denaturation, a process linked to inflammation. An in silico study was also performed to investigate the inhibitory effects on cyclooxygenase-2 (COX-2) and assess the phenolic constituents with the highest activity. Moderate levels of polyphenols, flavonoids, and tannins were assessed; among these, 22 compounds were identified via chromatographic analysis. While present at low concentrations, some of these compounds, including myricetin, luteolin, and quercetin, are known to exhibit bioactivity at micromolar levels. CRJ provided erythrocyte membranes with notable protection against disruption caused by hypotonic NaCl solutions (protection levels of 90.51%, 87.46%, and 76.87% at NaCl concentrations of 0.7%, 0.5%, and 0.3%, respectively), heat stress (81.54%), and oxidative damage from HClO (75.43%). Additionally, a protection of 61.5% was observed against albumin denaturation. Docking analysis indicated favorable COX-2 binding for myricetin, luteolin, and quercetin. In conclusion, the root juice derived from C. caeruleus demonstrated potential anti-inflammatory activity in vitro and in silico. However, further studies, including in vivo investigations, are necessary to confirm efficacy and fully elucidate the mechanisms of action. Full article
(This article belongs to the Special Issue Applications of Phytochemicals in Drug Synthesis)
Show Figures

Figure 1

24 pages, 23424 KiB  
Article
Hidden Treasures: Precious Textiles from the St Eustace Head Reliquary
by Joanne Dyer, Diego Tamburini, Naomi Speakman and Caroline R. Cartwright
Heritage 2025, 8(6), 206; https://doi.org/10.3390/heritage8060206 - 4 Jun 2025
Viewed by 685
Abstract
Almost 70 years after the surprise discovery of a cache of textile-wrapped relics inside an early 13th-century reliquary bust, the St Eustace head reliquary (accession number 1850,1127.1), four of the textile relic wrappings were analysed by combining multiband imaging and fibre-optic reflectance spectroscopy [...] Read more.
Almost 70 years after the surprise discovery of a cache of textile-wrapped relics inside an early 13th-century reliquary bust, the St Eustace head reliquary (accession number 1850,1127.1), four of the textile relic wrappings were analysed by combining multiband imaging and fibre-optic reflectance spectroscopy (FORS), as well as dye analysis by high-pressure liquid chromatography coupled to mass spectrometry (HPLC-MS) and fibre analysis by scanning electron microscopy—energy dispersive X-ray spectroscopy (SEM-EDX). In all cases, the use of silk was confirmed, in line with the idea that these precious textiles were purposefully chosen for reuse in a sacred setting. Additionally, dye analysis was able to point to the possible geographic origins of the textile fragments. For 1850,1127.1.a, a mixture of sappanwood (Biancaea sappan) and flavonoid yellow dyes was commensurate with a Chinese or Central Asian origin. Mediterranean origins were thought likely for 1850,1127.1.c and 1850,1127.1.f, from the mixture of kermes (Kermes vermilio) and cochineal (likely Porphyrophora sp.), found in the mauve band of the former, and the combination of weld (Reseda luteola), madder (Rubia tinctorum) and an indigoid dye found in the latter. Finally, the unusual combination of sappanwood, orchil and a yellow dye containing flavonoid glucuronides suggested a less straightforward origin for textile 1850,1127.1.g. The other textile fragments from the reliquary were only investigated using FORS without removing them from their Perspex glass mounts. Nonetheless, indications for the presence of insect-red anthraquinone dyes, safflower (Carthamus tinctorius) and an indigoid dye were obtained from some of these fragments. The study provides a window into the landscape of availability, use and re-use in sacred contexts of precious textiles in the 13th century and evidences the geographic reach of these silks, allowing a new perspective on the St Eustace head reliquary. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

