Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Candida rugosa lipase l

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3249 KiB  
Article
Understanding Lipase-Deep Eutectic Solvent Interactions Towards Biocatalytic Esterification
by Can Liu and Jian Shi
Catalysts 2025, 15(4), 358; https://doi.org/10.3390/catal15040358 - 6 Apr 2025
Viewed by 846
Abstract
Deep eutectic solvents (DESs) have shown promise as a medium for extracting polar volatile fatty acids (VFAs) and in situ esterification of the extracted molecules using lipases. This solvent enhanced biocatalysis process can potentially streamline VFA separation from fermentation broth by integrating conversion [...] Read more.
Deep eutectic solvents (DESs) have shown promise as a medium for extracting polar volatile fatty acids (VFAs) and in situ esterification of the extracted molecules using lipases. This solvent enhanced biocatalysis process can potentially streamline VFA separation from fermentation broth by integrating conversion and extraction steps. Two commercial lipases from Aspergillus oryzae (AoL) and Candida rugosa (CrL) were evaluated in reaction systems containing hydrophilic or hydrophobic DESs using a newly optimized lipase assay. The optimal pH for both lipases was around 5.0, with a slight reduction in activity at pH 8.0 and a significant inhibition at pH 2.0. The impact of DES concentration on lipase activity varied depending on the specific DES–lipase pairs. Most hydrophilic DESs show good compatibility with the tested lipases. Specifically for choline chloride/ethylene glycol (1:2) and choline chloride/levulinic acid (1:2), taking into account the influence of pH, CrL activity increased with DES concentration. However, the hydrophobic DES thymol/2,6-dimethoxyphenol (1:2) demonstrated enhanced inhibitory effects on both lipases. Docking simulation helped explain the ligand–protein interactions but showed limited capability in predicting the compatibility of specific DES–lipase pairs due to its constraints in simulating flexible protein structures and the complex interactions between DES components and water. Full article
Show Figures

Graphical abstract

23 pages, 3795 KiB  
Article
Evaluation of Antioxidant, Antibacterial and Enzyme-Inhibitory Properties of Dittany and Thyme Extracts and Their Application in Hydrogel Preparation
by Stamatia Spyrou, Myrto G. Bellou, Angelos Papanikolaou, Konstantina Nakou, Vasiliki G. Kontogianni, Alexandra V. Chatzikonstantinou and Haralambos Stamatis
BioChem 2024, 4(3), 166-188; https://doi.org/10.3390/biochem4030009 - 10 Jul 2024
Cited by 3 | Viewed by 2693
Abstract
In the present work, methanolic extracts from thyme and dittany plants were prepared and characterized in terms of their polyphenolic content through analytical and spectrophotometric techniques. Rosmarinic acid, thymol and carvacrol were found to be the main components of the extracts, which were [...] Read more.
In the present work, methanolic extracts from thyme and dittany plants were prepared and characterized in terms of their polyphenolic content through analytical and spectrophotometric techniques. Rosmarinic acid, thymol and carvacrol were found to be the main components of the extracts, which were further biologically assessed for their antioxidant, anti-tyrosinase, anti-lipase and antibacterial activity against Gram-negative and Gram-positive bacteria. As found, thyme extracts exhibited superior antioxidant activity (SC50 at 33.9 μg mL−1), while dittany extracts inhibited the microbial growth to a great extent against Bacillus subtilis strain (MIC at 0.5 mg mL−1) and E. coli strain (MIC at 2 mg mL−1). Furthermore, the thyme extract was proven to strongly inhibit the activity of lipase from Candida rugosa (IC50 at 63.9 μg mL−1), comparable to the standard inhibitor orlistat, while its inhibitory effect against mushroom tyrosinase was weak. On the other hand, the dittany extract presented an inhibitory effect against the tested lipase (IC50 over 500 μg mL−1) and an activation effect against tyrosinase (at concentrations > 500 μg mL−1). Additionally, molecular docking studies of the main compounds of the extracts showed that rosmarinic acid plays a crucial role on the inhibitory activity of the extracts against lipase, while thymol has a stronger effect on inhibiting tyrosinase. Furthermore, both extracts were employed in the preparation of gelatin-deep eutectic solvent (DES) hydrogels that were further studied for their antioxidant and antibacterial activity. The results showed that the incorporation of the extracts offered antibacterial properties to the biopolymer-based hydrogels and enhanced the antioxidant activity of gelatin up to 85%. Full article
(This article belongs to the Topic Biological Activity of Plant Extracts)
Show Figures

