Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Calendula arvensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1609 KiB  
Article
Formulation of Biological Sunscreen from Calendula arvensis Capitula Extracts: Antioxidant, Anti-Aging, Surface Tension, and UVB Protection Properties Assessed
by Najlae El-Otmani, Ikrame Zeouk and Ahmed Zahidi
Cosmetics 2024, 11(6), 216; https://doi.org/10.3390/cosmetics11060216 - 9 Dec 2024
Cited by 1 | Viewed by 4253
Abstract
Skin protection against ultraviolet (UV) radiation has long been crucial due to its role in photoaging, sunburn, and wrinkles. This study focuses on developing a bio-based sunscreen from Calendula arvensis capitula extract. Various extraction methods (maceration, sonication, and infusion) and solvents (EtOH, EtOH-H [...] Read more.
Skin protection against ultraviolet (UV) radiation has long been crucial due to its role in photoaging, sunburn, and wrinkles. This study focuses on developing a bio-based sunscreen from Calendula arvensis capitula extract. Various extraction methods (maceration, sonication, and infusion) and solvents (EtOH, EtOH-H2O, and H2O) were explored in order to identify the most effective extract for use in a sunscreen formulation. Each extract was analyzed for its phenolic content, as well as antioxidant activities (assessed through DPPH, CAT, and FRAP assays). Enzyme inhibition assays for tyrosinase, elastase, and collagenase highlighted the low IC50 values of the hydroethanolic extract. Furthermore, the in vitro sun protection factor (SPF) against UVB radiation was measured using ultraviolet spectrophotometry. A phytochemical analysis showed phenolic levels between 8 and 27 mg GAE/g, flavonoid concentrations of 7–13 mg QE/g, and tannin levels of 1.15–1.68 mg/mL, alongside moderate antioxidant activity. The ethanol maceration extract reduced the interfacial tension to 2.15 mN/m in 600 s, outperforming the conventional emulsifier polysorbate 20. The sonicated hydroethanolic extract demonstrated remarkable SPF efficacy (SPF = 193.65 ± 0.02), far exceeding that of the standard zinc oxide (SPF = 11.88 ± 0.03). The proposed formulations meet the COSMOS standards, suggesting their potential for certification as biological products. Further clinical and in vivo studies are necessary to confirm their safety and commercial viability. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

16 pages, 2640 KiB  
Article
Genome Studies in Four Species of Calendula L. (Asteraceae) Using Satellite DNAs as Chromosome Markers
by Tatiana E. Samatadze, Olga Yu. Yurkevich, Firdaus M. Khazieva, Irina V. Basalaeva, Olga M. Savchenko, Svyatoslav A. Zoshchuk, Alexander I. Morozov, Alexandra V. Amosova and Olga V. Muravenko
Plants 2023, 12(23), 4056; https://doi.org/10.3390/plants12234056 - 2 Dec 2023
Cited by 4 | Viewed by 2452
Abstract
The taxonomically challenging genus Calendula L. (Asteraceae) includes lots of medicinal species characterized by their high morphological and karyological variability. For the first time, a repeatome analysis of a valuable medicinal plant Calendula officinalis L. was carried out using high-throughput genome DNA sequencing [...] Read more.
The taxonomically challenging genus Calendula L. (Asteraceae) includes lots of medicinal species characterized by their high morphological and karyological variability. For the first time, a repeatome analysis of a valuable medicinal plant Calendula officinalis L. was carried out using high-throughput genome DNA sequencing and RepeatExplorer/TAREAN pipelines. The FISH-based visualization of the 45S rDNA, 5S rDNA, and satellite DNAs of C. officinalis was performed on the chromosomes of C. officinalis, C. stellata Cav., C. tripterocarpa Rupr., and C. arvensis L. Three satellite DNAs were demonstrated to be new molecular chromosome markers to study the karyotype structure. Karyograms of the studied species were constructed, their ploidy status was specified, and their relationships were clarified. Our results showed that the C. officinalis karyotype differed from the karyotypes of the other three species, indicating its separate position in the Calendula phylogeny. However, the presence of common repeats revealed in the genomes of all the studied species could be related to their common origin. Our findings demonstrated that C. stellata contributed its genome to allotetraploid C. tripterocarpa, and C. arvensis is an allohexaploid hybrid between C. stellata and C. tripterocarpa. At the same time, further karyotype studies of various Calendula species are required to clarify the pathways of chromosomal reorganization that occurred during speciation. Full article
Show Figures