19 pages, 9987 KiB  
Article
Dye Plants Used by the Indigenous Peoples of the Amur River Basin on Fish Skin Artefacts
by Elisa Palomino
Heritage 2025, 8(6), 195; https://doi.org/10.3390/heritage8060195 - 29 May 2025
Viewed by 524
Abstract
Research on fish skin artefacts’ dyeing practices among the Nivkh, Nanai, Ulchi, Udegei, Oroch, and Negidal Indigenous Peoples of the Amur River basin remains scarce. These fishing communities traditionally crafted fish skin garments, essential to their subsistence and spiritual life, adorning them with [...] Read more.
Research on fish skin artefacts’ dyeing practices among the Nivkh, Nanai, Ulchi, Udegei, Oroch, and Negidal Indigenous Peoples of the Amur River basin remains scarce. These fishing communities traditionally crafted fish skin garments, essential to their subsistence and spiritual life, adorning them with protective motifs. While artistic and cultural aspects of these belongings have been explored, their dyeing techniques remain understudied. This multidisciplinary research examines natural colourants in fish skin artefacts from international museum collections, using historical textual research, ethnographic records, Native Traditional Knowledge, and previous dye analysis by museum conservators. Findings reveal a restricted but meaningful palette of red, blue, yellow, and black colourants, sourced from plants, minerals, and organic materials. Early dyers extracted blue from indigotin-rich plants such as Polygonum tinctorium, or from Commelina communis petals. Red hues were obtained from Carthamus tinctorius petals, introduced through Silk Route trade networks, or from minerals like red ochre. Black was derived from carbon black, while riverine minerals were ground with dry fish roe diluted with water to create additional colour variations. This study first reviews fish skin use in Amur River Indigenous cultures, explores nineteenth-century dyeing materials and techniques, and finally considers broader implications for Indigenous material heritage. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

14 pages, 12730 KiB  
Article
Study on the Synergistic Effect of Plant Dyes and Mordants on the Dyeing and Anti-Mold Effect of Moso Bamboo
by Shan Li, Jianwen Xiong, Lilang Zheng, Yuxing Han, Song Sun, Yuxiang Peng, Kaimeng Xu and Taian Chen
Forests 2025, 16(5), 755; https://doi.org/10.3390/f16050755 - 28 Apr 2025
Viewed by 482
Abstract
Bamboo’s single color and susceptibility to mold substantially limit its wide application. Therefore, dyeing and mold prevention have become pivotal technologies for the high-value-added utilization of bamboo. This study selected the extracts of three plants (Caesalpinia sappan L. (Cs), Rubia cordifolia L. [...] Read more.
Bamboo’s single color and susceptibility to mold substantially limit its wide application. Therefore, dyeing and mold prevention have become pivotal technologies for the high-value-added utilization of bamboo. This study selected the extracts of three plants (Caesalpinia sappan L. (Cs), Rubia cordifolia L. (Rc), and Carthamus tinctorius L. (Ct)) for dyeing and mold prevention experiments. The results showed that the three extracts had good dyeing effects on bamboo, with total color differences (ΔE*) of 31.69, 21.61, and 32.29 compared to untreated bamboo, respectively. Additionally, these had a moderate inhibitory effect on mold. The introduction of metal mordants effectively enhances the dyeing effect of plant dyes and the effectiveness of mold inhibition. Through the joint modification of Cs and Cu, the color fixation rate increased from 3.12% to 9.20% compared with the Cs extract. A Cu 1 g:300 mL Cs extract impregnation of bamboo can completely inhibit the growth of Aspergillus niger, and a 1 g:1100 mL ratio can completely inhibit the growth of Trichoderma viride. This study provides a new concept for applying plant dyes in the dyeing and mold prevention treatment of bamboo. The dual-effect treatment of dyeing and mold prevention enhances the visual characteristics of bamboo while imparting it with good mold prevention performance. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