Figure 1

10 pages, 1649 KiB  
Communication
Lipase-Assisted Synthesis of Alkyl Stearates: Optimization by Taguchi Design of Experiments and Application as Defoamers
by Enoch Olvera-Ureña, Jorge Lopez-Tellez, M. Monserrat Vizueto, J. Guadalupe Hidalgo-Ledezma, Baltazar Martinez-Quiroz and Jose A. Rodriguez
Molecules 2024, 29(1), 195; https://doi.org/10.3390/molecules29010195 - 29 Dec 2023
Cited by 1 | Viewed by 1797
Abstract
The present work proposes the optimization of enzymatic synthesis of alkyl stearates using stearic acid, alkyl alcohols (C1-OH, C2-OH, C4-OH, C8-OH and C16-OH) and Candida rugosa lipase by a L9 (34 [...] Read more.
The present work proposes the optimization of enzymatic synthesis of alkyl stearates using stearic acid, alkyl alcohols (C1-OH, C2-OH, C4-OH, C8-OH and C16-OH) and Candida rugosa lipase by a L9 (34) Taguchi-type design of experiments. Four variables were evaluated (reaction time, temperature, kU of lipase and alcohol:stearic acid molar ratio), ensuring that all variables were critical. In optimal conditions, five stearates were obtained with conversions > 90%. The obtained products were characterized by nuclear magnetic resonance (NMR). Additionally, the defoaming capacity of the five stearates was evaluated, obtaining better performance for the compound synthesized from C8-OH alcohol. Full article
(This article belongs to the Special Issue Chemometrics Tools in Analytical Chemistry 2.0)
Show Figures

Figure 1

16 pages, 2236 KiB  
Article
β-Sitosterol Oleate Synthesis by Candida rugosa Lipase in a Solvent-Free Mini Reactor System: Free and Immobilized on Chitosan-Alginate Beads
by Adejanildo da S. Pereira, Jully L. Fraga, Camila P. L. Souza, Alexandre G. Torres and Priscilla F. F. Amaral
Catalysts 2023, 13(4), 780; https://doi.org/10.3390/catal13040780 - 21 Apr 2023
Cited by 4 | Viewed by 2353
Abstract
Candida rugosa lipase (CRL) was immobilized by the ionic gelling technique using alginate and chitosan as encapsulating agents. An immobilization yield of 99% and an immobilization efficiency of 51% were obtained. Maximum hydrolytic activity for free and immobilized CRL was detected at 40 [...] Read more.
Candida rugosa lipase (CRL) was immobilized by the ionic gelling technique using alginate and chitosan as encapsulating agents. An immobilization yield of 99% and an immobilization efficiency of 51% were obtained. Maximum hydrolytic activity for free and immobilized CRL was detected at 40 °C and for synthesis activity at 35 °C. The optimum pH for immobilized and free CRL hydrolysis activity was 8.0. The Vmax obtained for the hydrolysis reaction was higher for free CRL (4121.4 μmol/min/g) compared to immobilized CRL (2359.13 μmol/min/g). A Vmax of 2.24 μmol/min/g was detected for the synthetic activity of free CRL. The Km obtained for the hydrolysis reaction was higher (660.02 μmol/L) for immobilized CRL than for free CRL (403.06 μmol/L). For the synthetic activity, a Km of 234.44 μmol/L was calculated. The conversion of β-sitosterol oleate ranged from 80.85 to 96.84% for free CRL, higher than the maximum found for immobilized CRL (32%). The scale-up (scale factor: 50) with the free CRL was successfully performed, achieving a high conversion value (92%) in a 500 mL bioreactor. This conversion value was within the range predicted by the mathematical model obtained using mini reactors. These mini reactors are good models to test several conditions of enzyme reactions that are intended for large scales. Full article
(This article belongs to the Special Issue Lipase: A Multi-Purpose Biocatalyst at the Forefront of Biotechnology)
Show Figures

