Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (646)

Search Parameters:
Keywords = CRISPR-associated proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 1023 KiB  
Review
Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS
by Victor Voicu, Corneliu Toader, Matei Șerban, Răzvan-Adrian Covache-Busuioc and Alexandru Vlad Ciurea
Biomedicines 2025, 13(8), 2025; https://doi.org/10.3390/biomedicines13082025 - 20 Aug 2025
Viewed by 264
Abstract
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) [...] Read more.
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) as progressive breakdowns of interpretive cellular logic, rather than mere terminal consequences of protein aggregation or synaptic attrition. The discussion aims to provide a detailed mapping of how critical signaling pathways—including PI3K–AKT–mTOR, MAPK, Wnt/β-catenin, and integrated stress response cascades—undergo spatial and temporal disintegration. Special attention is directed toward the roles of RNA-binding proteins (e.g., TDP-43, FUS, ELAVL2), m6A epitranscriptomic modifiers (METTL3, YTHDF1, IGF2BP1), and non-canonical post-translational modifications (SUMOylation, crotonylation) in disrupting translation fidelity, proteostasis, and subcellular targeting. At the organelle level, the review seeks to highlight how the failure of ribosome-associated quality control (RQC), autophagosome–lysosome fusion machinery (STX17, SNAP29), and mitochondrial import/export systems (TIM/TOM complexes) generates cumulative stress and impairs neuronal triage. These dysfunctions are compounded by mitochondrial protease overload (LONP1, CLPP), UPR maladaptation, and phase-transitioned stress granules that sequester nucleocytoplasmic transport proteins and ribosomal subunits, especially in ALS and FTD contexts. Synaptic disassembly is treated not only as a downstream event, but as an early tipping point, driven by impaired PSD scaffolding, aberrant endosomal recycling (Rab5, Rab11), complement-mediated pruning (C1q/C3–CR3 axis), and excitatory–inhibitory imbalance linked to parvalbumin interneuron decay. Using insights from single-cell and spatial transcriptomics, the review illustrates how regional vulnerability to proteostatic and metabolic stress converges with signaling noise to produce entropic attractor collapse within core networks such as the DMN, SN, and FPCN. By framing neurodegeneration as an active loss of cellular and network “meaning-making”—a collapse of coordinated signal interpretation, triage prioritization, and adaptive response—the review aims to support a more integrative conceptual model. In this context, therapeutic direction may shift from damage containment toward restoring high-dimensional neuronal agency, via strategies that include the following elements: reprogrammable proteome-targeting agents (e.g., PROTACs), engineered autophagy adaptors, CRISPR-based BDNF enhancers, mitochondrial gatekeeping stabilizers, and glial-exosome neuroengineering. This synthesis intends to offer a translational scaffold for viewing neurodegeneration as not only a disorder of accumulation but as a systems-level failure of cellular reasoning—a perspective that may inform future efforts in resilience-based intervention and precision neurorestoration. Full article
(This article belongs to the Special Issue Cell Signaling and Molecular Regulation in Neurodegenerative Disease)
Show Figures

Figure 1

26 pages, 2402 KiB  
Review
CRISPR/Cas-Mediated Optimization of Soybean Shoot Architecture for Enhanced Yield
by Nianao Li, Xi Yuan, Bei Han, Wei Guo and Haifeng Chen
Int. J. Mol. Sci. 2025, 26(16), 7925; https://doi.org/10.3390/ijms26167925 - 16 Aug 2025
Viewed by 391
Abstract
Plant architecture is a crucial agronomic trait significantly impacting soybean (Glycine max) yield. Traditional breeding has made some progress in optimizing soybean architecture, but it is limited in precision and efficiency. The Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein [...] Read more.
Plant architecture is a crucial agronomic trait significantly impacting soybean (Glycine max) yield. Traditional breeding has made some progress in optimizing soybean architecture, but it is limited in precision and efficiency. The Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein (CRISPR/Cas) system, a revolutionary gene-editing technology, provides unprecedented opportunities for plant genetic improvement. This review outlines CRISPR’s development and applications in crop improvement, focusing specifically on progress regulating soybean architecture traits affecting yield, such as node number, internode length, branching, and leaf morphology. It also discusses the technical challenges for CRISPR technology in enhancing soybean architecture, including that the regulatory network of soybean plant architecture is complex and the development of multi-omics platforms helps gene mining. The application of CRISPR enables precise the regulation of gene expression through promoter editing. Meanwhile, it is also faced with technical challenges such as the editing of homologous genes caused by genome polyploidy, the efficiency of editing tools and off-target effects, and low transformation efficiency. New delivery systems such as virus-induced genome editing bring hope for solving some of these problems. The review emphasizes the great potential of CRISPR technology in breeding next-generation soybean varieties with optimized architecture to boost yield potential. Full article
(This article belongs to the Special Issue Recent Advances in Soybean Molecular Breeding)
Show Figures