25 pages, 82520 KiB  
Review
Research Progress of Genomics Applications in Secondary Metabolites of Medicinal Plants: A Case Study in Safflower
by Zhihua Wu, Yan Hu, Ruru Hao, Ruting Li, Xiaona Lu, Mdachi Winfrida Itale, Yang Yuan, Xiaoxian Zhu, Jiaqiang Zhang, Longxiang Wang, Meihao Sun and Xianfei Hou
Int. J. Mol. Sci. 2025, 26(8), 3867; https://doi.org/10.3390/ijms26083867 - 19 Apr 2025
Viewed by 917
Abstract
Medicinal plants, recognized as significant natural resources, have gained prominence in response to the increasing global demand for herbal medicines, necessitating the large-scale production of these plants and their derivatives. Medicinal plants are exposed to a variety of internal and external factors that [...] Read more.
Medicinal plants, recognized as significant natural resources, have gained prominence in response to the increasing global demand for herbal medicines, necessitating the large-scale production of these plants and their derivatives. Medicinal plants are exposed to a variety of internal and external factors that interact to influence the biosynthesis and accumulation of secondary metabolites. With the rapid development of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics, multi-omics technologies have become important tools for revealing the complexity and functionality of organisms. They are conducive to further uncovering the biological activities of secondary metabolites in medicinal plants and clarifying the molecular mechanisms underlying the production of secondary metabolites. Also, artificial intelligence (AI) technology accelerates the comprehensive utilization of high-dimensional datasets and offers transformative potential for multi-omics analysis. However, there is currently no systematic review summarizing the genomic mechanisms of secondary metabolite biosynthesis in medicinal plants. Safflower (Carthamus tinctorius L.) has rich and diverse bioactive flavonoids, among of which Hydroxysafflor yellow A (HSYA) is specific to safflower and emerging as a potential medication for treating a wide range of diseases. Hence, significant progress has been made in the study of safflower as an excellent example for the regulation of secondary metabolites in medicinal plants in recent years. Here, we review the progress on the understanding of the regulation of main secondary metabolites at the multi-omics level, and summarize the influence of various factors on their types and contents, with a particular focus on safflower flavonoids. This review aims to provide a comprehensive insight into the regulatory mechanisms of secondary metabolite biosynthesis from the perspective of genomics. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 2nd Edition)
Show Figures

Figure 1

21 pages, 9699 KiB  
Article
Genome-Wide Identification of the ARF Gene Family in Safflower (Carthamus tinctorius L.) and Their Response Patterns to Exogenous Hormone Treatments
by Shuwei Qin, Xinrong Wen, Mengyuan Ma, Jiaxing Wang, Jianhang Zhang, Meihui Huang, Kexin Sun, Ya Zhao, Meng Zhao, Asigul Ismayil, Min Liu and Aiping Cao
Int. J. Mol. Sci. 2025, 26(8), 3773; https://doi.org/10.3390/ijms26083773 - 16 Apr 2025
Cited by 1 | Viewed by 673
Abstract
Auxin response factors (ARFs) are a class of transcription factors widely present in plants. As an important economic crop, research on the effects of safflower ARFs on endogenous auxin and effective components is relatively limited. In this study, a total of 23 ARF [...] Read more.
Auxin response factors (ARFs) are a class of transcription factors widely present in plants. As an important economic crop, research on the effects of safflower ARFs on endogenous auxin and effective components is relatively limited. In this study, a total of 23 ARF genes were identified from the safflower genome. Sequence alignment and domain analysis indicated the presence of conserved B3 and Auxin_resp domains in these ARFs. Phylogenetic analysis indicated that CtARF could be classified into five subfamilies, a conclusion also supported by gene structure, consensus motifs, and domain compositions. Transcriptome data showed that ARFs are expressed in all flower colors, but the expression levels of ARF family members vary among different flower colors. CtARF19 had relatively higher expression in deep red flowers, CtARF3 had higher expression in white flowers, CtARF2/12 had higher expression in yellow flowers, and CtARF21/22 had higher expression in light red flowers. Protein–protein interaction network analysis indicated that ARF family members (CtARF2/3/4/5/15/18/19/22) are located within the interaction network. Cis-acting element analysis suggested that CtARF genes may be regulated by hormone treatment (AuxRR-core) and abiotic stress, and the results of qRT-PCR also confirmed this. Additionally, the content of endogenous auxin and active components in safflower with different flower colors significantly changed upon treatment with hormones that affect IAA content. In summary, our study provides valuable insights into the biological functions of CtARF genes under exogenous hormone conditions and their effects on active components. Full article
(This article belongs to the Special Issue Research on Plant Genomics and Breeding: 2nd Edition)
Show Figures

