Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (365)

Search Parameters:
Keywords = CRISPR-Cas13d

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4677 KB  
Article
Functional Analysis of CRISPR-Cas9-Mediated Gene Deletion in E. coli DH5α on Membrane Permeability and Transformation Efficiency
by Feifan Leng, Xinyi Liu, Jinli He, Yubo Wang, Ning Zhu, Xiaopeng Guo, Wen Luo and Yonggang Wang
Microorganisms 2026, 14(1), 198; https://doi.org/10.3390/microorganisms14010198 - 15 Jan 2026
Abstract
This research utilized the CRISPR/Cas9 editing method to generate six mutant strains of Escherichia coli (E. coli) DH5α targeting specific genes. The functional characterization and phenotypic analysis confirmed the regulatory roles of these genes in modifying membrane permeability. The variations in [...] Read more.
This research utilized the CRISPR/Cas9 editing method to generate six mutant strains of Escherichia coli (E. coli) DH5α targeting specific genes. The functional characterization and phenotypic analysis confirmed the regulatory roles of these genes in modifying membrane permeability. The variations in membrane permeability among the mutant strains were assessed by measuring electrical conductivity, ortho-nitrophenyl-β-D-galactopyranoside (ONPG) hydrolysis, and propidium iodide (PI) fluorescence, with E. coli DH5α:ompA′ exhibiting the most pronounced increase in membrane permeability. The function of these genes in transformation was analyzed from physicochemical and microscopic perspectives. Assays of plasmid transformation efficiency revealed a significant enhancement in the E. coli DH5α:ompA′ mutant strain, underscoring the critical function of outer membrane proteins in DNA acquisition. Permeability simulations were performed utilizing the E. coli DH5α:ompA′ mutant strain, grounded in a previously established model. The quantitative correlation between transformation efficiency and membrane permeability in this mutant conformed to the equation T = aP + c. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 2101 KB  
Article
Expression Profiles of Growth-Related Genes in CRISPR/Cas9-Mediated MRF4-Crispant Nile Tilapia
by Zahid Parvez Sukhan, Yusin Cho, Doohyun Cho, Cheol Young Choi and Kang Hee Kho
Fishes 2026, 11(1), 52; https://doi.org/10.3390/fishes11010052 - 14 Jan 2026
Abstract
Genome editing of late myogenic regulators provides a way to dissect the mechanisms through which transcriptional programs and growth-related signaling pathways shape muscle-gene-expression programs in farmed fish. This study disrupted myogenic regulatory factor 4 (MRF4) in Nile tilapia using CRISPR/Cas9 to [...] Read more.
Genome editing of late myogenic regulators provides a way to dissect the mechanisms through which transcriptional programs and growth-related signaling pathways shape muscle-gene-expression programs in farmed fish. This study disrupted myogenic regulatory factor 4 (MRF4) in Nile tilapia using CRISPR/Cas9 to examine downstream transcriptional changes in fast skeletal muscle across the trunk, belly, and head regions. Adult F0 crispants carried a frameshift mutation that truncated the basic helix–loop–helix domain and showed an approximate 80–85% reduction in MRF4 mRNA across the trunk, belly, and head muscles. The expression of 23 genes representing myogenic regulatory factors, MEF2 paralogs, structural and contractile components, nonmyotomal regulators, cell adhesion and fusion-related transcripts, and growth-related genes within the GH–IGF–MSTN axis was quantified and compared between wild-type and MRF4-crispants. Expressions of major structural genes remained unchanged despite MRF4 depletion, whereas MyoG and MyoD were upregulated together with MEF2B and MEF2D, indicating strong transcriptional compensation. Twist1, ID1, PLAU, CDH15, CHRNG, NCAM1, MYMK, GHR, and FGF6 were also significantly elevated, while IGF1 was reduced, and MSTN remained stable. Together, these results show that MRF4 loss is associated with coordinated transcriptional changes in regulatory and growth-related pathways, while major fast-muscle structural and contractile transcript levels remain stable, thereby highlighting candidate transcriptional targets for future studies that will evaluate links to muscle phenotype and growth performance in Nile tilapia. Full article
(This article belongs to the Special Issue Genetics and Breeding of Fishes)
Show Figures