Figure 1

14 pages, 3217 KiB  
Communication
Synthesis and Characterization of Aminoamidine-Based Polyacrylonitrile Fibers for Lipase Immobilization with Effective Reusability and Storage Stability
by Yasser M. Al Angari, Yaaser Q. Almulaiky, Maha M. Alotaibi, Mahmoud A. Hussein and Reda M. El-Shishtawy
Int. J. Mol. Sci. 2023, 24(3), 1970; https://doi.org/10.3390/ijms24031970 - 19 Jan 2023
Cited by 18 | Viewed by 2176
Abstract
Lipases are extensively utilized industrial biocatalysts that play an important role in various industrial and biotechnological applications. Herein, polyacrylonitrile (PAN) was treated with hexamethylene diamine (HMDA) and activated by glutaraldehyde, then utilized as a carrier support for Candida rugosa lipase. In this regard, [...] Read more.
Lipases are extensively utilized industrial biocatalysts that play an important role in various industrial and biotechnological applications. Herein, polyacrylonitrile (PAN) was treated with hexamethylene diamine (HMDA) and activated by glutaraldehyde, then utilized as a carrier support for Candida rugosa lipase. In this regard, the morphological structure of modified PAN before and after the immobilization process was evaluated using FTIR and SEM analyses. The immobilized lipase exhibited the highest activity at pH 8.0, with an immobilization yield of 81% and an activity of 91%. The optimal pH and temperature for free lipase were 7.5 and 40 °C, while the immobilized lipase exhibited its optimal activity at a pH of 8.0 and a temperature of 50 °C. After recycling 10 times, the immobilized lipase maintained 76% of its activity and, after 15 reuses, it preserved 61% of its activity. The lipase stability was significantly improved after immobilization, as it maintained 76% of its initial activity after 60 days of storage. The calculated Km values were 4.07 and 6.16 mM for free and immobilized lipase, and the Vmax values were 74 and 77 μmol/mL/min, respectively. These results demonstrated that synthetically modified PAN is appropriate for immobilizing enzymes and has the potential for commercial applications. Full article
(This article belongs to the Special Issue Biocatalysis and Bioactive Molecules: Future and Development)
Show Figures