Figure 1

17 pages, 953 KiB  
Article
Fly in the Ointment: Host-Specificity Challenges for Botanophila turcica, a Candidate Agent for the Biological Control of Saffron Thistle in Australia
by Vincent Lesieur, Thierry Thomann, Mireille Jourdan, Javid Kashefi and Marie-Claude Bon
Insects 2025, 16(4), 357; https://doi.org/10.3390/insects16040357 - 28 Mar 2025
Viewed by 446
Abstract
In classical biological control of weeds, the risk posed by a candidate agent to close relatives of the target weed in the intended area of release is a key criterion (i.e., candidate agents that demonstrate a high degree of host specificity). In this [...] Read more.
In classical biological control of weeds, the risk posed by a candidate agent to close relatives of the target weed in the intended area of release is a key criterion (i.e., candidate agents that demonstrate a high degree of host specificity). In this study, we investigated if the rosette crown-feeding fly Botanophila turcica Hennig (Diptera: Anthomyiidae) could meet this criterion and thus be considered a good candidate to control saffron thistle Carthamus lanatus L. (Asteraceae: Cardueae) in Australia. Previous studies indicated that B. turcica is specific to Ca. lanatus and did not infest the closely related crop, safflower (Carthamus tinctorius L.). However, more recent field observations made in Greece reported that B. turcica infested safflower in cultivated fields. To determine if B. turcica is safe for release as a biocontrol agent, we re-examined the host range of B. turcica by performing new host-specificity testing combined with field surveys carried out in the south of France during two consecutive years. We also investigated the species identity of the flies by comparing DNA sequences (COI barcode region) of specimens collected in France from Ca. lanatus and Centaurea solstitialis L. with those from Greece collected from Ce. solstitialis and Centaurea diffusa Lam. Our COI analyses confirmed that French and Greek samples identified as B. turcica belonged to the same species, while a second group of Greek samples matched B. brunneilinea, indicating two distinct species. Our results also demonstrated that B. turcica has a wider host range than previously suggested. Laboratory testing indicated that Ca. lanatus, Ca. tinctorius, and Ce. solstitialis are suitable for the development of B. turcica. Field surveys also revealed that Ce. diffusa is part of the host range of the fly. Based on the results reported here, B. turcica may have the potential to control both the target weed, Ca. lanatus, and Ce. Solstitialis, but it may also be a threat to safflower, Ca. tinctorius. Further investigations to assess under what conditions B. turcica attacks Ca. tinctorius may help clarify the level of risk to Australian growers. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 3066 KiB  
Article
Flower Color and Seed Coat Color as a Phenotypic Marker: Correlations with Fatty Acid Composition, Antioxidant Properties, and Metabolite Profiles in Safflower (Carthamus tinctorius L.)
by Weilan Li, Eun-Gyeong Kim, Dongho Lee, Young-Min Choi, Jae-Eun Lee, Sookyeong Lee, Gi-An Lee and Eunae Yoo
Int. J. Mol. Sci. 2025, 26(7), 3105; https://doi.org/10.3390/ijms26073105 - 27 Mar 2025
Viewed by 529
Abstract
Safflower (Carthamus tinctorius L.) is a versatile oilseed crop valued for its adaptability, high oil quality, and antioxidant properties. This study investigates the influence of flower color (FC) on the phenotypic diversity of 172 safflower accessions, analyzing agronomic traits, metabolite profiles, and [...] Read more.
Safflower (Carthamus tinctorius L.) is a versatile oilseed crop valued for its adaptability, high oil quality, and antioxidant properties. This study investigates the influence of flower color (FC) on the phenotypic diversity of 172 safflower accessions, analyzing agronomic traits, metabolite profiles, and antioxidant capacities. Frequency distribution, effect size, principal component analysis (PCA), and network analysis were employed to elucidate trait associations and interrelationships. FC significantly impacted traits such as oleic acid (OA), linoleic acid (LA), oleic desaturation ratio (ODR), and N-feruloylserotonin (FS), with large effect sizes (η2 > 0.16). Medium effects were observed for 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging capacity, palmitic acid (PA), and flowering date (FD). PCA and network analyses highlighted relationships between FC and other fatty acid and antioxidant traits. Qualitative traits such as seed coat color (SCC) and thorn of involucre (TI) also showed significant associations with FC, underscoring its role as a phenotypic marker. These findings provide a robust framework for trait-based breeding strategies in safflower and emphasize the need for further genetic validation of these associations. Full article
Show Figures