Figure 1

20 pages, 14008 KB  
Article
The Antimicrobial Peptide CRAMP-34 Eradicates Escherichia coli Biofilms by Interfering with the kduD-Dependent Network
by Hongzao Yang, Jing Xiong, Sisi Su, Zhuo Yang, Wu Yang, Lianci Peng, Suhui Zhang, Jinjie Qiu, Yuzhang He and Hongwei Chen
Antibiotics 2026, 15(1), 83; https://doi.org/10.3390/antibiotics15010083 - 14 Jan 2026
Abstract
Background/Objectives: Bacterial biofilms formed by Escherichia coli pose a significant challenge in veterinary medicine due to their intrinsic resistance to antibiotics. Antimicrobial peptides (AMPs) represent a promising alternative. AMPs exert their bactericidal activity by binding to negatively charged phospholipids in bacterial membranes [...] Read more.
Background/Objectives: Bacterial biofilms formed by Escherichia coli pose a significant challenge in veterinary medicine due to their intrinsic resistance to antibiotics. Antimicrobial peptides (AMPs) represent a promising alternative. AMPs exert their bactericidal activity by binding to negatively charged phospholipids in bacterial membranes via electrostatic interactions, leading to membrane disruption and rapid cell lysis. Methods: In vitro assays including MIC determination, biofilm eradication testing (crystal violet, colony counts, and CLSM), swimming motility, and EPS quantification were performed. CRISPR/Cas9 was used to construct and complement a kduD mutant. A transposon mutagenesis library was screened for biofilm-defective mutants. In an in vivo murine excisional wound infection model treated with the mouse cathelicidin-related antimicrobial peptide (CRAMP-34), wound closure and bacterial burden were monitored. Gene expression changes were analyzed via RT-qPCR. Results: CRAMP-34 effectively eradicated pre-formed biofilms of a clinically relevant, porcine-origin E. coli strain and promoted wound healing in the murine infection model. We conducted a genome-wide transposon mutagenesis screen, which identified kduD as a critical gene for robust biofilm formation. Functional characterization revealed that kduD deletion drastically impairs flagellar motility and alters exopolysaccharide production, leading to defective biofilm architecture without affecting growth. Notably, the anti-biofilm activity of CRAMP-34 phenocopied aspects of the kduD deletion, including motility inhibition and transcriptional repression of a common set of biofilm-related genes. Conclusions: This research highlights CRAMP-34 as a potent anti-biofilm agent and unveils kduD as a previously unrecognized regulator of E. coli biofilm development, which is also targeted by CRAMP-34. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Biofilm-Associated Infections)
Show Figures

Figure 1

23 pages, 4760 KB  
Article
Beyond the Bottleneck: Predicting Regeneration Potential in Sunflower Through Integrated Morphological and Statistical Profiling
by Kimon Ionas, Mirjana Vukosavljev, Emilija Bulić, Aleksandra Radanović, Siniša Jocić, Ankica Kondić-Špika and Dragana Miladinović
Int. J. Mol. Sci. 2026, 27(2), 809; https://doi.org/10.3390/ijms27020809 - 14 Jan 2026
Abstract
This study presents the first integrated analysis of genotype–medium interactions and temporal morphogenesis profiling in sunflower regeneration. It aims to characterize genotype-specific responses, identify predictive morphological markers, and develop a scalable framework for breeding and transformation. Eighteen sunflower genotypes were evaluated to assess [...] Read more.
This study presents the first integrated analysis of genotype–medium interactions and temporal morphogenesis profiling in sunflower regeneration. It aims to characterize genotype-specific responses, identify predictive morphological markers, and develop a scalable framework for breeding and transformation. Eighteen sunflower genotypes were evaluated to assess organogenic performance. The model genotype Ha-26-PR was used for a complementary experiment, testing varying sucrose concentrations to examine their influence on morphogenic outcomes. Hierarchical Cluster Analysis (HCA), guided by the Elbow method, identified four optimal clusters (K = 4). These aligned with three biologically meaningful categories: High Regenerators (Cluster 1), Moderate/Specific Regenerators (Clusters 2 and 3), and Non-Regenerators (Cluster 4). On S1 medium, NO-SU-12 and AS-1-PR showed superior shoot regeneration, while on R4 medium, HA-26-PR-SU and NO-SU-12 performed best. Genotypes such as NO-SU-12 and AS-1-PR consistently excelled across both media, whereas AB-OR-8 and FE-7 remained non-regenerators. Medium R4 supported superior regeneration, primarily through root formation, while S1 failed to induce roots in any genotype, highlighting the importance of hormonal composition. Although sucrose promoted callus induction, it did not trigger organogenesis. Callus was consistently present across media and time points, but its correlations with shoot and root formation were weak and temporally unstable, limiting its predictive value. Root formation at 14 days (Root 14D) emerged as a robust early predictor of organogenic success. This integration of morphological, temporal, and statistical analyses offers a genotype-tailored regeneration framework with direct applications in molecular breeding and CRISPR/Cas-based genome editing. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