Figure 1

6 pages, 1399 KiB  
Proceeding Paper
Molecular Encapsulation of Hydrolyzed Chia Seed Oil by Ultrasonically Treated Amylose Inclusion Complexes
by Andrea E. Di Marco, Vanesa Y. Ixtaina and Mabel C. Tomás
Biol. Life Sci. Forum 2022, 17(1), 24; https://doi.org/10.3390/blsf2022017024 - 10 Nov 2022
Viewed by 1530
Abstract
Chia (Salvia hispanica L.) seed oil is a naturally rich source of α-linolenic (~65%) and linoleic (~20%) essential fatty acids, which are known for their beneficial effects on health. However, they are highly susceptible to oxidative deterioration. Amylose, the linear component of [...] Read more.
Chia (Salvia hispanica L.) seed oil is a naturally rich source of α-linolenic (~65%) and linoleic (~20%) essential fatty acids, which are known for their beneficial effects on health. However, they are highly susceptible to oxidative deterioration. Amylose, the linear component of starch, has the ability to form inclusion complexes with hydrophobic molecules (ligand), which may act as delivery systems of sensitive bioactive compounds, including essential omega-3 and omega-6 fatty acids. In the present work, the hydrolytic effectiveness of Candida rugosa and porcine pancreatic lipases to obtain chia seed oil-free fatty acids was compared, which were complexed with high-amylose starch through the alkaline method with and without the incorporation of ultrasonic treatment. The highest level of free fatty acids released (>80%) was reached with Candida rugosa lipase. The inclusion complexes formed with this hydrolysate displayed a typical V-type X-ray diffraction pattern (peaks at ~7.5, 13, and 20° (2θ)), which confirmed an effective complexation. Moreover, ultrasonically treated complexes displayed a small peak at ~21°, from crystallized saturated fatty acids. Through attenuated total reflectance Fourier-transform infrared spectroscopy, the presence of typical bands of fatty acids in the complexes was verified, whose intensity increased after the application of ultrasonic treatment. The dissociation temperature determined using differential scanning calorimetry was >90 °C. According to this, Candida rugosa lipase showed better hydrolytic effectiveness on chia seed oil, and the fatty acids released were able to form amylose inclusion complexes with high thermal stability, whose properties varied after ultrasonic treatment. Full article
(This article belongs to the Proceedings of IV Conference Ia ValSe-Food CYTED and VII Symposium Chia-Link)
Show Figures

Figure 1

15 pages, 3059 KiB  
Article
The Effect of Solvent Hydrophilicity on the Enzymatic Ring-Opening Polymerization of L-Lactide by Candida rugosa Lipase
by Catia Angli Curie, Muhammad Arif Darmawan, Dianursanti Dianursanti, Wiratni Budhijanto and Misri Gozan
Polymers 2022, 14(18), 3856; https://doi.org/10.3390/polym14183856 - 15 Sep 2022
Cited by 5 | Viewed by 2520
Abstract
Contradictions have been reported on the effect of organic solvents, especially toluene, on enzymatic ring-opening polymerization (eROP) of L-lactide. Studies have shown that log P, a common measure of hydrophilicity, affects enzyme activity. This study examines the effect of solvents with various log [...] Read more.
Contradictions have been reported on the effect of organic solvents, especially toluene, on enzymatic ring-opening polymerization (eROP) of L-lactide. Studies have shown that log P, a common measure of hydrophilicity, affects enzyme activity. This study examines the effect of solvents with various log P values on the eROP of L-lactide, performed using Candida rugosa lipase (CRL). N,N-dimethylacetamide (DMA), 1,2-dimethoxybenzene, 1,4-dimethoxybenzene, diphenyl ether, and dodecane were used as the organic solvents. The eROP in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) was also conducted to compare its performance with the organic solvents. The results show that [BMIM][PF6]-mediated eROP gave better conversion and molecular weight than the organic solvent-mediated eROP. In this study, the effects of solvents hydrophilicity are discussed, including the possibility of hexafluorophosphate ion ([PF6]) hydrolysis to occur. Full article
(This article belongs to the Special Issue Biodegradable Polyesters: Synthesis, Properties, Applications)
Show Figures