Figure 1

26 pages, 2856 KiB  
Article
Potential Natural Antioxidant and Anti-Inflammatory Properties of Carthamus caeruleus L. Root Aqueous Extract: An In Vitro Evaluation
by Yousra Belounis, Idir Moualek, Hillal Sebbane, Hakima Ait Issad, Sarah Saci, Bilal Saoudi, El-hafid Nabti, Lamia Trabelsi, Karim Houali and Cristina Cruz
Processes 2025, 13(3), 878; https://doi.org/10.3390/pr13030878 - 17 Mar 2025
Cited by 3 | Viewed by 1175
Abstract
Carthamus caeruleus L. is traditionally used in Algerian medicine, particularly for burn treatment, but its therapeutic potential remains insufficiently studied. This study aimed to evaluate the antioxidant and anti-inflammatory properties of the root aqueous extract, and to perform phytochemical characterization to identify its [...] Read more.
Carthamus caeruleus L. is traditionally used in Algerian medicine, particularly for burn treatment, but its therapeutic potential remains insufficiently studied. This study aimed to evaluate the antioxidant and anti-inflammatory properties of the root aqueous extract, and to perform phytochemical characterization to identify its bioactive compounds. Phytochemical analysis was conducted using spectrophotometry and reverse-phase high-performance liquid chromatography (RP-HPLC). The antioxidant potential was assessed through various assays, including ferric reducing antioxidant power (FRAP), total antioxidant capacity (TAC), DPPH radical scavenging, hydroxyl radical scavenging, ferrous ion chelation, and hydrogen peroxide decomposition. Anti-inflammatory activity was evaluated using membrane stabilization, protein denaturation, and membrane peroxidation assays. The extract exhibited moderate levels of polyphenols, flavonoids, and condensed tannins, quantified as 21.19 ± 0.37 mg GAE/g, 0.72 ± 0.013 mg QE/g, and 27.28 ± 1.04 mg TAE/g of dry extract, respectively. RP-HPLC analysis identified 22 phytochemical compounds, primarily phenolic acids, flavonoids, and tannins, with orientin and vanillin as the major constituents. The extract demonstrated significant antioxidant activity, with moderate efficacy in TAC and FRAP assays (IC50 values of 5405.1 ± 4.42 and 1132.35 ± 4.97 µg/mL, respectively). Notable activities included DPPH and hydroxyl radical scavenging (34.43 ± 4.83 and 512.81 ± 9.46 µg/mL, respectively), ferrous ion chelation (2462.76 ± 1.38 µg/mL), lipid peroxidation inhibition (22.32 ± 3.31%), and hydrogen peroxide decomposition (263.93 ± 7.87 µg/mL). Additionally, the extract stabilized erythrocyte membranes under osmotic, thermal, and oxidative stress conditions (98.13 ± 0.15%, 70 ± 1.27%, and 89 ± 0.87%, respectively), inhibited ovalbumin denaturation (81.05 ± 2.2%), and protected against lipid peroxidation in brain homogenates (69.25 ± 0.89%). These findings support the traditional therapeutic applications of C. caeruleus and highlight its potential as a source of antioxidant and anti-inflammatory agents. Full article
Show Figures