15 pages, 6645 KB  
Article
Multiplex Editing of OsMads26, OsBsr-d1, OsELF3-2 and OsERF922 with CRISPR/Cas9 Confers Enhanced Resistance to Pathogens and Abiotic Stresses and Boosts Grain Yield in Rice (Oryza sativa)
by Hailing Luo, Hengwei Zou, Shengli Lin, Jiali Liu, Geng Zhou, Lijun Gao, Jieyi Huang, Jiaxuan Li, Ju Gao and Chonglie Ma
Int. J. Mol. Sci. 2026, 27(2), 781; https://doi.org/10.3390/ijms27020781 - 13 Jan 2026
Viewed by 28
Abstract
Rice (Oryza sativa) is one of the world’s major staple foods. However, stable rice production is constrained by various biotic and abiotic and stresses. Breeding and cultivation of rice varieties with resistance to multiple pathogens and environmental stresses is the most [...] Read more.
Rice (Oryza sativa) is one of the world’s major staple foods. However, stable rice production is constrained by various biotic and abiotic and stresses. Breeding and cultivation of rice varieties with resistance to multiple pathogens and environmental stresses is the most effective strategy to mitigate the adverse effect of pathogen attacks and abiotic stresses. Recently, researchers have focused on the exploitation of CRISPR/Cas9 technology to manipulate some negative defense-regulator genes to generate rice varieties with broad-spectrum resistance against rice pathogens. In this study, four negative regulator genes of rice blast, OsMads26, OsBsr-1, OsELF3-2 and OsERF922, were selected as CRISPR/Cas9 targets. By simultaneously knocking out all four genes via CRISPR/Cas9 technology, we created three mads26/bsr-1/elf3-2/erf922 quadruple knockout mutants. Our results demonstrated that all quadruple mutants exhibited much higher resistance not only to rice blast and bacterial blight but also to drought and salt stresses than the wildtype. Interestingly, grain yield of all three quadruple mutants was also drastically increased by 17.35% to 21.95%. Therefore, this study provides a novel strategy to rapidly improve rice varieties with broad-spectrum resistance to pathogens, elevated tolerance to abiotic stresses and enhanced yield potential. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 3732 KB  
Article
Development of a Sensitive and Specific RPA-CRISPR/Cas12a Assay for Intrahepatic Quantification of HBV cccDNA
by Pattida Kongsomboonchoke, Chaiyaboot Ariyachet, Pornchai Kaewsapsak, Pongserath Sirichindakul and Pisit Tangkijvanich
Int. J. Mol. Sci. 2026, 27(1), 551; https://doi.org/10.3390/ijms27010551 - 5 Jan 2026
Viewed by 217
Abstract
Hepatitis B virus (HBV) persists in infected hepatocytes through covalently closed circular DNA (cccDNA), a stable episomal form that serves as the transcriptional template for viral replication. Accurate and sensitive quantification of intrahepatic cccDNA is crucial for evaluating antiviral therapies, particularly those targeting [...] Read more.
Hepatitis B virus (HBV) persists in infected hepatocytes through covalently closed circular DNA (cccDNA), a stable episomal form that serves as the transcriptional template for viral replication. Accurate and sensitive quantification of intrahepatic cccDNA is crucial for evaluating antiviral therapies, particularly those targeting a functional cure. Here, we report the development of a novel, cccDNA-specific detection system combining recombinase polymerase amplification (RPA) with CRISPR/Cas12a-based fluorescence detection. We designed and validated CRISPR RNAs (crRNAs) targeting HBV cccDNA-specific regions conserved across genotypes A–D. Reaction conditions for both RPA and Cas12a detection were optimized to enhance sensitivity, specificity, and accuracy. The system reliably detected as few as 10 copies of cccDNA-containing plasmid per reaction and showed no cross-reactivity with non-cccDNA forms in serum or plasma, indicating assay specificity. When applied to liver tissue samples from 10 HBV-infected and 6 non-HBV patients, the RPA-CRISPR/Cas12a assay exhibited a high sensitivity (90%) and a strong correlation with qPCR results (R2 = 0.9155), confirming its accuracy. In the conclusion, the RPA-CRISPR/Cas12a system provides a robust, cost-effective, and scalable platform for sensitive and specific quantification of intrahepatic HBV cccDNA. This method holds promises for research and high-throughput therapeutic screening applications targeting cccDNA clearance. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