Figure 1

27 pages, 1463 KiB  
Review
Antioxidant Defense Systems in Plants: Mechanisms, Regulation, and Biotechnological Strategies for Enhanced Oxidative Stress Tolerance
by Faustina Barbara Cannea and Alessandra Padiglia
Life 2025, 15(8), 1293; https://doi.org/10.3390/life15081293 - 14 Aug 2025
Viewed by 365
Abstract
Plants must contend with oxidative stress, a paradoxical phenomenon in which reactive oxygen species (ROS) can cause cellular damage while also serving as key signaling molecules. Environmental stressors, such as drought, salinity, and temperature extremes, promote ROS accumulation, affecting plant growth and productivity. [...] Read more.
Plants must contend with oxidative stress, a paradoxical phenomenon in which reactive oxygen species (ROS) can cause cellular damage while also serving as key signaling molecules. Environmental stressors, such as drought, salinity, and temperature extremes, promote ROS accumulation, affecting plant growth and productivity. To maintain redox homeostasis, plants rely on antioxidant systems comprising enzymatic defenses, such as superoxide dismutase, catalase, and ascorbate peroxidase, and non-enzymatic molecules, including ascorbate, glutathione, flavonoids, and emerging compounds such as proline and nano-silicon. This review provides an integrated overview of antioxidant responses and their modulation through recent biotechnological advances, emphasizing the role of emerging technologies in advancing our understanding of redox regulation and translating molecular insights into stress-resilient phenotypes. Omics approaches have enabled the identification of redox-related genes, while genome editing tools, particularly those based on clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, offer opportunities for precise functional manipulation. Artificial intelligence and systems biology are accelerating the discovery of regulatory modules and enabling predictive modeling of antioxidant networks. We also highlight the contribution of synthetic biology to the development of stress-responsive gene circuits and address current regulatory and ethical considerations. Overall, this review aims to provide a comprehensive perspective on molecular, biochemical, and technological strategies to enhance oxidative stress tolerance in plants, thereby contributing to sustainable agriculture and food security in a changing climate. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