Figure 1

11 pages, 1073 KiB  
Article
The Performance of the Super-High-Oleic Acid Safflower (Carthamus tinctorius) Oil During Intermittent Frying
by Randy Adjonu, Paul D. Prenzler and Jamie Ayton
Foods 2025, 14(5), 729; https://doi.org/10.3390/foods14050729 - 21 Feb 2025
Viewed by 897
Abstract
High-oleic acid edible oils are appealing, especially for frying, due to their nutritional benefits and high heat stability. This study benchmarked the newly developed super-high-oleic acid safflower oil (SHOSO) against high-oleic acid sunflower (HOSO), conventional canola (CCO), and rice bran (RBO) oils in [...] Read more.
High-oleic acid edible oils are appealing, especially for frying, due to their nutritional benefits and high heat stability. This study benchmarked the newly developed super-high-oleic acid safflower oil (SHOSO) against high-oleic acid sunflower (HOSO), conventional canola (CCO), and rice bran (RBO) oils in a frying exercise. The oils were used to fry potato chips for 30 h (90 cycles), and their performance was assessed by measuring the changes in total polar compounds (TPCs), tocopherols, and fatty acid composition. SHOSO contained ~91% oleic acid and had the longest induction time (~35 h) compared with HOSO (~80%; 15.3 h), CCO (~62; 8.8 h), and RBO (~41%; 9.7). After 90 frying cycles, SHOSO’s performance was comparable to that of HOSO, showing the highest increase in TPCs and shortest frying lives (~22.5–25.1 h) compared with CCO (~27.5–33.0 h) and RBO (>30 h). Approximately 97% of the tocopherol in both high-oleic acid oils was α-tocopherol, which was depleted within 6 h. Moreover, SHOSO recorded the largest change in oleic acid, followed by HOSO. SHOSO’s higher oleic acid content influenced its thermal stability and frying life. This study showed SHOSO as a suitable frying oil, and its higher oleic acid content makes it attractive as a functional and healthier fat alternative in food formulations. Full article
(This article belongs to the Special Issue Edible Oil: Processing, Safety and Sustainability)
Show Figures

Graphical abstract

17 pages, 6269 KiB  
Article
Morphogenetic Identification of a New Record Condica capensis (Lepidoptera: Noctuidae) in Yunnan, China
by Pengfan Qian, Jiayin Fan, Xiaoyuan Zhang, Minfang Zeng, Xiaolong Han, Yonghe Li and Xulu Luo
Insects 2025, 16(2), 130; https://doi.org/10.3390/insects16020130 - 29 Jan 2025
Viewed by 1104
Abstract
Condica capensis (Lepidoptera: Noctuidae), a newly identified pest in Yunnan Province, China, poses a threat to safflower crops. Discovered in Nanhua County in November 2023, the pest damages safflower at multiple life stages, especially during its larval stage, when it feeds on leaves, [...] Read more.
Condica capensis (Lepidoptera: Noctuidae), a newly identified pest in Yunnan Province, China, poses a threat to safflower crops. Discovered in Nanhua County in November 2023, the pest damages safflower at multiple life stages, especially during its larval stage, when it feeds on leaves, tender stems, and flower filaments, sometimes causing the entire plant to die. Morphological and molecular analyses, including mitochondrial cytochrome C oxidase I (COI) gene sequencing, confirmed its identity as C. capensis, a new species record for Yunnan. The study also documented the pest’s life cycle, reproductive behavior, and natural enemies, highlighting the potential for biological control using parasitic wasps such as Cotesia sp. This research emphasizes the need for accurate pest identification and monitoring to develop effective, sustainable pest management strategies. As safflower cultivation grows in Yunnan, managing C. capensis is critical to safeguarding local agriculture and preventing broader agricultural threats. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

Back to TopTop