Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,823)

Search Parameters:
Keywords = Ca2+ cycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2539 KB  
Article
Transcriptomic and Clinical Profiling Reveals LGALS3 as a Prognostic Oncogene in Pancreatic Cancer
by Grazia Scuderi, Sanja Mijatovic, Danijela Maksimovic-Ivanic, Michelino Di Rosa, José Francisco Muñoz-Valle, Alexis Missael Vizcaíno-Quirarte, Gian Marco Leone, Katia Mangano, Paolo Fagone and Ferdinando Nicoletti
Genes 2025, 16(10), 1170; https://doi.org/10.3390/genes16101170 - 3 Oct 2025
Abstract
Background/Objectives: Galectin-3 (Gal-3), encoded by LGALS3, is a β-galactoside-binding lectin involved in diverse tumor-associated processes, including immune modulation, cell cycle regulation, and stress adaptation. Despite its known roles in cancer biology, the full extent of its molecular functions and prognostic relevance across [...] Read more.
Background/Objectives: Galectin-3 (Gal-3), encoded by LGALS3, is a β-galactoside-binding lectin involved in diverse tumor-associated processes, including immune modulation, cell cycle regulation, and stress adaptation. Despite its known roles in cancer biology, the full extent of its molecular functions and prognostic relevance across tumor types remains incompletely understood. This study aimed to systematically investigate the transcriptomic impact of LGALS3 deletion and assess its clinical significance in cancer. Methods: We analyzed CRISPR-Cas9 knockout transcriptomic data from the SigCom LINCS database to characterize the consensus gene signature associated with LGALS3 loss using functional enrichment analyses. Pan-cancer survival analyses were conducted using TIMER2.0. Differential Gal-3 protein levels in ductal adenocarcinoma and normal pancreatic tissues were evaluated using the Human Protein Atlas. Finally, functional analyses were performed in pancreatic ductal adenocarcinoma (PDAC). Results: LGALS3 deletion across multiple cancer cell lines led to transcriptomic changes involving mitotic progression, stress responses, and axonal guidance pathways. High LGALS3 expression was significantly associated with worse overall survival in lower-grade glioma, PDAC, uveal melanoma, and kidney renal papillary cell carcinoma. LGALS3 knockout in YAPC cells recapitulated the pan-cancer findings, linking LGALS3 to cell morphogenesis and proliferation. Conclusions: These findings identify Galectin-3 as a key regulator of oncogenic programs and a potential prognostic biomarker in PDAC and other malignancies, with implications for therapeutic targeting. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 2457 KB  
Article
The Potential for Reusing Superabsorbent Polymer from Baby Diapers for Water Retention in Agriculture
by Kamilla B. Shishkhanova, Vyacheslav S. Molchanov, Ilya V. Prokopiv, Alexei R. Khokhlov and Olga E. Philippova
Gels 2025, 11(10), 795; https://doi.org/10.3390/gels11100795 - 2 Oct 2025
Abstract
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and [...] Read more.
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and water retention properties of SAP gels from three different types of diapers were compared to those of an agricultural gel, Aquasorb. Sand was used as a model for soil. When mixed with sand, diaper gels have a swelling degree of ca. 100 g per gram of dried polymer, and a swelling pressure of 12–26 kPa, which are similar to those of Aquasorb gel. Using a synthesized poly(acrylamide-co-sodium acrylate) gel as an example, the correlation between the swelling pressure and the compression modulus of the swollen gel was demonstrated. Soil-hydrological constants were estimated from water retention curves obtained by equilibrium centrifugation of gel/sand mixtures. It was observed that adding 0.3 vol% of diaper gels to sand leads to a 3–4-fold increase in water range available to plants, which is close to that provided by agricultural gel Aquasorb. The water-holding properties were shown to be maintained during several swelling/deswelling cycles in the sand medium. The addition of diaper gels to soil had a significant positive impact on mustard (Brassica juncea L.) seed germination and seedling growth, similar to the agricultural gel Aquasorb. This suggests high potential for the reuse of SAPs from diaper waste to improve soil water retention and water accessibility to plants. This would provide both economic and environmental benefits, conserving energy and raw materials to produce new agricultural gels and limiting the amount of waste. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