44 pages, 3081 KiB  
Review
From Better Diagnostics to Earlier Treatment: The Rapidly Evolving Alzheimer’s Disease Landscape
by Anastasia Bougea, Manuel Debasa-Mouce, Shelly Gulkarov, Mónica Castro-Mosquera, Allison B. Reiss and Alberto Ouro
Medicina 2025, 61(8), 1462; https://doi.org/10.3390/medicina61081462 - 14 Aug 2025
Viewed by 511
Abstract
Background and Objectives: Over the past few years, there has been a significant shift in focus from developing better diagnostic tools to detecting Alzheimer’s disease (AD) earlier and initiating treatment interventions. This review will explore four main objectives: (a) the role of [...] Read more.
Background and Objectives: Over the past few years, there has been a significant shift in focus from developing better diagnostic tools to detecting Alzheimer’s disease (AD) earlier and initiating treatment interventions. This review will explore four main objectives: (a) the role of biomarkers in enhancing the diagnostic accuracy of AD, highlighting the major strides that have been made in recent years; (b) the role of neuropsychological testing in identifying biomarkers of AD, including the relationship between cognitive performance and neuroimaging biomarkers; (c) the amyloid hypothesis and possible molecular mechanisms of AD; and (d) the innovative AD therapeutics and the challenges and limitations of AD research. Materials and Methods: We have searched PubMed and Scopus databases for peer-reviewed research articles published in English (preclinical and clinical studies as well as relevant reviews and meta-analyses) investigating the molecular mechanisms, biomarkers, and treatments of AD. Results: Genome-wide association studies (GWASs) discovered 37 loci associated with AD risk. Core 1 biomarkers (α-amyloid Aβ42, phosphorylated tau, and amyloid PET) detect early AD phases, identifying both symptomatic and asymptomatic individuals, while core 2 biomarkers inform the short-term progression risk in individuals without symptoms. The recurrent failures of Aβ-targeted clinical studies undermine the amyloid cascade hypothesis and the objectives of AD medication development. The molecular mechanisms of AD include the accumulation of amyloid plaques and tau protein, vascular dysfunction, neuroinflammation, oxidative stress, and lipid metabolism dysregulation. Significant advancements in drug delivery technologies, such as focused Low-Ultrasound Stem, T cells, exosomes, nanoparticles, transferin, nicotinic and acetylcholine receptors, and glutathione transporters, are aimed at overcoming the BBB to enhance treatment efficacy for AD. Aducanumab and Lecanemab are IgG1 monoclonal antibodies that retard the progression of AD. BACE inhibitors have been explored as a therapeutic strategy for AD. Gene therapies targeting APOE using the CRISPR/Cas9 genome-editing system are another therapeutic avenue. Conclusions: Classic neurodegenerative biomarkers have emerged as powerful tools for enhancing the diagnostic accuracy of AD. Despite the supporting evidence, the amyloid hypothesis has several unresolved issues. Novel monoclonal antibodies may halt the AD course. Advances in delivery systems across the BBB are promising for the efficacy of AD treatments. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

19 pages, 3258 KiB  
Article
Loss of SVIP Results in Metabolic Reprograming and Increased Retention of Very-Low-Density Lipoproteins in Hepatocytes
by Vandana Sekhar, Thomas Andl and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(15), 7465; https://doi.org/10.3390/ijms26157465 - 1 Aug 2025
Viewed by 341
Abstract
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance [...] Read more.
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance of discerning the role of different cellular proteins involved in VLDL biogenesis, transport, and secretion. Small VCP-Interacting Protein (SVIP) has been identified as a component of VLDL transport vesicles and VLDL secretion. This study evaluates the cellular effects stemming from the CRISPR-Cas9-mediated depletion of SVIP in rat hepatocytes. The SVIP-knockout (KO) cells display an increased VLDL retention with elevated intracellular levels of ApoB100 and neutral lipid staining. RNA sequencing studies reveal an impaired PPARα and Nrf2 signaling in the SVIP KO cells, implying a state of metabolic reprograming, with a shift from fatty acid uptake, synthesis, and oxidation to cells favoring the activation of glucose by impaired glycogen storage and increased glucose release. Additionally, SVIP KO cells exhibit a transcriptional profile indicative of acute phase response (APR) in hepatocytes. Many inflammatory markers and genes associated with APR are upregulated in the SVIP KO hepatocytes. In accordance with an APR-like response, the cells also demonstrate an increase in mRNA expression of genes associated with protein synthesis. Together, our data demonstrate that SVIP is critical in maintaining hepatic lipid homeostasis and metabolic balance by regulating key pathways such as PPARα, Nrf2, and APR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Viewed by 672
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