Figure 1

19 pages, 3226 KiB  
Article
Encapsulating Calendula arvensis (Vaill.) L. Florets: UHPLC-HRMS Insights into Bioactive Compounds Preservation and Oral Bioaccessibility
by Marika Fiorentino, Simona Piccolella, Claudia Gravina, Adriano Stinca, Assunta Esposito, Michelina Catauro and Severina Pacifico
Molecules 2023, 28(1), 199; https://doi.org/10.3390/molecules28010199 - 26 Dec 2022
Cited by 5 | Viewed by 2468
Abstract
Wild edible plants, once consumed in times of famine or for health purposes, today represent an interesting dietary supplement, aimed at enriching local dishes and/or formulating healthy nutraceutical products. In fact, the broad content of different, and diversely bioactive, specialized metabolites therein suggests [...] Read more.
Wild edible plants, once consumed in times of famine or for health purposes, today represent an interesting dietary supplement, aimed at enriching local dishes and/or formulating healthy nutraceutical products. In fact, the broad content of different, and diversely bioactive, specialized metabolites therein suggests new scenarios of use which, in order to be as functional as possible, must maximize the bioactivity of these compounds while preserving their chemistry. In this context, based on a recent investigation on the metabolic profile of the organs of Calendula arvensis that highlighted that florets are abundant in flavonol glycosides and triterpene saponins, the freeze-drying encapsulation of their alcoholic extract (FE) into maltodextrin (MD) was investigated. FE-MD chemical composition was evaluated using Fourier Transform InfraRed spectroscopy (FTIR), while ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) techniques were employed to unravel FE compound preservation also during in vitro simulated digestion. The establishment of H-bonds between FE compounds and MD hydroxyl groups was in line with FE-MD biocompatibility in Caco-2 cells, while in vitro digestion mostly affected structural integrity and/or diversity. Flavonol compounds underwent deglycosylation and demethylation, while deacylation, beyond oxidation, involved triterpene saponins, which massively preserve their aglycone core. Full article
Show Figures

Figure 1

22 pages, 3808 KiB  
Article
LC-HR/MS Analysis of Lipophilic Extracts from Calendula arvensis (Vaill.) L. Organs: An Unexplored Source in Cosmeceuticals
by Claudia Gravina, Marika Fiorentino, Marialuisa Formato, Maria Tommasina Pecoraro, Simona Piccolella, Adriano Stinca, Severina Pacifico and Assunta Esposito
Molecules 2022, 27(24), 8905; https://doi.org/10.3390/molecules27248905 - 14 Dec 2022
Cited by 12 | Viewed by 2931
Abstract
As part of a project aimed at promoting the use of Calendula arvensis (Vaill.) L. (field marigold, Asteraceae) phytocomplexes in cosmeceutical formulations, the chemical composition in apolar specialized metabolites is herein elucidated. Furthermore, the screening of the cytotoxicity of the apolar extracts was [...] Read more.
As part of a project aimed at promoting the use of Calendula arvensis (Vaill.) L. (field marigold, Asteraceae) phytocomplexes in cosmeceutical formulations, the chemical composition in apolar specialized metabolites is herein elucidated. Furthermore, the screening of the cytotoxicity of the apolar extracts was evaluated in order to underline their safety as functional ingredients for cosmetics. After dissection of Calendula organs (florets, fruits, leaves, bracts, stems, and roots), ultrasound-assisted maceration in n-hexane as an extracting solvent allowed us to obtain oil-like mixtures, whose chemical composition has been highlighted through a UHPLC-ESI-QqTOF-MS/MS approach. Twenty-nine metabolites were tentatively identified; different compounds, among which the well-known poly-unsaturated fatty acids, and oxylipins and phosphatides were detected for the first time in Calendula genus. The screening of the dose-response cytotoxicity of the apolar extracts of C. arvensis highlighted the concentration of 10 μg/mL as the most suitable for the formulation of cosmeceutical preparations. Sera enriched with leaf and fruit apolar extracts turned out to have the best activity, suggesting it can be used as a new source in skin care thanks to their higher content in fatty acids. Full article
(This article belongs to the Special Issue Phytochemistry and Biological Properties of Medicinal Plants)
Show Figures