35 pages, 9083 KB  
Review
Programmable Plant Immunity: Synthetic Biology for Climate-Resilient Agriculture
by Sopan Ganpatrao Wagh, Akshay Milind Patil, Ghanshyam Bhaurao Patil, Sachin Ashok Bhor, Kiran Ramesh Pawar and Harshraj Shinde
SynBio 2026, 4(1), 1; https://doi.org/10.3390/synbio4010001 - 4 Jan 2026
Viewed by 331
Abstract
Agricultural systems face mounting pressures from climate change, as rising temperatures, elevated CO2, and shifting precipitation patterns intensify plant disease outbreaks worldwide. Conventional strategies, such as breeding for resistance, pesticides, and even transgenic approaches, are proving too slow or unsustainable to [...] Read more.
Agricultural systems face mounting pressures from climate change, as rising temperatures, elevated CO2, and shifting precipitation patterns intensify plant disease outbreaks worldwide. Conventional strategies, such as breeding for resistance, pesticides, and even transgenic approaches, are proving too slow or unsustainable to meet these challenges. Synthetic biology offers a transformative paradigm for reprogramming plant immunity through genetic circuits, RNA-based defences, epigenome engineering, engineered microbiomes, and artificial intelligence (AI). We introduce the concept of synthetic immunity, a unifying framework that extends natural defence layers, PAMP-triggered immunity (PTI), and effector-triggered immunity (ETI). While pests and pathogens continue to undermine global crop productivity, synthetic immunity strategies such as CRISPR-based transcriptional activation, synthetic receptors, and RNA circuit-driven defences offer promising new avenues for enhancing plant resilience. We formalize synthetic immunity as an emerging, integrative concept that unites molecular engineering, regulatory rewiring, epigenetic programming, and microbiome modulation, with AI and computational modelling accelerating their design and climate-smart deployment. This review maps the landscape of synthetic immunity, highlights technological synergies, and outlines a translational roadmap from laboratory design to field application. Responsibly advanced, synthetic immunity represents not only a scientific frontier but also a sustainable foundation for climate-resilient agriculture. Full article
Show Figures