30 pages, 2418 KiB  
Review
Combating Antimicrobial Resistance: Innovative Strategies Using Peptides, Nanotechnology, Phages, Quorum Sensing Interference, and CRISPR-Cas Systems
by Ana Cristina Jacobowski, Ana Paula Araújo Boleti, Maurício Vicente Cruz, Kristiane Fanti Del Pino Santos, Lucas Rannier Melo de Andrade, Breno Emanuel Farias Frihling, Ludovico Migliolo, Patrícia Maria Guedes Paiva, Paulo Eduardo Teodoro, Larissa Pereira Ribeiro Teodoro and Maria Lígia Rodrigues Macedo
Pharmaceuticals 2025, 18(8), 1119; https://doi.org/10.3390/ph18081119 - 27 Jul 2025
Viewed by 1056
Abstract
Antimicrobial resistance (AMR) has emerged as one of the most pressing global health challenges of our time. Alarming projections of increasing mortality from resistant infections highlight the urgent need for innovative solutions. While many candidates have shown promise in preliminary studies, they often [...] Read more.
Antimicrobial resistance (AMR) has emerged as one of the most pressing global health challenges of our time. Alarming projections of increasing mortality from resistant infections highlight the urgent need for innovative solutions. While many candidates have shown promise in preliminary studies, they often encounter challenges in terms of efficacy and safety during clinical translation. This review examines cutting-edge approaches to combat AMR, with a focus on engineered antimicrobial peptides, functionalized nanoparticles, and advanced genomic therapies, including Clustered Regularly Interspaced Short Palindromic Repeats-associated proteins (CRISPR-Cas systems) and phage therapy. Recent advancements in these fields are critically analyzed, with a focus on their mechanisms of action, therapeutic potential, and current limitations. Emphasis is given to strategies targeting biofilm disruption and quorum sensing interference, which address key mechanisms of resistance. By synthesizing current knowledge, this work provides researchers with a comprehensive framework for developing next-generation antimicrobials, highlighting the most promising approaches for overcoming AMR through rational drug design and targeted therapies. Ultimately, this review aims to bridge the gap between experimental innovation and clinical application, providing valuable insights for developing effective and resistance-proof antimicrobial agents. Full article
Show Figures

Graphical abstract

20 pages, 2498 KiB  
Review
CRISPR/Cas-Based Ex Vivo Gene Therapy and Lysosomal Storage Disorders: A Perspective Beyond Cas9
by Andrés Felipe Leal, Luis Eduardo Prieto and Harry Pachajoa
Cells 2025, 14(15), 1147; https://doi.org/10.3390/cells14151147 - 25 Jul 2025
Viewed by 673
Abstract
Lysosomal storage disorders (LSDs) are inherited metabolic conditions characterized by lysosomal enzyme deficiencies leading to substrate accumulation. As genetic diseases, LSDs can be treated with gene therapies (GT), including the CRISPR/Cas systems. The CRISPR/Cas systems enable precise and programmable genome editing, leading to [...] Read more.
Lysosomal storage disorders (LSDs) are inherited metabolic conditions characterized by lysosomal enzyme deficiencies leading to substrate accumulation. As genetic diseases, LSDs can be treated with gene therapies (GT), including the CRISPR/Cas systems. The CRISPR/Cas systems enable precise and programmable genome editing, leading to targeted modifications at specific genomic loci. While the classical CRISPR/Cas9 system has been extensively used to generate LSD disease models and correct disease-associated genetic alterations through homologous recombination (HR), recently described Cas proteins as well as CRISPR/Cas9-derived strategies such as base editing, prime editing, and homology-independent targeted integration (HITI) offer a novel way to develop innovative treatments for LSDs. The direct administration of the CRISPR/Cas9 system remains the primary strategy evaluated in several LSDs; nevertheless, the ex vivo CRISPR/Cas9-based approach has been recently explored, primarily in central nervous system-affecting LSDs. Ex vivo approaches involve genetically modifying, in theory, any patient cells in the laboratory and reintroducing them into the patient to provide a therapeutic effect. This manuscript reviews the molecular aspects of the CRISPR/Cas technology and its implementation in ex vivo strategies for LSDs while discussing novel approaches beyond the classical CRISPR/Cas9 system. Full article
(This article belongs to the Special Issue Gene Therapy for Rare Diseases)
Show Figures