Figure 1

46 pages, 2648 KiB  
Review
Marigold Metabolites: Diversity and Separation Methods of Calendula Genus Phytochemicals from 1891 to 2022
by Daniil N. Olennikov and Nina I. Kashchenko
Molecules 2022, 27(23), 8626; https://doi.org/10.3390/molecules27238626 - 6 Dec 2022
Cited by 19 | Viewed by 4119
Abstract
Marigold (Calendula), an important asteraceous genus, has a history of many centuries of therapeutic use in traditional and officinal medicines all over the world. The scientific study of Calendula metabolites was initiated at the end of the 18th century and has [...] Read more.
Marigold (Calendula), an important asteraceous genus, has a history of many centuries of therapeutic use in traditional and officinal medicines all over the world. The scientific study of Calendula metabolites was initiated at the end of the 18th century and has been successfully performed for more than a century. The result is an investigation of five species (i.e., C. officinalis, C. arvensis, C. suffruticosa, C. stellata, and C. tripterocarpa) and the discovery of 656 metabolites (i.e., mono-, sesqui-, di-, and triterpenes, phenols, coumarins, hydroxycinnamates, flavonoids, fatty acids, carbohydrates, etc.), which are discussed in this review. The identified compounds were analyzed by various separation techniques as gas chromatography and liquid chromatography which are summarized here. Thus, the genus Calendula is still a high-demand plant-based medicine and a valuable bioactive agent, and research on it will continue for a long time. Full article
(This article belongs to the Special Issue Chromatographic Science of Natural Products III)
Show Figures

Figure 1

23 pages, 2620 KiB  
Article
Calendula arvensis (Vaill.) L.: A Systematic Plant Analysis of the Polar Extracts from Its Organs by UHPLC-HRMS
by Marika Fiorentino, Claudia Gravina, Simona Piccolella, Maria Tommasina Pecoraro, Marialuisa Formato, Adriano Stinca, Severina Pacifico and Assunta Esposito
Foods 2022, 11(3), 247; https://doi.org/10.3390/foods11030247 - 18 Jan 2022
Cited by 16 | Viewed by 4335
Abstract
Calendula arvensis (Vaill.) L. (field marigold, Asteraceae) is an alimurgic plant, whose flowers and leaves are a common part of local food dishes. The diversity in polar specialized metabolites is herein unraveled, with the aim to further promote and valorize the food use [...] Read more.
Calendula arvensis (Vaill.) L. (field marigold, Asteraceae) is an alimurgic plant, whose flowers and leaves are a common part of local food dishes. The diversity in polar specialized metabolites is herein unraveled, with the aim to further promote and valorize the food use of the plant. To this purpose, following the plant dissection of its organs (florets, fruits, leaves, bracts, stems, and roots), ultrasound assisted maceration has been employed in order to recover phenols and polyphenols. Through an untargeted UHPLC-HR MS (Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry) approach, and deeper investigation of the fragmentation patterns of each compound by tandem mass spectrometry, the florets’ constitution in triterpene saponins and flavonol glycosides has been highlighted, whereas hydroxycinnamoyl compounds are mainly in bracts and fruits. The antiradical and reducing capabilities of the organs’ extracts have been assessed, and data acquired have been analyzed by cluster analysis, which allowed bracts and fruits to be observed, despite their negligible food use, as the most active extracts. Chemical and antioxidant data on the diverse organs of field marigold suggest new investigative food and nutraceutical scenarios of this plant, also revalorizing and preserving its traditional uses. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