Figure 1

21 pages, 1893 KB  
Article
The Chimeric Nuclease SpRYc Exhibits Highly Variable Performance Across Biological Systems
by Irina O. Deriglazova, Mikhail V. Shepelev, Natalia A. Kruglova, Pavel G. Georgiev and Oksana G. Maksimenko
Int. J. Mol. Sci. 2026, 27(1), 488; https://doi.org/10.3390/ijms27010488 - 3 Jan 2026
Viewed by 195
Abstract
The CRISPR–Cas9 system has significantly advanced genome editing but remains constrained by its requirement for specific protospacer adjacent motifs (PAMs). To overcome this limitation, PAM-relaxed nucleases, including the novel near-PAMless chimeric SpRYc, have been developed. Here, we evaluated SpRYc editing activity across multiple [...] Read more.
The CRISPR–Cas9 system has significantly advanced genome editing but remains constrained by its requirement for specific protospacer adjacent motifs (PAMs). To overcome this limitation, PAM-relaxed nucleases, including the novel near-PAMless chimeric SpRYc, have been developed. Here, we evaluated SpRYc editing activity across multiple experimental systems, including human HEK293 and CEM-R5 cells, as well as Drosophila melanogaster S2 cells and embryos. In HEK293 cells, SpRYc exhibited broad PAM compatibility, enabling editing at non-canonical PAMs, albeit with reduced and variable efficiency at canonical NGG sites compared to SpCas9. This context dependency was more pronounced in CEM-R5 T cells, where SpRYc activity at endogenous CXCR4 and B2M loci was largely restricted to NGG PAMs. In contrast, unlike SpCas9, SpRYc displayed negligible genome-editing activity in Drosophila embryos in vivo. Notably, the transcriptional activator dSpRYc-VPR showed robust activity in Drosophila S2 cells at both canonical and non-canonical PAMs. Reduced chromatin occupancy of dSpRYc-VPR suggests a balance between expanded PAM recognition and DNA-binding stability, providing a mechanistic explanation for context-dependent performance of SpRYc. Overall, our results highlight that expanded targeting flexibility comes at the cost of variable efficiency, underscoring the need for extensive locus- and context-specific validation of PAM-relaxed genome-editing tools. Full article
(This article belongs to the Special Issue CRISPR/Cas Systems and Genome Editing—3rd Edition)
Show Figures

Figure 1

29 pages, 1443 KB  
Review
From Methylomes to CRISPR Epigenetic Editing: New Paths in Antibiotic Resistance
by Nada M. Nass and Kawther A. Zaher
Pathogens 2025, 14(12), 1267; https://doi.org/10.3390/pathogens14121267 - 10 Dec 2025
Viewed by 951
Abstract
Antibiotic resistance (AR) has long been interpreted through the lens of genetic mutations and horizontal gene transfer. Yet, mounting evidence suggests that epigenetic regulation, including DNA and RNA methylation, histone-like proteins, and small non-coding RNAs, plays a similarly critical role in bacterial adaptability. [...] Read more.
Antibiotic resistance (AR) has long been interpreted through the lens of genetic mutations and horizontal gene transfer. Yet, mounting evidence suggests that epigenetic regulation, including DNA and RNA methylation, histone-like proteins, and small non-coding RNAs, plays a similarly critical role in bacterial adaptability. These reversible modifications reshape gene expression without altering the DNA sequence, enabling transient resistance, phenotypic heterogeneity, and biofilm persistence under antimicrobial stress. Advances in single-molecule sequencing and methylome mapping have uncovered diverse DNA methyltransferase systems that coordinate virulence, efflux, and stress responses. Such epigenetic circuits allow pathogens to survive antibiotic exposure, then revert to susceptibility once pressure subsides, complicating clinical treatment. Parallel advances in CRISPR-based technologies now enable direct manipulation of these regulatory layers. CRISPR interference (CRISPRi) and catalytically inactive dCas9-fused methyltransferases can silence or reactivate genes in a programmable, non-mutational manner, offering a new route to reverse resistance or sensitize pathogens. Integrating methylomic data with transcriptomic and proteomic profiles further reveals how epigenetic plasticity sustains antimicrobial tolerance across environments. This review traces the continuum from natural bacterial methylomes to engineered CRISPR-mediated epigenetic editing, outlining how this emerging interface could redefine antibiotic stewardship. Understanding and targeting these reversible, heritable mechanisms opens the door to precision antimicrobial strategies that restore the effectiveness of existing drugs while curbing the evolution of resistance. Full article
(This article belongs to the Special Issue Antibiotic Resistance and Survival Strategies in Pathogens)
Show Figures