Figure 1

22 pages, 1549 KiB  
Review
Nanotechnology-Based Delivery of CRISPR/Cas9 for Cancer Treatment: A Comprehensive Review
by Mohd Ahmar Rauf, Afifa Rao, Siva Sankari Sivasoorian and Arun K. Iyer
Cells 2025, 14(15), 1136; https://doi.org/10.3390/cells14151136 - 23 Jul 2025
Viewed by 1105
Abstract
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9)-mediated genome editing has emerged as a transformative tool in medicine, offering significant potential for cancer therapy because of its capacity to precisely target and alter the genetic modifications associated with the disease. However, a [...] Read more.
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9)-mediated genome editing has emerged as a transformative tool in medicine, offering significant potential for cancer therapy because of its capacity to precisely target and alter the genetic modifications associated with the disease. However, a major challenge for its clinical translation is the safe and efficient in vivo delivery of CRISPR/Cas9 components to target cells. Nanotechnology is a promising solution to this problem. Nanocarriers, owing to their tunable physicochemical properties, can encapsulate and protect CRISPR/Cas9 components, enabling targeted delivery and enhanced cellular uptake. This review provides a comprehensive examination of the synergistic potential of CRISPR/Cas9 and nanotechnology in cancer therapy and explores their integrated therapeutic applications in gene editing and immunotherapy. A critical aspect of in vivo CRISPR/Cas9 application is to achieve effective localization at the tumor site while minimizing off-target effects. Nanocarriers can be engineered to overcome biological barriers, thereby augmenting tumor-specific delivery and facilitating intracellular uptake. Furthermore, their design allows for controlled release of the therapeutic payload, ensuring sustained efficacy and reduced systemic toxicity. The optimization of nanocarrier attributes, including size, shape, surface charge, and composition, is crucial for improving the cellular internalization, endosomal escape, and nuclear localization of CRISPR/Cas9. Moreover, surface functionalization with targeting ligands can enhance the specificity of cancer cells, leading to improved gene-editing accuracy. This review thoroughly discusses the challenges associated with in vivo CRISPR/Cas9 delivery and the innovative nanotechnological strategies employed to overcome them, highlighting their combined potential for advancing cancer treatment for clinical application. Full article
Show Figures

Figure 1

25 pages, 2052 KiB  
Review
Perspectives of RNAi, CUADb and CRISPR/Cas as Innovative Antisense Technologies for Insect Pest Control: From Discovery to Practice
by Hemant Kumar, Nikita Gal’chinsky, Verma Sweta, Nikita Negi, Roman Filatov, Anamika Chandel, Jamin Ali, Vol Oberemok and Kate Laikova
Insects 2025, 16(7), 746; https://doi.org/10.3390/insects16070746 - 21 Jul 2025
Cited by 3 | Viewed by 778
Abstract
Pest management is undergoing a transformative shift with the development of the cutting-edge antisense technologies: RNA interference (RNAi), contact unmodified antisense DNA biotechnology (CUADb), and the CRISPR-associated proteins (CRISPR/Cas). These approaches function by facilitating sequence-specific pairing of nucleic acids followed by nuclease-mediated cleavage, [...] Read more.
Pest management is undergoing a transformative shift with the development of the cutting-edge antisense technologies: RNA interference (RNAi), contact unmodified antisense DNA biotechnology (CUADb), and the CRISPR-associated proteins (CRISPR/Cas). These approaches function by facilitating sequence-specific pairing of nucleic acids followed by nuclease-mediated cleavage, offering exceptional precision for targeted pest control. While RNA-guided mechanisms such as RNAi and CRISPR/Cas were initially characterized in non-insect systems, primarily as innate defenses against viral infections, the DNA-guided CUADb pathway was first identified in insect pests as a functional pest control strategy. Its broader role in ribosomal RNA (rRNA) biogenesis was recognized later. Together, these discoveries have revealed an entirely new dimension of gene regulation, with profound implications for sustainable pest management. Despite sharing a common principle of sequence-specific targeting RNAi, CUADb, and CRISPR/Cas differ in several key aspects, including their mechanisms of action, target specificity, and applicability. Rather than serving as universal solutions, each technology is likely to be optimally effective against specific pest groups. Moreover, these technologies allow for rapid adaptation of control strategies to overcome target-site resistance, ensuring long-term efficacy. This review summarizes the core functional characteristics, potential applications, and current limitations of each antisense technology, emphasizing their complementary roles in advancing environmentally sustainable pest control. By integrating foundational biological discoveries with applied innovations, this work provides a new perspectives on incorporating antisense-based strategies into next-generation integrated pest management systems. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