Figure 1

19 pages, 3217 KiB  
Article
Hydrolysis of Edible Oils by Fungal Lipases: An Effective Tool to Produce Bioactive Extracts with Antioxidant and Antimicrobial Potential
by Alexandra Kotogán, Zsófia Terézia Furka, Tamás Kovács, Bettina Volford, Dóra Anna Papp, Mónika Varga, Thu Huynh, András Szekeres, Tamás Papp, Csaba Vágvölgyi, Keshab Chandra Mondal, Erika Beáta Kerekes and Miklós Takó
Foods 2022, 11(12), 1711; https://doi.org/10.3390/foods11121711 - 10 Jun 2022
Cited by 11 | Viewed by 4212
Abstract
Hydrolysis of olive, rapeseed, linseed, almond, peanut, grape seed and menhaden oils was performed with commercial lipases of Aspergillus niger, Rhizopus oryzae, Rhizopus niveus, Rhizomucor miehei and Candida rugosa. In chromogenic plate tests, olive, rapeseed, peanut and linseed oils [...] Read more.
Hydrolysis of olive, rapeseed, linseed, almond, peanut, grape seed and menhaden oils was performed with commercial lipases of Aspergillus niger, Rhizopus oryzae, Rhizopus niveus, Rhizomucor miehei and Candida rugosa. In chromogenic plate tests, olive, rapeseed, peanut and linseed oils degraded well even after 2 h of incubation, and the R. miehei, A. niger and R. oryzae lipases exhibited the highest overall action against the oils. Gas chromatography analysis of vegetable oils hydrolyzed by R. miehei lipase revealed about 1.1 to 38.4-fold increases in the concentrations of palmitic, stearic, oleic, linoleic and α-linolenic acids after the treatment, depending on the fatty acids and the oil. The major polyunsaturated fatty acids produced by R. miehei lipase treatment from menhaden oil were linoleic, α-linolenic, hexadecanedioic, eicosapentaenoic, docosapentaenoic and docosahexaenoic acids, with yields from 12.02 to 52.85 µg/mL reaction mixture. Folin–Ciocalteu and ferric reducing power assays demonstrated improved antioxidant capacity for most tested oils after the lipase treatment in relation to the concentrations of some fatty acids. Some lipase-treated and untreated samples of oils, at 1.25 mg/mL lipid concentration, inhibited the growth of food-contaminating bacteria. The lipid mixtures obtained can be reliable sources of extractable fatty acids with health benefits. Full article
(This article belongs to the Special Issue Enzymes in Food Industry: Novel Food Processing Technologies)
Show Figures

Figure 1

9 pages, 7014 KiB  
Article
Enzymatic Synthesis and Antimicrobial Activity of Oligomer Analogues of Medicinal Biopolymers from Comfrey and Other Species of the Boraginaceae Family
by Maia Merlani, Dieter M. Scheibel, Vakhtang Barbakadze, Lali Gogilashvili, Lela Amiranashvili, Athina Geronikaki, Valentina Catania, Domenico Schillaci, Giuseppe Gallo and Ivan Gitsov
Pharmaceutics 2022, 14(1), 115; https://doi.org/10.3390/pharmaceutics14010115 - 4 Jan 2022
Cited by 11 | Viewed by 3107
Abstract
This study reports the first enzymatic synthesis leading to several oligomer analogues of poly[3-(3,4-dihydroxyphenyl)glyceric acid]. This biopolymer, extracted from plants of the Boraginaceae family has shown a wide spectrum of pharmacological properties, including antimicrobial activity. Enzymatic ring opening polymerization of 2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane (MDBPO) using [...] Read more.
This study reports the first enzymatic synthesis leading to several oligomer analogues of poly[3-(3,4-dihydroxyphenyl)glyceric acid]. This biopolymer, extracted from plants of the Boraginaceae family has shown a wide spectrum of pharmacological properties, including antimicrobial activity. Enzymatic ring opening polymerization of 2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane (MDBPO) using lipase from Candida rugosa leads to formation of poly[2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane] (PMDBPO), with a degree of polymerization up to 5. Catalytic debenzylation of PMDBPO using H2 on Pd/C yields poly[2-methoxycarbonyl-3-(3,4-dihydroxyphenyl)oxirane] (PMDHPO) without loss in molecular mass. Antibacterial assessment of natural polyethers from different species of Boraginaceae family Symhytum asperum, S. caucasicum,S. grandiflorum, Anchusa italica, Cynoglossum officinale, and synthetic polymers, poly[2-methoxycarbonyl-3-(3,4-dimethoxyphenyl)oxirane (PMDMPO) and PMDHPO, reveals that only the synthetic analogue produced in this study (PMDHPO) exhibits a promising antimicrobial activity against pathogenic strains S.aureus ATCC 25923 and E.coli ATCC 25922 the minimum inhibitory concentration (MIC) being 100 µg/mL. Full article
Show Figures