17 pages, 1914 KB  
Article
The Role of Delayed Interval Debulking Surgery (DIDS) in the Surgical Treatment of Advanced Epithelial Ovarian Cancer: A Retrospective Cohort from an ESGO-Certified Center
by Dimitrios Zouzoulas, Iliana Sofianou, Panagiotis Tzitzis, Vasilis Theodoulidis, Kimon Chatzistamatiou, Eleni Timotheadou, Grigoris Grimbizis and Dimitrios Tsolakidis
Med. Sci. 2025, 13(4), 217; https://doi.org/10.3390/medsci13040217 - 2 Oct 2025
Abstract
Background/Objectives: Patients with advanced ovarian cancer with a high tumor burden typically undergo neoadjuvant chemotherapy (NACT) followed by interval debulking surgery. The optimal number of NACT cycles remains undefined: although three to four cycles are considered gold-standard, in real-world practice, five or [...] Read more.
Background/Objectives: Patients with advanced ovarian cancer with a high tumor burden typically undergo neoadjuvant chemotherapy (NACT) followed by interval debulking surgery. The optimal number of NACT cycles remains undefined: although three to four cycles are considered gold-standard, in real-world practice, five or more cycles are frequently administrated. This study aims to evaluate the impact of delayed interval debulking surgery (DIDS) after ≥5 cycles of NACT on the survival rates. Methods: We conducted a retrospective analysis of women with advanced ovarian cancer that underwent surgery in the 1st Department of Obstetrics–Gynecology Clinic from 2012 to 2022. Patient characteristics, oncological, and follow-up information were collected. Results: A total of 125 patients met the inclusion criteria and were divided into two groups: Group A (77 patients) received 3–4 of NACT cycles, and Group B (48 patients) ≥5 cycles. No statistically significant difference was observed between the groups concerning age, BMI, comorbidities, Aletti score, FIGO stage, pre-operative CA-125 values, surgery duration, rate of postoperative complications, hospital stay, ICU admittance, and complete gross resection (RD = 0). However, patients undergoing DIDS experienced significantly greater intraoperative blood loss. Progression-free survival did not differ between groups (IDS: 17 vs. DIDS: 18 months, p = 0.561), whereas overall survival was significantly lower in the DIDS group (IDS: 52 vs. DIDS: 36 months, p = 0.00873). This statistical significance persisted after controlling for residual disease, but was lost after adjusting for FIGO stage. Conclusions: DIDS may be considered for advanced ovarian cancer patients with a high tumor burden, when complete gross resection (RD = 0) cannot be achieved during IDS. Further prospective randomized trials are necessary to evaluate its oncological safety and morbidity. Full article
Show Figures