20 pages, 3707 KiB  
Article
Genome-Wide CRISPR-Cas9 Knockout Screening Identifies NUDCD2 Depletion as Sensitizer for Bortezomib, Carfilzomib and Ixazomib in Multiple Myeloma
by Sophie Vlayen, Tim Dierckx, Marino Caruso, Swell Sieben, Kim De Keersmaecker, Dirk Daelemans and Michel Delforge
Hemato 2025, 6(3), 21; https://doi.org/10.3390/hemato6030021 - 16 Jul 2025
Viewed by 484
Abstract
Background/Objectives: The treatment of multiple myeloma (MM) remains a challenge, as almost all patients will eventually relapse. Proteasome inhibitors are a cornerstone in the management of MM. Unfortunately, validated biomarkers predicting drug response are largely missing. Therefore, we aimed to identify genes associated [...] Read more.
Background/Objectives: The treatment of multiple myeloma (MM) remains a challenge, as almost all patients will eventually relapse. Proteasome inhibitors are a cornerstone in the management of MM. Unfortunately, validated biomarkers predicting drug response are largely missing. Therefore, we aimed to identify genes associated with drug resistance or sensitization to proteasome inhibitors. Methods: We performed genome-wide CRISPR-Cas9 knockout (KO) screens in human KMS-28-BM myeloma cells to identify genetic determinants associated with resistance or sensitization to proteasome inhibitors. Results: We show that KO of KLF13 and PSMC4 induces drug resistance, while NUDCD2, OSER1 and HERC1 KO cause drug sensitization. Subsequently, we focused on top sensitization hit, NUDCD2, which acts as a co-chaperone of Hsp90 to regulate the LIS1/dynein complex. RNA sequencing showed downregulation of genes involved in the ERAD pathway and in ER-associated ubiquitin-dependent protein catabolic processes in both untreated and carfilzomib-treated NUDCD2 KO cells, suggesting that NUDCD2 depletion alters protein degradation. Furthermore, bortezomib-treated NUDCD2 KO cells showed a decreased expression of genes that have a function in oxidative phosphorylation and the mitochondrial membrane, such as Carnitine Palmitoyltransferase 1A (CPT1A). CPT1A catalyzes the uptake of long chain fatty acids into mitochondria. Mitochondrial lipid metabolism has recently been reported as a possible therapeutic target for MM drug sensitivity. Conclusions: These results contribute to the search for therapeutic targets that can sensitize MM patients to proteasome inhibitors. Full article
(This article belongs to the Section Plasma Cell Disorders)
Show Figures

Figure 1

20 pages, 2642 KiB  
Article
Complete Genome and Characterization Analysis of a Bifidobacterium animalis Strain Isolated from Wild Pigs (Sus scrofa ussuricus)
by Tenggang Di, Huan Zhang, Cheng Zhang, Liming Tian, Menghan Chang, Wei Han, Ruiming Qiao, Ming Li, Shuhong Zhang and Guangli Yang
Microorganisms 2025, 13(7), 1666; https://doi.org/10.3390/microorganisms13071666 - 16 Jul 2025
Viewed by 411
Abstract
Bifidobacterium is a predominant probiotic in animals that is associated with host intestinal health. The protective mechanisms of the Bifidobacterium animalis (B. animalis) strain, specifically those related to functional gene–host interactions in intestinal homeostasis, remain poorly elucidated. This study reports the [...] Read more.
Bifidobacterium is a predominant probiotic in animals that is associated with host intestinal health. The protective mechanisms of the Bifidobacterium animalis (B. animalis) strain, specifically those related to functional gene–host interactions in intestinal homeostasis, remain poorly elucidated. This study reports the complete genome sequence and characterization of a B. animalis strain isolated from wild pig feces, which comprised a single circular chromosome (1,944,022 bp; GC content 60.49%) with 1567 protein-coding genes, and the B. animalis strain had certain acid resistance, bile salt resistance, gastrointestinal fluid tolerance, and antibacterial characteristics. Genomic annotation revealed three putative genomic islands and two CRISPR-Cas systems. Functional characterization identified genes encoding carbohydrate-active enzymes (CAZymes) and associated metabolic pathways, indicating that this strain can degrade complex dietary carbohydrates and synthesize bioactive metabolites for gut homeostasis. Although the antibiotic resistance genes were predicted, phenotypic assays demonstrated discordant resistance patterns, indicating complex regulatory networks. This study indicated the genomic basis of Bifidobacterium–host crosstalk in intestinal protection, providing a framework for developing novel probiotic interventions. Full article
Show Figures