Figure 1

14 pages, 2756 KiB  
Article
Synthesis of Linoleic Acid 13-Hydroperoxides from Safflower Oil Utilizing Lipoxygenase in a Coupled Enzyme System with In-Situ Oxygen Generation
by Valentin Gala Marti, Anna Coenen and Ulrich Schörken
Catalysts 2021, 11(9), 1119; https://doi.org/10.3390/catal11091119 - 17 Sep 2021
Cited by 13 | Viewed by 5142
Abstract
Linoleic acid hydroperoxides are versatile intermediates for the production of green note aroma compounds and bifunctional ω-oxo-acids. An enzyme cascade consisting of lipoxygenase, lipase and catalase was developed for one-pot synthesis of 13-hydroperoxyoctadecadienoic acid starting from safflower oil. Reaction conditions were optimized for [...] Read more.
Linoleic acid hydroperoxides are versatile intermediates for the production of green note aroma compounds and bifunctional ω-oxo-acids. An enzyme cascade consisting of lipoxygenase, lipase and catalase was developed for one-pot synthesis of 13-hydroperoxyoctadecadienoic acid starting from safflower oil. Reaction conditions were optimized for hydroperoxidation using lipoxygenase 1 from Glycine max (LOX-1) in a solvent-free system. The addition of green surfactant Triton CG-110 improved the reaction more than two-fold and yields of >50% were obtained at linoleic acid concentrations up to 100 mM. To combine hydroperoxidation and oil hydrolysis, 12 lipases were screened for safflower oil hydrolysis under the reaction conditions optimized for LOX-1. Lipases from Candida rugosa and Pseudomonas fluorescens were able to hydrolyze safflower oil to >75% within 5 h at a pH of 8.0. In contrast to C. rugosa lipase, the enzyme from P. fluorescens did not exhibit a lag phase. Combination of P. fluorescens lipase and LOX-1 worked well upon LOX-1 dosage and a synergistic effect was observed leading to >80% of hydroperoxides. Catalase from Micrococcus lysodeikticus was used for in-situ oxygen production with continuous H2O2 dosage in the LOX-1/lipase reaction system. Foam generation was significantly reduced in the 3-enzyme cascade in comparison to the aerated reaction system. Safflower oil concentration was increased up to 300 mM linoleic acid equivalent and 13-hydroperoxides could be produced in a yield of 70 g/L and a regioselectivity of 90% within 7 h. Full article
(This article belongs to the Special Issue Enzyme Catalysis: Advances, Techniques and Outlooks)
Show Figures

Graphical abstract

13 pages, 1829 KiB  
Article
Codisplay of Rhizopus oryzae and Candida rugosa Lipases for Biodiesel Production
by Xiaoxu Yang, Yan Zhang, Huimin Pang, Sheng Yuan, Xuxia Wang, Zhiming Hu, Qinghua Zhou, Yaojia He, Yunjun Yan and Li Xu
Catalysts 2021, 11(4), 421; https://doi.org/10.3390/catal11040421 - 26 Mar 2021
Cited by 19 | Viewed by 2989
Abstract
In this study, we overcame the limitations of single-enzyme system catalysis by codisplaying Candida rugosa lipase 1 (CRL1) and Rhizopus oryzae lipase (ROL) on the cell surfaces of the whole-cell catalyst Pichia pastoris to produce biodiesel from tallow seed oil. We screened double [...] Read more.
In this study, we overcame the limitations of single-enzyme system catalysis by codisplaying Candida rugosa lipase 1 (CRL1) and Rhizopus oryzae lipase (ROL) on the cell surfaces of the whole-cell catalyst Pichia pastoris to produce biodiesel from tallow seed oil. We screened double antibiotic-resistant strains on tributyrin plates, performed second electroporation based on single-displayed ROL on GS115/KpRS recombinants and single-displayed CRL1 on GS115/ZCS recombinants and obtained an ROL/CRL1 codisplay on P. pastoris GS115 surfaces. The maximum activity of the codisplaying GS115/pRCS recombinant was 470.59 U/g dried cells, which was 3.9-fold and 1.3-fold higher than that of single-displayed ROL and CRL1, respectively. When self-immobilized lipases were used as whole-cell catalysts, the rate of methyl ester production from GS115/pRCS harboring ROL and CRL1 was 1.4-fold higher than that obtained with single-displayed ROL. Therefore, biodiesel catalysis by synergetic codisplayed enzymes is an alternative biodiesel production strategy. Full article
Show Figures