Figure 1

26 pages, 6919 KB  
Article
Reticuline and Coclaurine Exhibit Vitamin D Receptor-Dependent Anticancer and Pro-Apoptotic Activities in the Colorectal Cancer Cell Line HCT116
by Hind A. Alghamdi, Sahar S. Alghamdi, Maryam Hassan Al-Zahrani, Thadeo Trivilegio, Sara Bahattab, Rehab AlRoshody, Yazeid Alhaidan, Rana A. Alghamdi and Sabine Matou-Nasri
Curr. Issues Mol. Biol. 2025, 47(10), 810; https://doi.org/10.3390/cimb47100810 - 1 Oct 2025
Abstract
Alkaloids have garnered significant interest as potential anticancer agents. Vitamin D receptor (VDR) plays a role in preventing the progression of colorectal cancer (CRC) and may be a crucial mediator of the anticancer effects produced by certain alkaloids. The search for novel anticancer [...] Read more.
Alkaloids have garnered significant interest as potential anticancer agents. Vitamin D receptor (VDR) plays a role in preventing the progression of colorectal cancer (CRC) and may be a crucial mediator of the anticancer effects produced by certain alkaloids. The search for novel anticancer drugs that induce VDR expression and act through the VDR could improve the clinical outcomes of CRC patients. The anticancer and pro-apoptotic effects of coclaurine and reticuline were investigated using CRISPR/Cas9-edited VDR/knockout (KO) and wild-type (WT) CRC HCT116 cell lines. Western blotting, RT-qPCR, confocal microscopy, cell viability, scratch assays, and flow cytometry were employed to assess VDR expression and cellular localization, cell growth, wound-healing, cytotoxicity, apoptotic status, cell cycle progression, and VDR-mediated gene expression. Coclaurine and reticuline dose-dependently inhibited HCT116-WT cell viability, decreased wound-healing, and increased VDR nuclear localization and gene expression while downregulating the oncogenic genes SNAIL1 and SNAIL2. Both alkaloids induced late apoptosis in HCT116-WT cells, increased the cleavage of PARP and caspase-3, and upregulated Bax and TP53 while decreasing BCL-2. Both alkaloids caused HCT116-WT cell growth arrest in the S-phase, which is associated with cyclin A1 overexpression. Coclaurine and reticuline lost their anticancer effects in HCT116-VDR/KO cells. Docking studies revealed that both alkaloids occupied the VDR’s active site. These findings demonstrate that coclaurine and reticuline exert anti-CRC and pro-apoptotic activities via the VDR, suggesting them as natural therapeutic candidates. The use of in vivo CRC models is needed to validate the anticancer activities of coclaurine and reticuline. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
22 pages, 6779 KB  
Article
Unveiling the Responses’ Feature of Composites Subjected to Fatigue Loadings—Part 1: Theoretical and Experimental Fatigue Response Under the Strength-Residual Strength-Life Equal Rank Assumption (SRSLERA) and the Equivalent Residual Strength Assumption (ERSA)
by Alberto D’Amore and Luigi Grassia
J. Compos. Sci. 2025, 9(10), 528; https://doi.org/10.3390/jcs9100528 - 1 Oct 2025
Abstract
This paper discusses whether the principal response features of composites subjected to fatigue loadings, including residual strength and lifetime statistics under variable amplitude (VA) loadings, can be resolved based on constant amplitude (CA) fatigue life data. The approach is based on the strength-residual [...] Read more.
This paper discusses whether the principal response features of composites subjected to fatigue loadings, including residual strength and lifetime statistics under variable amplitude (VA) loadings, can be resolved based on constant amplitude (CA) fatigue life data. The approach is based on the strength-residual strength-life equal-rank assumption (SRSLERA), providing a statistical correspondence between the static strength, residual strength, and fatigue life distribution functions under CA loadings. Under VA loadings, the strength degradation progression and then the fatigue lifetime are calculated by dividing the loading spectrum into a sequence of CA block loadings of given extents (including one cycle), and assuming that the strength at the end of a generic block loading equals the strength at the start of the consecutive one, namely the equivalent residual strength assumption (ERSA). The consequences of SRSLERA and ERSA are first discussed by re-elaborating a series of uniaxial, statistically sound CA residual strength and fatigue life data obtained under different loading ratios, R, ranging from pure tension to mixed tension–compression to pure compression. It is shown that the static strength Weibull’s shape and scale parameters, as well as the fatigue formulation parameters recovered under pure compression or tension loadings, represent the fingerprint of composite materials subjected to fatigue and characterize their uniqueness. The residual strength statistics, fatigue probability density functions (PDFs), and constant life diagram (CLD) construction are theoretically reported. Then, based on ERSA, the statistical lifetimes under VA loadings and the cycle-by-cycle damage progressions of block repeated loadings are analyzed, and a residual strength-based damage rule is compared to Miner’s rule. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

23 pages, 3989 KB  
Article
Sequence Stratigraphy of the Volhynian (Late Middle Miocene) Deposits from the North Sector of Eastern Carpathian Foredeep
by Crina Miclӑuș, Anca Seserman, Sergiu Loghin and Viorel Ionesi
Geosciences 2025, 15(10), 379; https://doi.org/10.3390/geosciences15100379 - 1 Oct 2025
Abstract
An exposed sedimentary succession, ca 115 m of a total of 1000 m, from the Eastern Carpathian foredeep was, for the first time, analyzed using facies analysis and scale- and time-independent sequence stratigraphy methods to reveal the depositional environment and its cyclic sedimentation. [...] Read more.
An exposed sedimentary succession, ca 115 m of a total of 1000 m, from the Eastern Carpathian foredeep was, for the first time, analyzed using facies analysis and scale- and time-independent sequence stratigraphy methods to reveal the depositional environment and its cyclic sedimentation. The outcropping deposits, belonging to the Șomuz Formation, dated on the basis of molluscs, foraminifera, and ostracods, are uppermost Volhynian (upper Serravalian). The three recurrent facies associations we have distinguished indicate a storm-dominated shoreface–offshore transition environment. Five-decametre-thick high-frequency sequences (HFS1–5), at most of 4th order, bounded by maximum regressive surfaces, were defined in the studied interval. The maximum thickness of the Volhynian deposits in the area, known both from well sites and outcrops, allowed us to estimate the sedimentation rate at ca 1.5 m/kyr. The fossil content shows that the entire sedimentary succession was deposited in very shallow to shallow water during the whole Volhynian (12.65 - ca 12.01 Ma). The time interval we studied was estimated at ca 75 kyr, so the average time of one HFS is ca 15 kyr. At this scale, considering that both high subsidence and Eastern Paratethys sea-level rise added to accommodation, the sediment supply must have been the main control of cyclic sedimentation, which, in turn, must have been controlled by precession climatic changes in the source area. The estimated time of an HFS is shorter than a precession cycle, but better dating might support or refute this hypothesis. This paper may awaken the interest of the owners of better data, especially from subsurface (seismic, well logs), to complete the data from natural exposures. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