23 pages, 5292 KiB  
Article
A High-Content Screen for the Identification of Plant Extracts with Insulin Secretion-Modulating Activity
by Roland Hager, Johannes Pitsch, Jakob Kerbl-Knapp, Cathrina Neuhauser, Nicole Ollinger, Marcus Iken, Josef Ranner, Verena Mittermeier-Kleßinger, Corinna Dawid, Peter Lanzerstorfer and Julian Weghuber
Pharmaceuticals 2021, 14(8), 809; https://doi.org/10.3390/ph14080809 - 17 Aug 2021
Cited by 14 | Viewed by 4970
Abstract
Bioactive plant compounds and extracts are of special interest for the development of pharmaceuticals. Here, we describe the screening of more than 1100 aqueous plant extracts and synthetic reference compounds for their ability to stimulate or inhibit insulin secretion. To quantify insulin secretion [...] Read more.
Bioactive plant compounds and extracts are of special interest for the development of pharmaceuticals. Here, we describe the screening of more than 1100 aqueous plant extracts and synthetic reference compounds for their ability to stimulate or inhibit insulin secretion. To quantify insulin secretion in living MIN6 β cells, an insulin–Gaussia luciferase (Ins-GLuc) biosensor was used. Positive hits included extracts from Quillaja saponaria, Anagallis arvensis, Sapindus mukorossi, Gleditsia sinensis and Albizia julibrissin, which were identified as insulin secretion stimulators, whereas extracts of Acacia catechu, Myrtus communis, Actaea spicata L., Vaccinium vitis-idaea and Calendula officinalis were found to exhibit insulin secretion inhibitory properties. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to characterize several bioactive compounds in the selected plant extracts, and these bioactives were retested for their insulin-modulating properties. Overall, we identified several plant extracts and some of their bioactive compounds that may be used to manipulate pancreatic insulin secretion. Full article
(This article belongs to the Special Issue Natural Pharmacons: Biologically Active Plant Based Pharmaceuticals)
Show Figures

Figure 1

13 pages, 2281 KiB  
Article
Species-Specific Antioxidant Power and Bioactive Properties of the Extracts Obtained from Wild Mediterranean Calendula Spp. (Asteraceae)
by Concetta Maria Messina, Angelo Troia, Rosaria Arena, Simona Manuguerra, Theodora Ioannou, Eleonora Curcuraci, Giuseppe Renda, Claire Hellio and Andrea Santulli
Appl. Sci. 2019, 9(21), 4627; https://doi.org/10.3390/app9214627 - 31 Oct 2019
Cited by 23 | Viewed by 3741
Abstract
In this study we focused on four taxa of the genus Calendula (C. maritima, C. suffruticosa subsp. fulgida, C. arvensis, and the hybrid between the first two ones), collected in Mediterranean area (Sicily). Six extracts for each species were obtained [...] Read more.
In this study we focused on four taxa of the genus Calendula (C. maritima, C. suffruticosa subsp. fulgida, C. arvensis, and the hybrid between the first two ones), collected in Mediterranean area (Sicily). Six extracts for each species were obtained using solvents with increasing polarity (hexane, ethanol 80%, acetone 70%, and water) and through extraction by supercritical fluids (SFE). It has been observed that the solvent with the highest extraction efficiency was ethanol 80% for all species. However, SFE extracts showed high antioxidant activity comparable to the ethanol 80% extract (polyphenol, DPPH, and reducing power method). These findings were confirmed by in vitro analysis (MTT assay) where it was observed that the tested concentration (24 µg/mL), obtained from ethanol 80% and SFE extracts, showed a protective effect comparable to that induced by a synthetic antioxidant. Extraction with SFE ensured a great selectivity by avoiding the use of toxic organic solvents and thus consisted of a promising technique for sustainable production of Calendula extracts. Full article
(This article belongs to the Special Issue Antioxidants in Natural Products)
Show Figures

Graphical abstract

Back to TopTop