Figure 1

25 pages, 716 KB  
Review
Developing New Immunotherapy Approaches for Colorectal Cancer
by Gregory Kelly, Bianca Nowlan, Simon Manuel Tria, Afshin Nikkhoo, Catherine Bond and Vicki Whitehall
Cancers 2025, 17(24), 3929; https://doi.org/10.3390/cancers17243929 - 9 Dec 2025
Viewed by 1091
Abstract
Immunotherapy represents a groundbreaking approach for treating colorectal cancer (CRC), harnessing the body’s own immune system to target tumour cells more precisely than conventional chemotherapy. Immune checkpoint inhibitors, such as antibodies against PD-1, PD-L1, or CTLA-4, have shown remarkable efficacy in certain patients, [...] Read more.
Immunotherapy represents a groundbreaking approach for treating colorectal cancer (CRC), harnessing the body’s own immune system to target tumour cells more precisely than conventional chemotherapy. Immune checkpoint inhibitors, such as antibodies against PD-1, PD-L1, or CTLA-4, have shown remarkable efficacy in certain patients, leading to durable responses and improved survival. However, the majority of CRC cases have limited benefit from a single agent checkpoint blockade. There is a growing need to identify biomarkers that will improve the selection of patients who will best respond to therapy, as well as new targets to sensitise cancers to an immune checkpoint blockade. Unfortunately, the search for reliable biomarkers has been limited by our incomplete understanding of how immunotherapies modify the already complex immune response to cancer. Revolutionary techniques, such as genome-wide CRISPR/Cas9 screening combined with the appropriate validation systems such as in vivo mouse models and/or 3D organoid co-culture systems, are being used to address this knowledge gap. This review will focus on the use of immunotherapies in CRC, discuss why most CRC patients do not respond, and highlight in vitro, in vivo, and novel techniques for discovery of new targets for combination treatment. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

17 pages, 1504 KB  
Article
Functional Analysis of Naturally Integrated Rol Genes in Sweet Potato via CRISPR/Cas9 Genome Editing
by Yury Shkryl, Yulia Yaroshenko, Valeria Grigorchuk, Victor Bulgakov and Yulia Yugay
Plants 2025, 14(24), 3708; https://doi.org/10.3390/plants14243708 - 5 Dec 2025
Viewed by 511
Abstract
Sweet potato (Ipomoea batatas) is a globally important crop and one of a growing number of plants recognized as naturally transgenic, harboring Agrobacterium-derived T-DNA genes whose functions remain largely uncharacterized. In this proof-of-concept study, we applied CRISPR/Cas9 technology to generate [...] Read more.
Sweet potato (Ipomoea batatas) is a globally important crop and one of a growing number of plants recognized as naturally transgenic, harboring Agrobacterium-derived T-DNA genes whose functions remain largely uncharacterized. In this proof-of-concept study, we applied CRISPR/Cas9 technology to generate targeted knockouts of the Ib-rolB/C and Ib-rolD-like genes located within the sweet potato cellular T-DNA2 (IbT-DNA2) region. Mutations were introduced into sweet potato callus cultures using an optimized genome editing protocol, with most edits consisting of single-nucleotide insertions. Knockout of Ib-rolB/C did not affect callus growth but significantly reduced levels of chlorogenic acid derivatives. Validation in planta using transient expression in I. batatas leaves confirmed the suppressive effect of Ib-rolB/C disruption on polyphenol content. In contrast, Ib-rolD-like knockout lines showed reduced biomass accumulation and downregulation of cell cycle–related genes, but did not display significant changes in metabolite content in either callus cultures or leaf tissues. These findings suggest that Ib-rolB/C and Ib-rolD-like may differentially contribute to growth and secondary metabolism in sweet potato. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 551 KB  
Review
Mesenchymal Stem Cells and Their Derivatives: Old Problems and New Possibilities in Regenerative Medicine for Neurological Diseases
by Elvira Akhmetzyanova, Ilya Shulman, Taisiya Fakhrutdinova, Albert Rizvanov and Yana Mukhamedshina
Biologics 2025, 5(4), 37; https://doi.org/10.3390/biologics5040037 - 28 Nov 2025
Viewed by 1142
Abstract
Mesenchymal stem cells are multipotent stromal cells with immunomodulatory, anti-inflammatory, and trophic properties that support tissue repair and regeneration. Increasing evidence suggests that their therapeutic effects are primarily mediated by paracrine signaling, especially through extracellular vesicles, which can cross the blood–brain barrier and [...] Read more.
Mesenchymal stem cells are multipotent stromal cells with immunomodulatory, anti-inflammatory, and trophic properties that support tissue repair and regeneration. Increasing evidence suggests that their therapeutic effects are primarily mediated by paracrine signaling, especially through extracellular vesicles, which can cross the blood–brain barrier and act as cell-free therapeutic agents. Preclinical and clinical studies in stroke, multiple sclerosis, spinal cord injury, and neurodegenerative diseases report encouraging outcomes but also reveal major challenges, including limited engraftment, donor-related heterogeneity, incomplete understanding of mechanisms, and potential oncogenic risks. Recent advances in biotechnology—such as mesenchymal stem cell-derived extracellular vesicles, genetic engineering using CRISPR/Cas9 or viral vectors, 3D culture systems, and bioengineered delivery platforms—offer new opportunities to overcome these limitations. Early clinical trials demonstrate promising safety and functional improvements, yet results remain inconsistent, highlighting the need for standardized protocols and large-scale controlled studies. This review outlines current knowledge, key challenges, and emerging strategies aimed at optimizing mesenchymal stem cell-based approaches for regenerative neurology. Full article
Show Figures

Graphical abstract

21 pages, 4335 KB  
Article
Screening and Identification of Hnf1ba-slc12a1 Signal Pathway in Response to Low-Salinity Stress in Marine Medaka (Oryzias melastigma)
by Binghua Liu, Lei Lin, Meng Wang, Jingjing Zhang, Yu Yang, Hong-Yan Wang and Changwei Shao
Int. J. Mol. Sci. 2025, 26(23), 11402; https://doi.org/10.3390/ijms262311402 - 25 Nov 2025
Viewed by 392
Abstract
Euryhaline fishes provide excellent material for the theoretical study of the broad-spectrum adaptability of organisms and the use of low-salinity and even freshwater environments, or high-salinity and seawater environments, for the domestication of fishes. Here, we studied the molecular mechanisms of osmotic pressure [...] Read more.
Euryhaline fishes provide excellent material for the theoretical study of the broad-spectrum adaptability of organisms and the use of low-salinity and even freshwater environments, or high-salinity and seawater environments, for the domestication of fishes. Here, we studied the molecular mechanisms of osmotic pressure regulation in a euryhaline fish, marine medaka (Oryzias melastigma). As the fish progressed from seawater to freshwater, the changes in stress indicators (cortisol—COR; malondialdehyde—MDA; reactive oxygen species—ROS; superoxide dismutase—SOD) indicated that they gradually adapted to the freshwater environment. The transcriptome analysis also showed that there were 6850 DEGs (differentially expressed genes) involved in the process. By analyzing these DEGs deeply, we screened and identified the Hnf1ba-slc12a1 signal pathway involved in osmotic pressure regulation. The results of a dual-luciferase reporter assay in HEK293T cells, as well as an overexpression experiment by in vitro cultured gill cells of O. melastigma, confirmed that Hnf1ba transcriptionally regulates the slc12a1 gene. Fragment deletion and site-directed mutagenesis assays revealed a Hnf1ba-binding sequence (GATTAATCATTTACT, located at −1877 to −1863) in the slc12a1 promoter. Based on this result, we conducted a targeted regulation experiment on the slc12a1 gene using the CRISPR-dCas9 & Sun-Tag system. The most effective activation of slc12a1 gene expression was observed in the sgRNA2 group. These results enhance our understanding of adaptation mechanisms in salt-tolerant fish and provide a reference for efficiently promoting the domestication of fish adaptive to salinity changes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1027 KB  
Article
CRISPR-Cas9-Mediated Knockout of MLO3 Confers Enhanced Resistance to Reniform Nematode in Upland Cotton
by Foster Kangben, Sonika Kumar, Anqi Xing, Li Wen, Wei Li, Stephen Parris, John Lawson, Zhigang Li, Lauren Carneal, Meredith Cobb, Robert L. Nichols, Christina Wells, Paula Agudelo, Churamani Khanal and Christopher A. Saski
Plants 2025, 14(22), 3491; https://doi.org/10.3390/plants14223491 - 15 Nov 2025
Viewed by 1204
Abstract
Upland cotton (Gossypium hirsutum L.) is a major global commodity crop whose production is threatened by the reniform nematode (Rotylenchulus reniformis Linford and Oliveira), a plant-parasitic pest that causes substantial yield losses. Host-plant resistance offers a sustainable management strategy, but currently [...] Read more.
Upland cotton (Gossypium hirsutum L.) is a major global commodity crop whose production is threatened by the reniform nematode (Rotylenchulus reniformis Linford and Oliveira), a plant-parasitic pest that causes substantial yield losses. Host-plant resistance offers a sustainable management strategy, but currently available resistant cotton cultivars provide only partial protection and often require supplemental control methods. In this study, Clustered Regularly Interspaced Palindromic Repeats (CRISPR)–CRISPR-associated 9 (Cas9) gene editing was used to generate targeted knockouts of Mildew Resistance Locus O (GhiMLO3) in cotton and assess its role in resistance to R. reniformis. Four independent knockout lines (A1, D3, E1, and P3) were developed, confirmed by sequencing, and evaluated for nematode resistance under controlled greenhouse conditions. Nematode reproduction was significantly reduced on lines D3 and E1, with lower egg counts and fewer vermiform life stages compared with the control genotypes, Coker 312 (WT), Delta Pearl, and Jin668. The edited lines also showed characteristic mesophyll cell-death phenotypes, suggesting potential pleiotropic effects associated with MLO-mediated resistance. Sequence analysis confirmed multiple homozygous and heterozygous mutations in MLO3 alleles from both the A and D subgenomes, with D3 and E1 lines displaying the strongest resistance profiles. These findings demonstrate that MLO3 gene editing is a promising approach for improving R. reniformis resistance in cotton. Full article
(This article belongs to the Special Issue New Strategies for the Control of Plant-Parasitic Nematodes)
Show Figures