Figure 1

19 pages, 1737 KiB  
Article
Sustainable Enzymatic Synthesis of a Solketal Ester—Process Optimization and Evaluation of Its Antimicrobial Activity
by Patricia A. Mendoza-Ortiz, Rafaela S. Gama, Omar C. Gómez, Jaine H. H. Luiz, Roberto Fernandez-Lafuente, Erika C. Cren and Adriano A. Mendes
Catalysts 2020, 10(2), 218; https://doi.org/10.3390/catal10020218 - 11 Feb 2020
Cited by 30 | Viewed by 4679
Abstract
The present study aims the enzymatic synthesis of solketal palmitate by esterification between solketal and palmitic acid using heptane as solvent. Lipases from Thermomyces lanuginosus (TLL), Candida rugosa type VII (CRL), and Pseudomonas fluorescens (PFL) were immobilized via interfacial activation on rice husk [...] Read more.
The present study aims the enzymatic synthesis of solketal palmitate by esterification between solketal and palmitic acid using heptane as solvent. Lipases from Thermomyces lanuginosus (TLL), Candida rugosa type VII (CRL), and Pseudomonas fluorescens (PFL) were immobilized via interfacial activation on rice husk silica functionalized with triethoxy(octyl)silane (Octyl–SiO2) and used as biocatalysts. A loading of 20–22 mg of lipase/g of support was immobilized independently of the studied enzyme. TLL–Octyl–SiO2 was the most active biocatalyst in oil hydrolysis (656.0 ± 23.9 U/g) and ester synthesis (productivity of 6.8 mmol/min.gbiocat), and it has been chosen for further ester synthesis optimization. The effect of some important parameters such as biocatalyst concentration, reaction temperature and acid:alcohol molar ratio on the reaction has been evaluated using a central composite rotatable design at fixed mechanical stirring (240 rpm) and reaction time (15 min). Subsequently, the effect of reactants concentration and molecular sieve concentration has also been examined. Under optimal conditions (56 °C, acid:alcohol molar ratio of 1:3 with a palmitic acid concentration of 1 M, and 20% wt. of TLL–Octyl–SiO2 per volume of reaction mixture), 83% acid conversion was obtained after 150 min of reaction. The biocatalyst retained 87% of its initial activity after seven successive reaction batches. The product was identified by nuclear magnetic resonance analysis. Antimicrobial activity studies showed that the synthesized ester demonstrated antifungal activity against Candida albicans and Candida parapsilosis, with minimum inhibitory concentration (MIC) between 200 and 400 µg/mL, and bacteriostatic/fungistatic action—minimum microbicial concentration (MMC) > 400 µg/mL. Full article
Show Figures