35 pages, 2479 KB  
Article
Cost–Benefit and Market Viability Analysis of Metals and Salts Recovery from SWRO Brine Compared with Terrestrial Mining and Traditional Chemical Production Methods
by Olufisayo E. Ojo and Olanrewaju A. Oludolapo
Water 2025, 17(19), 2855; https://doi.org/10.3390/w17192855 - 30 Sep 2025
Abstract
Seawater reverse osmosis (SWRO) desalination generates a concentrated brine byproduct rich in dissolved salts and minerals. This study presents an extensive economic and technical analysis of recovering all major ions from SWRO brine, which includes Na, Cl, Mg, Ca, SO4, K, [...] Read more.
Seawater reverse osmosis (SWRO) desalination generates a concentrated brine byproduct rich in dissolved salts and minerals. This study presents an extensive economic and technical analysis of recovering all major ions from SWRO brine, which includes Na, Cl, Mg, Ca, SO4, K, Br, B, Li, Rb, and Sr in comparison to conventional mining and chemical production of these commodities. Data from recent literature and case studies are compiled to quantify the composition of a typical SWRO brine and the potential yield of valuable products. A life-cycle cost framework is applied, incorporating capital expenditure (CAPEX), operational expenditure (OPEX), and total water cost (TWC) impacts. A representative simulation for a large 100,000 m3/day SWRO plant shows that integrated “brine mining” systems could recover on the order of 3.8 million tons of salts per year. At optimistic recovery efficiencies, the gross annual revenue from products (NaCl, Mg(OH)2/MgO, CaCO3, KCl, Br2, Li2CO3, etc.) can reach a few hundred million USD. This revenue is comparable to or exceeds the added costs of recovery processes under favorable conditions, potentially offsetting desalination costs by USD 0.5/m3 or more. We compare these projections with the economics of obtaining the same materials through conventional mining and chemical processes worldwide. Major findings indicate that recovery of abundant low-value salts (especially NaCl) can supply bulk revenue to cover processing costs, while extraction of scarce high-value elements (Li, Rb, Sr, etc.) can provide significant additional profit if efficient separation is achieved. The energy requirements and unit costs for brine recovery are analyzed against those of terrestrial or conventional mining; in many cases, brine-derived production is competitive due to avoided raw material extraction and potential use of waste or renewable energy. CAPEX for adding mineral recovery to a desalination plant is significant but can be justified by revenue and by strategic benefits such as reduced brine disposal. Our analysis, drawing on global data and case studies (e.g., projects in Europe and the Middle East), suggests that metals and salts recovery from SWRO brine is technically feasible and, at sufficient scale, economically viable in many regions. We provide detailed comparisons of cost, yield, and market value for each target element, along with empirical models and formulas for profitability. The results offer a roadmap for integrating brine mining into desalination operations and highlight key factors such as commodity prices, scale economies, energy integration, and policy incentives that influence the competitiveness of brine recovery against traditional mining. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

18 pages, 3555 KB  
Article
Turks in the Teleri? Interpreting Earrings, Stripes, and Veils in Carpaccio’s Narrative Cycles
by Clare Wilde
Religions 2025, 16(10), 1260; https://doi.org/10.3390/rel16101260 - 30 Sep 2025
Abstract
The first monographic exhibition dedicated to Vittore Carpaccio (ca. 1460–1525) in the US, and the first outside of Italy, was hosted at the National Gallery of Art in Washington, DC, from 20 Nov 2022 to 23 February 2023 (from where it went to [...] Read more.
The first monographic exhibition dedicated to Vittore Carpaccio (ca. 1460–1525) in the US, and the first outside of Italy, was hosted at the National Gallery of Art in Washington, DC, from 20 Nov 2022 to 23 February 2023 (from where it went to Venice). Building on the research of art historians and experts on Venice and the larger Mediterranean region in the early modern period, this paper examines Carpaccio’s depiction of various “Turks” in some of the large narrative painting cycles (teleri) commissioned by the devotional confraternities (scuole) in Renaissance Venice. While Carpaccio’s and the larger Venetian familiarity with Islam, including Turks, has been studied, this paper compares various female figures in the St. Stephen cycle with those in his St. George cycle, situating them in the larger historical context of the commissioning scuole (Scuola di Santo Stefano and Scuola di San Giorgio degli Schiavoni, respectively). While attempting to uncover the significance, if not the identities, of a few individuals who stand out from the crowd, this paper urges caution when attempting to discern social history from a painting, much as we take literary texts (particularly those written well before our own times) with a grain of salt. Full article
Show Figures

Figure 1

18 pages, 3975 KB  
Article
Accelerated Carbonation for Improving Mechanical Performance of Sustainable Fiber-Cements Containing Lime Sludge
by Rudicler Pereira Ramos, Felipe Vahl Ribeiro, Cristian da Conceição Gomes, Thamires Alves da Silveira, Arthur Behenck Aramburu, Neftali Lenin Villarreal Carreno, Angela Azevedo de Azevedo and Rafael de Avila Delucis
Appl. Mech. 2025, 6(4), 73; https://doi.org/10.3390/applmech6040073 - 30 Sep 2025
Abstract
The combined effects of accelerated carbonation and lime sludge incorporation on the mechanical and durability performance of fiber-cement composites were assessed in this study. Lime sludge was used to replace 0%, 10%, and 20% of the cement in the composites, which were then [...] Read more.
The combined effects of accelerated carbonation and lime sludge incorporation on the mechanical and durability performance of fiber-cement composites were assessed in this study. Lime sludge was used to replace 0%, 10%, and 20% of the cement in the composites, which were then autoclave-cured and carbonated more quickly for two or eight hours. With LS20-C8 (20% lime sludge, 8 h carbonation) achieving the highest carbonation efficiency (74.0%), X-ray diffraction (XRD) verified the gradual conversion of portlandite into well-crystallized calcium carbonate (CaCO3). In terms of mechanical performance, LS20-C8 outperformed the control by increasing toughness by 16.7%, flexural strength by 14.2%, compressive strength by 14.6%, and compressive modulus by 20.3%. The properties of LS20-C8 were better preserved after aging under wetting-drying cycles, as evidenced by lower losses of toughness (10.0%) and compressive strength (10.1%) compared to the control (14.6% and 18.3%, respectively). The mechanical improvements were explained by optical microscopy, which showed decreased porosity and an enhanced fiber–matrix interface. Overall, the findings show that adding lime sludge to accelerated carbonation improves durability, toughness, strength, and stiffness while decreasing porosity. This method helps to value industrial byproducts and is a sustainable and efficient way to create long-lasting fiber-cement composites. Full article
Show Figures

Figure 1

29 pages, 10893 KB  
Article
Analysis of Driving Factors of Groundwater Chemical Characteristics at Different Depths and Health Effects of Nitrate Exposure in Zhengzhou City, China
by Chunyan Zhang, Xujing Liu, Shuailing Zhang, Guizhang Zhao, Jingru Zhi, Lulu Jia, Wenhui Liu and Dantong Lin
Water 2025, 17(19), 2851; https://doi.org/10.3390/w17192851 - 30 Sep 2025
Abstract
Groundwater is a vital water source for human survival and regulates the hydrological cycle within the uppermost strata. Through the processes of recharge and discharge, as well as solute exchange, it interacts with surface water systems in Zhengzhou, e.g., the Yellow River and [...] Read more.
Groundwater is a vital water source for human survival and regulates the hydrological cycle within the uppermost strata. Through the processes of recharge and discharge, as well as solute exchange, it interacts with surface water systems in Zhengzhou, e.g., the Yellow River and the Jialu River. Therefore, systematically assessing its hydrochemical characteristics, driving factors, and health risks is crucial for ensuring the safety of public drinking water and regional development. This study focuses on shallow (45~55 m), medium-deep (80~350 m), deep (350~800 m), and ultra-deep (800~1200 m) groundwater in Zhengzhou City. A descriptive statistical analysis was employed to identify the primary chemical constituents of groundwater at various depths within the study area. Piper diagrams and the Shukarev classification method were employed to determine the hydrochemical types of the groundwater. Additionally, Gibbs diagrams, correlation coefficient methods, ion ratio coefficient methods and chlorine–alkali indices were employed to investigate the formation mechanisms of the chemical components of the groundwater, and the health risks in the study area were evaluated. Results: Ca2+ dominates the shallow/medium-deep groundwater, Na+ dominates the deep/ultra-deep groundwater; HCO3 (70~82%) is the dominant anion. Water chemistry shifts from HCO3-Ca to HCO3-Na with depth. Solubilisation, cation exchange, counter-cation exchange, and mixed processes primarily govern the formation of the groundwater’s chemical composition in the study area. Nitrate health risk assessments indicate significant differences in non-carcinogenic risks across four population groups (infants, children, young adults, and adults). Medium-depth groundwater poses a potential risk to all groups, while shallow and deep groundwater threaten only infants. Ultra-deep groundwater carries the lowest risk. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Graphical abstract

18 pages, 2216 KB  
Article
Three-Dimensional Dual-Network Gel-Immobilized Mycelial Pellets: A Robust Bio-Carrier with Enhanced Shear Resistance and Biomass Retention for Sustainable Removal of SMX
by Qingyu Zhang, Haijuan Guo, Jingyan Zhang and Fang Ma
Sustainability 2025, 17(19), 8765; https://doi.org/10.3390/su17198765 - 30 Sep 2025
Abstract
Fungal mycelial pellets (MPs) exhibit high biomass-loading capacity; however, their application in wastewater treatment is constrained by structural fragility and the risk of environmental dispersion. To overcome these limitations, a dual-crosslinked polyvinyl alcohol–alginate gel (10% PVA, 2% sodium alginate) embedding strategy was developed [...] Read more.
Fungal mycelial pellets (MPs) exhibit high biomass-loading capacity; however, their application in wastewater treatment is constrained by structural fragility and the risk of environmental dispersion. To overcome these limitations, a dual-crosslinked polyvinyl alcohol–alginate gel (10% PVA, 2% sodium alginate) embedding strategy was developed and stabilized using 2% CaCl2 and saturated boric acid. This encapsulation enhanced the tensile strength of MPs by 499% (310.4 vs. 62.1 kPa) and improved their settling velocity by 2.3-fold (1.12 vs. 0.49 cm/s), which was critical for stability under turbulent bioreactor conditions. Following encapsulation, the specific oxygen uptake rates (SOURs) of three fungal strains (F557, Y3, and F507) decreased by 30.3%, 54.8%, and 48.3%, respectively, while maintaining metabolic functionality. SEM revealed tight adhesion between the gel layer and both surface and internal hyphae, with the preservation of porous channels conducive to microbial colonization. In sequential-batch reactors treating sulfamethoxazole (SMX)-contaminated wastewater, gel-encapsulated MPs combined with acclimated sludge consistently achieved 72–75% SMX removal efficiency over six cycles, outperforming uncoated MPs (efficiency decreased from 81.2% to 58.7%) and pure gel–sludge composites (34–39%). The gel coating inhibited hyphal dispersion by over 90% and resisted mechanical disintegration under 24 h agitation. This approach offers a scalable and environmentally sustainable means of enhancing MPs’ operational stability in continuous-flow systems while mitigating fungal dissemination risks. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

11 pages, 1809 KB  
Communication
Apoptosis, Cell Growth, and Glycogen Synthase Kinase 3β Phosphorylation in Caffeic Acid-Treated Human Malignant Melanoma Cells
by Yoon-Jin Lee, Ki Dam Kim, Min Hyuk Choi, Sukh Que Park, Yu Sung Choi, Youin Bae, Hae Seon Nam, Sang Han Lee and Moon Kyun Cho
Biomedicines 2025, 13(10), 2389; https://doi.org/10.3390/biomedicines13102389 - 29 Sep 2025
Abstract
Objectives: Caffeic acid (CA), a naturally occurring phenolic compound exhibiting antioxidant and anti-inflammatory effects, has demonstrated anticancer activity against several tumor types. Nevertheless, its involvement in melanoma and its effects on the GSK3β signaling pathway have not been fully elucidated. This study aimed [...] Read more.
Objectives: Caffeic acid (CA), a naturally occurring phenolic compound exhibiting antioxidant and anti-inflammatory effects, has demonstrated anticancer activity against several tumor types. Nevertheless, its involvement in melanoma and its effects on the GSK3β signaling pathway have not been fully elucidated. This study aimed to assess the expression of p-GSK3β in melanoma tissues and to evaluate the anti-melanoma efficacy of CA. Methods: Western blot analysis was performed to determine the expression levels of p-GSK3β in melanoma and normal skin samples. G361 melanoma cells were exposed to CA, after which cell viability, apoptotic induction, cell cycle distribution, and related signaling molecules were examined. Results: Significantly increased p-GSK3β levels were identified in melanoma tissues. CA exposure decreased cell viability, triggered apoptosis, and elevated p-GSK3β levels in G361 melanoma cells. Moreover, CA induced the upregulation of p53 and p21 while concomitantly downregulating cyclin D1 and Bcl-2. Conclusions: These results suggest that CA inhibits melanoma cell growth through activation of a pathway involving the tumor suppressor p53, rather than through modulation of GSK3β signaling. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnosis and Treatment of Melanoma)
Show Figures

Figure 1

22 pages, 5059 KB  
Article
Exometabolome and Molecular Signatures Associated with HPV 16 in Cervical Cancer: Integrative Metabolomic and Transcriptomic Analysis for Biomarker Discovery
by Adán Arizmendi-Izazaga, Napoleón Navarro-Tito, Gabriela Elizabeth Campos-Viguri, Hilda Jiménez-Wences, Macdiel Emilio Acevedo-Quiroz, Eric Genaro Salmerón-Bárcenas, Berenice Illades-Aguiar, Marco Antonio Leyva-Vázquez and Julio Ortiz-Ortiz
Molecules 2025, 30(19), 3909; https://doi.org/10.3390/molecules30193909 - 28 Sep 2025
Abstract
Cervical cancer (CC) represents a major public health concern, ranking as the fourth most frequently diagnosed cancer and one of the leading causes of cancer-related mortality among middle-aged women worldwide. CC is caused by persistent infection with high-risk human papillomaviruses (HR-HPVs), with HPV [...] Read more.
Cervical cancer (CC) represents a major public health concern, ranking as the fourth most frequently diagnosed cancer and one of the leading causes of cancer-related mortality among middle-aged women worldwide. CC is caused by persistent infection with high-risk human papillomaviruses (HR-HPVs), with HPV 16 being the cause of more than 50% of CC cases. In this study, the exometabolome of the HPV 16-positive cell lines SiHa and Ca Ski, as well as the HPV 16-negative control cell line C-33 A, was evaluated. The exometabolome was validated through molecular signatures using a transcriptomic approach to identify genes encoding cellular metabolic enzymes. The exometabolome was analyzed using 1H nuclear magnetic resonance spectroscopy (1H-NMR). Exometabolomic profiles were subsequently compared through both multivariate and univariate statistical analyses to identify significant differences between cell lines. Molecular signatures were analyzed from the GSE9750 dataset obtained from the GEO database. Exometabolic profiling of the HPV 16 positive cell lines showed higher concentrations of leucine, isoleucine, valine, lysine, methionine, glutamine, ornithine, choline, glucose, and tryptophan. An expression analysis showed increased expression of enzymes involved in amino acid synthesis, the tricarboxylic acid cycle, glycolysis, the pentose phosphate pathway, galactose metabolism, and HIF-1α. These data suggest metabolites and metabolism-associated genes that can be used as non-invasive, stable diagnostic and prognostic biomarkers, as well as therapeutic targets for CC in the presence of HPV 16. Full article
(This article belongs to the Special Issue Novel Metabolism-Related Biomarkers in Cancer)
Show Figures

Graphical abstract

15 pages, 4764 KB  
Article
In Vitro Evaluation of the Effects of Toothpastes and Color Correctors on the Surface Integrity of Demineralized Human Enamel
by Daniela Laura Buruiana and Viorica Ghisman
Dent. J. 2025, 13(10), 443; https://doi.org/10.3390/dj13100443 - 27 Sep 2025
Abstract
Background/Objectives: This in vitro study evaluated the effects of fluoride-free toothpaste, fluoride-containing toothpaste, and a color-correcting gel on the morphology, composition, and mechanical properties of demineralized human enamel. The hypothesis was that fluoride-containing formulations would better preserve enamel integrity compared to non-fluoride and [...] Read more.
Background/Objectives: This in vitro study evaluated the effects of fluoride-free toothpaste, fluoride-containing toothpaste, and a color-correcting gel on the morphology, composition, and mechanical properties of demineralized human enamel. The hypothesis was that fluoride-containing formulations would better preserve enamel integrity compared to non-fluoride and cosmetic products. Methods: Extracted human teeth (n = 3 per group) were demineralized with 36% phosphoric acid and assigned to four groups: E0 (control), E1 (fluoride-free toothpaste), E2 (fluoride-containing toothpaste), and E3 (color-correcting gel). Brushing was performed manually twice daily for 7 days using standardized force. Surface morphology and elemental composition were assessed via SEM–EDX; chemical changes were analyzed by FTIR; mechanical properties were evaluated using the Vickers microhardness test. Results: E1 exhibited the highest microhardness (343.6 HV) but also the highest Ca/P ratio (2.37) and most pronounced surface roughness (p < 0.05 vs. control). E2 showed a balanced Ca/P ratio (2.07), smoother morphology, and detectable fluoride incorporation, despite a lower hardness value (214.5 HV). E3 presented moderate changes in both morphology and composition, with a Ca/P ratio similar to the control (2.06) but surface irregularities visible by SEM. The apparent paradox in E1—high hardness with structural damage—may be due to superficial mineral precipitation without true remineralization. Conclusions: Fluoride-containing toothpaste preserved enamel morphology and chemistry more effectively than the other formulations. Increased hardness in E1 does not necessarily indicate clinical benefit. In vivo studies with longer protocols and pH cycling are needed to confirm these findings. Full article
Show Figures

Figure 1

16 pages, 2319 KB  
Article
Evaluation of the Impact of Whey Edible Coatings with Bioprotective Cultures and Thyme Essential Oil Applied to Cheese
by Carlos Dias Pereira, Klaudia Hodowaniec, Karolina Kucz, Katarzyna Szkolnicka, David Gomes and Arona Pires
Dairy 2025, 6(5), 56; https://doi.org/10.3390/dairy6050056 - 26 Sep 2025
Abstract
This research work evaluated the application of whey-based edible coatings to cheeses. Coatings were prepared with a bioprotective culture (BC) containing Lacticaseibacillus paracasei and Lacticaseibacillus rhamnosus alone, or in conjunction with thyme essential oil (TEO). The samples containing the BC or the BC [...] Read more.
This research work evaluated the application of whey-based edible coatings to cheeses. Coatings were prepared with a bioprotective culture (BC) containing Lacticaseibacillus paracasei and Lacticaseibacillus rhamnosus alone, or in conjunction with thyme essential oil (TEO). The samples containing the BC or the BC plus TEO were compared with cheeses without coating, with cheeses with whey-based coatings without BC or TEO, and with cheeses treated with natamycin. The cheeses were evaluated regarding their physicochemical, microbiological, and sensory properties. All cheeses produced were classified as full-fat (≥45–60% fat in dry matter—FDM) and semihard (>54–<63% moisture in the defatted cheese—MDC), with an exception made for the control cheese, which presented lower levels of MDC, graded as hard (>49–<56% MDC). Most of the parameters evaluated presented significant differences between samples and as a result of ripening time. Regarding color parameters, it was observed that, after ripening, the external color of the samples with the whey coating presented higher lightness values (L*), higher a* values, and lower b* values. These differences clearly resulted from the white color imparted by the coating. Significant differences were also observed with respect to the texture parameters of the cheeses. The samples containing the BC or the BC plus TEO presented higher values for hardness and chewiness. In what concerns the microbiological evaluation, in all cases, lactic acid bacteria counts increased from log 7.5–8 CFU/g on the first day to ca. log 10 CFU/g at the end of the ripening period. Yeast and mold counts were significantly lower in samples containing the BC or the BC plus TEO, with values of ca. log 3 CFU/g and log 2.5 CFU/g, respectively. These values are like those obtained in samples with natamycin, with 1–2 log cycles below those of cheeses without treatment. However, the use of BC and BC plus TEO had a negative impact on the sensory properties of cheeses. Future work should evaluate the synergistic effect of different BCs and EOs. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

Back to TopTop