Figure 1

30 pages, 3516 KB  
Review
Advanced Nanosystems and Emerging Therapies: Innovations in Tuberculosis Treatment and Drug Resistance
by Akhil Sharma, Vikas Sharma, Shivika Sharma, Sonu Sharma, Monu Sharma and Iyyakkannu Sivanesan
Pharmaceutics 2025, 17(11), 1459; https://doi.org/10.3390/pharmaceutics17111459 - 12 Nov 2025
Cited by 1 | Viewed by 1422
Abstract
Tuberculosis (TB) remains a significant worldwide health challenge due to the limitations of conventional treatments and the rising incidence of drug-resistant Mycobacterium tuberculosis strains. This review consolidates the advancements in nanotechnology-based therapeutics, inhalable formulations, CRISPR–Cas tools, host-directed therapies (HDTs), and nanoparticle-based vaccine development [...] Read more.
Tuberculosis (TB) remains a significant worldwide health challenge due to the limitations of conventional treatments and the rising incidence of drug-resistant Mycobacterium tuberculosis strains. This review consolidates the advancements in nanotechnology-based therapeutics, inhalable formulations, CRISPR–Cas tools, host-directed therapies (HDTs), and nanoparticle-based vaccine development aimed at enhancing TB management. Novel nanocarriers such as liposomes, solid-lipid nanoparticles (SLNs), dendrimers, and polymeric nanoparticles (NPs) offer enhanced bioavailability of drugs, sustained release, as well as targeted delivery to infected macrophages, thereby reducing systemic toxicity and dosing frequency. Inhalable nanomedicines provide localized delivery to the pulmonary site, enhancing the concentration of the drug at the primary site of infection. CRISPR–Cas technology is emerging as a transformative approach to disabling drug-resistant genes and enhancing diagnostic precision. HDTs, including agents like vitamin D and metformin, show potential in modulating host immune responses and enhancing pathogen clearance. Nanoparticle-based vaccines, including mRNA and antigen-conjugated platforms, aim to overcome the limitations of the BCG vaccine by enhancing antigen presentation and eliciting stronger, longer-lasting immunity. Collectively, these modalities mark a shift toward more personalized, effective, and less toxic TB therapies. However, challenges such as regulatory approval, safety, scalability, and accessibility remain. This review highlights the integrated potential of nanomedicine, gene editing, and immunomodulation to transform TB care and combat drug resistance, paving the way for more robust and durable treatment strategies. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

Back to TopTop