Figure 1

17 pages, 6355 KiB  
Article
Regulation of Hindbrain Vascular Development by rps20 in Zebrafish
by Xinyu Shen, Zhaozhi Wen, Shunze Deng, Yuxuan Qiu, Weijie Ma, Xinyue Dong, Jie Gong, Yu Zhang, Dong Liu and Bing Xu
Cells 2025, 14(14), 1070; https://doi.org/10.3390/cells14141070 - 13 Jul 2025
Viewed by 591
Abstract
During aging, the brain vasculature undergoes significant deterioration characterized by increased arterial tortuosity, compromised blood–brain barrier integrity, and reduced cerebral blood flow, all of which contribute to various neurological disorders. Thus, understanding the mechanisms underlying aging-related cerebrovascular defects is critical for developing strategies [...] Read more.
During aging, the brain vasculature undergoes significant deterioration characterized by increased arterial tortuosity, compromised blood–brain barrier integrity, and reduced cerebral blood flow, all of which contribute to various neurological disorders. Thus, understanding the mechanisms underlying aging-related cerebrovascular defects is critical for developing strategies to alleviate aging-associated neurological diseases. In this study, we investigated the role of aging-related genes in brain vascular development using zebrafish as an in vivo model. By thoroughly analyzing scRNA-seq datasets of mid- and old-aged brain vascular endothelial cells (human/mouse), we found ribosomal protein S20 (rps20) significantly down-regulated during aging. qPCR analysis and whole-mount in situ hybridization validated a high expression of rps20 during early zebrafish development, which progressively decreased in adult and aged zebrafish brains. Functional studies using the CRISPR/Cas9-mediated knockout of rps20 revealed an impaired growth of central arteries in the hindbrain and a marked increased intracranial hemorrhage incidence. Mechanistically, qPCR analysis demonstrated a significant downregulation of vegfa, cxcl12b, and cxcr4a, key signaling molecules required for hindbrain vascular development, in rps20-deficient embryos. In conclusion, our findings demonstrate that rps20 is essential for proper brain vascular development and the maintenance of vascular homeostasis in zebrafish, revealing a novel mechanism by which aging-related genes regulate brain vascular development. This study provides new insights that may aid in understanding and treating aging-associated vascular malformations and neurological pathologies. Full article
Show Figures