Graphical abstract

13 pages, 2559 KiB  
Article
Immobilization of Enzymes on a Phospholipid Bionically Modified Polysulfone Gradient-Pore Membrane for the Enhanced Performance of Enzymatic Membrane Bioreactors
by Yizong Guo, Xueyan Zhu, Fei Fang, Xiao Hong, Huimin Wu, Dajing Chen and Xiaojun Huang
Molecules 2018, 23(1), 144; https://doi.org/10.3390/molecules23010144 - 11 Jan 2018
Cited by 18 | Viewed by 4531
Abstract
Enzymatic membrane bioreactors (EMBRs), with synergistic catalysis-separation performance, have increasingly been used for practical applications. Generally, the membrane properties, particularly the pore structures and interface interactions, have a significant impact on the catalytic efficiency of the EMBR. Therefore, a biomimetic interface based on [...] Read more.
Enzymatic membrane bioreactors (EMBRs), with synergistic catalysis-separation performance, have increasingly been used for practical applications. Generally, the membrane properties, particularly the pore structures and interface interactions, have a significant impact on the catalytic efficiency of the EMBR. Therefore, a biomimetic interface based on a phospholipid assembled onto a polysulfone hollow-fiber membrane with perfect radial gradient pores (RGM-PSF) has been prepared in this work to construct a highly efficient and stable EMBR. On account of the special pore structure of the RGM-PSF with the apertures decreasing gradually from the inner side to the outer side, the enzyme molecules could be evenly distributed on the three-dimensional skeleton of the membrane. In addition, the supported phospholipid layer in the membrane, prepared by physical adsorption, was used for the immobilization of the enzymes, which provides sufficient linkage to prevent the enzymes from leaching but also accommodates as many enzyme molecules as possible to retain high bioactivity. The properties of the EMBR were studied by using lipase from Candida rugosa for the hydrolysis of glycerol triacetate as a model. Energy-dispersive X-ray and circular dichroism spectroscopy were employed to observe the effect of lecithin on the membrane and structure changes in the enzyme, respectively. The operational conditions were investigated to optimize the performance of the EMBR by testing substrate concentrations from 0.05 to 0.25 M, membrane fluxes from 25.5 to 350.0 L·m−2·h−1, and temperatures from 15 to 55 °C. As a result, the obtained EMBR showed a desirable performance with 42% improved enzymatic activity and 78% improved catalytic efficiency relative to the unmodified membrane. Full article
Show Figures

Figure 1

15 pages, 3194 KiB  
Article
Frozen Microemulsions for MAPLE Immobilization of Lipase
by Valeria Califano, Francesco Bloisi, Giuseppe Perretta, Antonio Aronne, Giovanni Ausanio, Aniello Costantini and Luciano Vicari
Molecules 2017, 22(12), 2153; https://doi.org/10.3390/molecules22122153 - 5 Dec 2017
Cited by 19 | Viewed by 4274
Abstract
Candida rugosa lipase (CRL) was deposited by matrix assisted pulsed laser evaporation (MAPLE) in order to immobilize the enzyme with a preserved native conformation, which ensures its catalytic functionality. For this purpose, the composition of the MAPLE target was optimized by adding the [...] Read more.
Candida rugosa lipase (CRL) was deposited by matrix assisted pulsed laser evaporation (MAPLE) in order to immobilize the enzyme with a preserved native conformation, which ensures its catalytic functionality. For this purpose, the composition of the MAPLE target was optimized by adding the oil phase pentane to a water solution of the amino acid 3-(3,4-dihydroxyphenyl)-2-methyl-l-alanine (m-DOPA), giving a target formed by a frozen water-lipase-pentane microemulsion. Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) were used to investigate the structure of MAPLE deposited lipase films. FTIR deconvolution of amide I band indicated a reduction of unfolding and aggregation, i.e., a better preserved lipase secondary structure in the sample deposited from the frozen microemulsion target. AFM images highlighted the absence of big aggregates on the surface of the sample. The functionality of the immobilized enzyme to promote transesterification was determined by thin layer chromatography, resulting in a modified specificity. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Show Figures

Graphical abstract

Back to TopTop