Figure 1

19 pages, 1713 KiB  
Article
Potential for Duplexed, In-Tandem gRNA-Mediated Suppression of Two Essential Genes of Tomato Leaf Curl New Delhi Virus in Crop Plants
by Saher Naveed, Judith K. Brown, Muhammad Mubin, Nazir Javed and Muhammad Shah Nawaz-ul-Rehman
Pathogens 2025, 14(7), 679; https://doi.org/10.3390/pathogens14070679 - 10 Jul 2025
Viewed by 826
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is among the most prevalent and widely distributed begomovirus infecting chili pepper (Capsicum annuum) and tomato in the Indian subcontinent. In this study, a guide RNA (gRNA) sequence-CRISPR-Cas9 approach was used to target and [...] Read more.
Tomato leaf curl New Delhi virus (ToLCNDV) is among the most prevalent and widely distributed begomovirus infecting chili pepper (Capsicum annuum) and tomato in the Indian subcontinent. In this study, a guide RNA (gRNA) sequence-CRISPR-Cas9 approach was used to target and cleave two essential coding regions in the begomovirus genome. The gRNAs were designed to target conserved regions of the ToLCNDV replication-associated protein (rep) gene or ORF AC1, and/or the coat protein (cp) gene or AV1 ORF, respectively. Based on an alignment of 346 representative ToLCNDV genome sequences, all predicted single nucleotide polymorphisms off-target sites were identified and eliminated as potential gRNA targets. Based on the remaining genome regions, four candidate gRNAs were designed and used to build gRNA-Cas9 duplexed constructs, e.g., containing two gRNAs cloned in tandem, in different combinations (1–4). Two contained two gRNAs that targeted the coat protein gene (cp; AV1 ORF), while the other two constructs targeted both the cp and replication-associated protein gene (rep; AC1 ORF). These constructs were evaluated for the potential to suppress ToLCNDV infection in Nicotiana benthamiana plants in a transient expression-transfection assay. Among the plants inoculated with the duplexed gRNA construct designed to cleave ToLCNDV-AV1 or AC1-specific nucleotides, the construct designed to target both the cp (293–993 nt) and rep (1561–2324) showed the greatest reduction in virus accumulation, based on real-time quantitative PCR amplification, and attenuated disease symptoms, compared to plants inoculated with the DNA-A component alone or mock-inoculated, e.g., with buffer. The results demonstrate the potential for gRNA-mediated suppression of ToLCNDV infection in plants by targeting at least two viral coding regions, underscoring the great potential of CRISPR-Cas-mediated abatement of begomovirus infection in numerous crop species. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

23 pages, 10678 KiB  
Article
Effects of Angiotensin II Receptor 1 Inhibition by LCZ696 on the Acquisition and Relapse of Methamphetamine-Associated Contextual Memory
by Xiaofang Li, Zhiting Zou, Xiangdong Yang, Jinnan Lü, Xiaoyu Zhang, Jiahui Zhou, Dan Zhu, Xinshuang Gong, Shujun Lin, Zhaoying Yu, Zizhen Si, Wenting Wei, Yakai Xie and Yu Liu
Pharmaceuticals 2025, 18(7), 1016; https://doi.org/10.3390/ph18071016 - 8 Jul 2025
Viewed by 495
Abstract
Background/Objectives: Contextual memory associated with methamphetamine (METH) use contributes to relapse and persistence of addiction. Angiotensin II type 1 receptor (AT1R) signaling has been implicated in drug reinforcement. LCZ696, a clinically used combination of sacubitril (a neprilysin inhibitor) and valsartan (an AT1R antagonist), [...] Read more.
Background/Objectives: Contextual memory associated with methamphetamine (METH) use contributes to relapse and persistence of addiction. Angiotensin II type 1 receptor (AT1R) signaling has been implicated in drug reinforcement. LCZ696, a clinically used combination of sacubitril (a neprilysin inhibitor) and valsartan (an AT1R antagonist), may interfere with METH-associated memory through the modulation of dopaminergic pathways. Methods: Male C57BL/6J mice were tested in a conditioned place preference (CPP) paradigm to assess the effects of LCZ696, sacubitril (AHU377), and valsartan on METH-induced memory expression and reinstatement. Synaptic plasticity in the nucleus accumbens (NAc) was examined by assessing the levels of synaptophysin (Syp) and postsynaptic density protein 95 (Psd95), as well as dendritic spine density. Dopaminergic signaling in the ventral tegmental area (VTA) was evaluated via ELISA, Western blotting, and chromatin immunoprecipitation (ChIP), targeting cAMP response element-binding protein (Creb) binding to the tyrosine hydroxylase (Th) promoter. To further assess the role of Th, an adeno-associated virus (AAV9) carrying a CRISPR-Cas9-based sgRNA targeting Th (AAV9-Th-sgRNA) was microinjected into the VTA. Results: LCZ696 and valsartan significantly reduced METH-induced CPP and reinstatement. LCZ696 reversed METH-induced synaptic and dopaminergic alterations and suppressed Creb-mediated Th transcription. Th knockdown attenuated both CPP acquisition and relapse. Conclusions: LCZ696 disrupts METH-associated contextual memory by modulating dopaminergic signaling and Creb-dependent Th expression, supporting its potential as a treatment for METH use disorder. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop