Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,917)

Search Parameters:
Keywords = CRISPR–Cas12

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1922 KB  
Article
Foundations of an Ovine Model of Fragile X Syndrome
by Victoria Hawkins, Skye R. Rudiger, Clive J. McLaughlan, Jennifer M. Kelly, Klaus Lehnert, Jessie C. Jacobsen, Renee R. Handley, Kimiora Henare, Paul J. Verma and Russell G. Snell
Genes 2026, 17(2), 152; https://doi.org/10.3390/genes17020152 - 28 Jan 2026
Abstract
Background: Fragile X Syndrome (FXS) is an X-linked neurodevelopmental disorder characterised by intellectual disability, developmental delays, anxiety, and social and behavioural challenges. Currently, no effective treatments exist to address the root cause of FXS. Mouse models are the most widely used for studying [...] Read more.
Background: Fragile X Syndrome (FXS) is an X-linked neurodevelopmental disorder characterised by intellectual disability, developmental delays, anxiety, and social and behavioural challenges. Currently, no effective treatments exist to address the root cause of FXS. Mouse models are the most widely used for studying molecular pathogenesis and conducting preclinical treatment testing. However, therapeutic interventions that show promise in rodent models have yet to succeed in clinical trials. After evaluating the current models, we have developed an ovine model to address this clinical translation gap. We expect this model to more accurately reflect the human condition in brain size, structure, and neurodevelopmental trajectory. We aim to establish this model as a valuable preclinical platform for testing therapies for FXS. Methods: To generate the sheep model, we used CRISPR-Cas9 dual-guide editing to knock out the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene in ovine embryos. Results: Two founder animals were created, one ram (male) and one ewe (female), both of which carried FMR1 gene knockouts. The ewe carries inactivating mutations on both alleles, with the edits in both animals resulting in no detectable Fragile X Messenger Ribonucleoprotein (FMRP) as expected. Both founders have undergone molecular characterisation and basic health checks, with the female founder showing increased joint flexibility, a characteristic of FXS. The ram has been used for breeding, with the successful transmission of the edited allele to his offspring. Importantly, specific lamb cohorts for postnatal treatment testing can be produced efficiently utilising accelerated breeding methods and preimplantation selection. Full article
(This article belongs to the Special Issue Fragile X Syndrome and Fragile X Premutation Associated Conditions)
Show Figures

Figure 1

13 pages, 1908 KB  
Communication
Antigenic Matching of rHVT-H5 via CRISPR/Cas9 Confers Complete Protection Against Novel H5N1 Clade 2.3.4.4b in Chicken
by Sang-Won Kim, Jong-Yeol Park, Ji-Eun Son, Cheng-Dong Yu, Ki-Woong Kim, Won-Bin Jeon, Yu-Ri Choi, Hyung-Kwan Jang, Bai Wei and Min Kang
Vet. Sci. 2026, 13(2), 127; https://doi.org/10.3390/vetsci13020127 - 28 Jan 2026
Abstract
The widespread panzootic of clade 2.3.4.4b highly pathogenic avian influenza (HPAI) H5N1 necessitates the development of vaccine platforms capable of rapid adaptation to emerging antigenic variants. Although commercial recombinant turkey herpesvirus (rHVT) vaccines are available, they often utilize heterologous inserts that may fail [...] Read more.
The widespread panzootic of clade 2.3.4.4b highly pathogenic avian influenza (HPAI) H5N1 necessitates the development of vaccine platforms capable of rapid adaptation to emerging antigenic variants. Although commercial recombinant turkey herpesvirus (rHVT) vaccines are available, they often utilize heterologous inserts that may fail to optimally limit viral shedding of novel field strains. Here, we report the rapid construction of a homologous rHVT-H5 vaccine expressing the hemagglutinin (HA) gene of a representative clade 2.3.4.4b isolate via CRISPR/Cas9-mediated non-homologous end joining (NHEJ). In vitro characterization confirmed stable HA surface expression and growth kinetics comparable to the parental virus. In specific-pathogen-free (SPF) chickens, rHVT-H5 elicited robust hemagglutination inhibition (HI) antibody titers. Following lethal challenge with a homologous clade 2.3.4.4b H5N1 virus, the vaccine conferred 100% protection against mortality and clinical signs while significantly reduced oropharyngeal sheddings and completely inhibited viral shedding in cloacal samples. These findings demonstrate that an antigenically matched rHVT-H5 constitutes a promising strategy for mitigating the ongoing global threat posed by clade 2.3.4.4b HPAI H5N1. Full article
(This article belongs to the Special Issue Exploring Innovative Approaches in Veterinary Health)
13 pages, 2759 KB  
Article
Ptch2 Deficiency Triggers Lipoma Formation and Adipogenic Transcriptome Reprogramming in Nile tilapia (Oreochromis niloticus)
by Changle Zhao, Xiang Liu, Xi Peng, Yongxun Chen, Shijian Peng, Lei Liu, Deshou Wang and Jing Wei
Animals 2026, 16(3), 405; https://doi.org/10.3390/ani16030405 - 28 Jan 2026
Abstract
The Hedgehog (Hh) signaling pathway is a key regulator of adipogenesis and lipid metabolism. However, the specific role of its receptor, Patched2 (Ptch2), in these processes remains unclear. Here, using a CRISPR/Cas9-mediated ptch2 homozygous mutation model in Nile tilapia (Oreochromis niloticus), [...] Read more.
The Hedgehog (Hh) signaling pathway is a key regulator of adipogenesis and lipid metabolism. However, the specific role of its receptor, Patched2 (Ptch2), in these processes remains unclear. Here, using a CRISPR/Cas9-mediated ptch2 homozygous mutation model in Nile tilapia (Oreochromis niloticus), we found that Ptch2 deficiency induced visceral and perirenal lipomatosis characterized by small, multinucleated adipocytes. Comparative adipose transcriptomics revealed pronounced adipogenic reprogramming, with marked upregulation of genes governing de novo lipogenesis (e.g., acaca, fasn), fatty acid desaturation (e.g., scd, fadsd6), and triglyceride synthesis (e.g., dgat2, lpl). Biochemically, mutants exhibited elevated blood glucose and liver transaminases (alanine aminotransferase, aspartate aminotransferase) activity, and reduced alkaline phosphatase activity, indicating systemic metabolic dysregulation and hepatic stress. Our findings demonstrate that loss of Ptch2 triggers lipoma formation and adipogenic transcriptome reprogramming, highlighting its essential role in maintaining adipose tissue homeostasis. Full article
Show Figures

Figure 1

29 pages, 2995 KB  
Review
Molecular Regulators of In Vitro Regeneration in Wheat: Roles of Morphogenic Factors in Transformation, Genome Editing, and Breeding
by Sylwia Kowalik, Monika Samoń and Mateusz Przyborowski
Int. J. Mol. Sci. 2026, 27(3), 1271; https://doi.org/10.3390/ijms27031271 - 27 Jan 2026
Abstract
Efficient in vitro regeneration remains a major constraint in the genetic transformation, genome editing, and molecular breeding of wheat (Triticum aestivum L.), largely due to strong genotype-dependent recalcitrance and limited activation of developmental programs required for somatic embryogenesis. Plant regeneration relies on [...] Read more.
Efficient in vitro regeneration remains a major constraint in the genetic transformation, genome editing, and molecular breeding of wheat (Triticum aestivum L.), largely due to strong genotype-dependent recalcitrance and limited activation of developmental programs required for somatic embryogenesis. Plant regeneration relies on extensive transcriptional reprogramming and epigenetic remodeling orchestrated by morphogenic regulators that modulate meristem identity, as well as cellular pluri- and totipotency. In this review, we synthesize current molecular knowledge on key transcription factors (BBM, WUS/WUS2, GRF-GIF, WOX, LAX1, SERK, WIND1/ERF115) and signaling peptides (CLE/CLV-WUS module, phytosulfokine/PSK) that regulate embryogenic competence in monocot cereals, with emphasis on their orthologs and functional relevance in wheat. We highlight how controlled expression of these morphogenic genes, promoter engineering, and transient or excisable induction systems can significantly enhance regeneration capacity, reduce chimerism in CRISPR-Cas-edited plants, and facilitate genotype-independent transformation. We also discuss epigenetic and metabolic constraints underlying wheat recalcitrance and their potential modulation to improve culture responsiveness. By integrating evidence from wheat, rice, maize, and barley, we outline conserved gene-regulatory networks that reinitiate totipotency and propose strategies to accelerate doubled haploid production and speed-breeding pipelines. Collectively, morphogenic factors emerge as central molecular tools for overcoming regeneration bottlenecks and enabling next-generation wheat improvement. The objective of this review is to synthesize and critically evaluate current molecular knowledge on morphogenic regulators controlling in vitro regeneration in wheat (Triticum aestivum L.), with particular emphasis on their roles in genetic transformation and genome editing. Full article
(This article belongs to the Special Issue Advancements and Trends in Plant Genomics)
Show Figures

Figure 1

15 pages, 297 KB  
Review
Fetal Hemoglobin Modulation in Sickle Cell Disease: βs Haplotypes, Key Polymorphisms Identified by GWAS, and Advances in γ-Globin Editing: An Updated Overview
by Yusselfy Márquez-Benitez, Valeria Isabela Osorio-Garzón, Jaime Eduardo Bernal-Villegas and Ignacio Briceño-Balcázar
Genes 2026, 17(2), 135; https://doi.org/10.3390/genes17020135 - 27 Jan 2026
Abstract
Fetal hemoglobin (HbF) plays a central role in mitigating the pathophysiological effects of sickle cell disease (SCD). Understanding the genetic determinants influencing HbF expression is essential for identifying the factors contributing to its modulation. This review provides an updated synthesis of evidence on [...] Read more.
Fetal hemoglobin (HbF) plays a central role in mitigating the pathophysiological effects of sickle cell disease (SCD). Understanding the genetic determinants influencing HbF expression is essential for identifying the factors contributing to its modulation. This review provides an updated synthesis of evidence on HbF modulation, focusing on βs haplotypes and their molecular characterization through Sanger sequencing, polymorphisms consistently associated with HbF levels in genome-wide association studies (GWAS), and recent advances in gene editing targeting HbF expression. An integrative review (2016–2025) was conducted using PubMed/MEDLINE, Scopus, and Web of Science, encompassing original research, experimental studies, systematic reviews, and genomic analyses. Key regulatory loci such as BCL11A, HBS1L-MYB (HMIP), and the HBB cluster explain a significant proportion of HbF variability across populations. Furthermore, additional variants in KLF1, NFIX, BACH2, and ZBTB7A have emerged as potential modulators in specific cohorts. Regarding advances in γ-globin editing, “prime editing”, although still in the experimental phase, has recently emerged as an innovative approach capable of introducing multiple HPFH-like mutations within γ-globin promoters, expanding future therapeutic possibilities in SCD. This review also provides a comparative overview of prime editing and other gene-editing strategies for HbF modulation, such as CRISPR-Cas9 and Base editing. Collectively, this work outlines the current landscape of HbF modulation and provides an informative basis for future research aimed at advancing precision-oriented therapeutic strategies in sickle cell disease. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
15 pages, 6006 KB  
Article
A RPA-CRISPR/Cas12a-Powered Catalytic Hairpin Assembly Fluorescence Biosensor for Duck Plague Virus Virulent Strain Detection
by Yue Wu, Jiaxin Wan, Xingbo Wang, Yunjie Shen, Xiangjun Li, Weidong Zhou, Yinchu Zhu and Xing Xu
Biosensors 2026, 16(2), 73; https://doi.org/10.3390/bios16020073 - 26 Jan 2026
Viewed by 32
Abstract
Duck plague virus (DPV), a highly contagious α-herpesvirus in the livestock and poultry environment, poses a significant threat to the healthy growth of ducks, potentially causing substantial economic losses. Effective control of DPV requires the development of specific diagnostic tools. A new fluorescent [...] Read more.
Duck plague virus (DPV), a highly contagious α-herpesvirus in the livestock and poultry environment, poses a significant threat to the healthy growth of ducks, potentially causing substantial economic losses. Effective control of DPV requires the development of specific diagnostic tools. A new fluorescent biosensor (R-C-CHA) was developed to detect virulent strains of DPV. It combined recombinase polymerase amplification (RPA), a CRISPR/Cas12a system, and catalytic hairpin assembly (CHA) for signal enhancement. The RPA primers were specifically designed to target the conserved DPV-CHv UL2 gene region, allowing for the rapid, efficient amplification of the target nucleic acids in isothermal conditions. The CRISPR/Cas12a system was used for sequence-specific recognition, activating its lateral cleavage activity. Furthermore, the CHA cascade reaction was utilized for enzyme-free fluorescent signal amplification. The results showed that the R-C-CHA biosensor completed the detection process in 40 min with a detection limit of 0.02 fg/μL, which was an approximate five-fold improvement compared to traditional RPA-CRISPR/Cas12a biosensors. The R-C-CHA biosensor also demonstrated perfect consistency with clinical detection and polymerase chain reaction (PCR) diagnosis, highlighting its strong potential for rapid detection in livestock and poultry farming settings. Full article
(This article belongs to the Special Issue Sensors for Environmental Monitoring and Food Safety—2nd Edition)
Show Figures

Figure 1

12 pages, 1333 KB  
Article
Rapid and Sensitive Detection of Candida albicans Using Microfluidic-Free Droplet Digital Non-Amplification Dependent CRISPR/Cas12a Assay
by Jie Peng, Chao Guo, Ze-Yun Huang, Wen-Fei Xu and Xu-Hui Li
Biosensors 2026, 16(2), 72; https://doi.org/10.3390/bios16020072 - 26 Jan 2026
Viewed by 34
Abstract
Candida albicans is a major fungal pathogen associated with vulvovaginal candidiasis, and rapid, sensitive detection remains challenging, particularly in amplification-free formats. Here, we report NaPddCas, a microfluidic-free, droplet-based CRISPR/Cas12a detection strategy for qualitative identification of Candida albicans DNA. Unlike conventional bulk CRISPR assays, [...] Read more.
Candida albicans is a major fungal pathogen associated with vulvovaginal candidiasis, and rapid, sensitive detection remains challenging, particularly in amplification-free formats. Here, we report NaPddCas, a microfluidic-free, droplet-based CRISPR/Cas12a detection strategy for qualitative identification of Candida albicans DNA. Unlike conventional bulk CRISPR assays, NaPddCas partitions the reaction mixture into vortex-generated polydisperse droplets, enabling spatial confinement of Cas12a activation events and effective suppression of background fluorescence. This compartmentalization substantially enhances detection sensitivity without nucleic acid amplification or microfluidic devices. Using plasmid and genomic DNA templates, NaPddCas achieved reliable detection at concentrations several orders of magnitude lower than bulk CRISPR/Cas12a reactions. The assay further demonstrated high specificity against non-target bacterial and fungal species and was successfully applied to clinical vaginal secretion samples. Importantly, NaPddCas is designed as a qualitative or semi-qualitative droplet-dependent digital detection method rather than a quantitative digital assay. Owing to its simplicity, sensitivity, and amplification-free workflow, NaPddCas represents a practical approach for laboratory-based screening of Candida albicans infections. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis—2nd Edition)
Show Figures

Figure 1

23 pages, 1672 KB  
Review
Field-Evolved Resistance to Bt Cry Toxins in Lepidopteran Pests: Insights into Multilayered Regulatory Mechanisms and Next-Generation Management Strategies
by Junfei Xie, Wenfeng He, Min Qiu, Jiaxin Lin, Haoran Shu, Jintao Wang and Leilei Liu
Toxins 2026, 18(2), 60; https://doi.org/10.3390/toxins18020060 - 25 Jan 2026
Viewed by 108
Abstract
Bt Cry toxins remain the cornerstone of transgenic crop protection against Lepidopteran pests, yet field-evolved resistance, particularly in invasive species such as Spodoptera frugiperda and Helicoverpa armigera, can threaten their long-term efficacy. This review presents a comprehensive and unified mechanistic framework that [...] Read more.
Bt Cry toxins remain the cornerstone of transgenic crop protection against Lepidopteran pests, yet field-evolved resistance, particularly in invasive species such as Spodoptera frugiperda and Helicoverpa armigera, can threaten their long-term efficacy. This review presents a comprehensive and unified mechanistic framework that synthesizes current understanding of Bt Cry toxin modes of action and the complex, multilayered regulatory mechanisms of field-evolved resistance. Beyond the classical pore-formation model, emerging evidence highlights signal transduction cascades, immune evasion via suppression of Toll/IMD pathways, and tripartite toxin–host–microbiota interactions that can dynamically modulate protoxin activation and receptor accessibility. Resistance arises from target-site alterations (e.g., ABCC2/ABCC3, Cadherin mutations), altered midgut protease profiles, enhanced immune regeneration, and microbiota-mediated detoxification, orchestrated by transcription factor networks (GATA, FoxA, FTZ-F1), constitutive MAPK hyperactivation (especially MAP4K4-driven cascades), along with preliminary emerging findings on non-coding RNA involvement. Countermeasures now integrate synergistic Cry/Vip pyramiding, CRISPR/Cas9-validated receptor knockouts revealing functional redundancy, Domain III chimerization (e.g., Cry1A.105), phage-assisted continuous evolution (PACE), and the emerging application of AlphaFold3 for structure-guided rational redesign of resistance-breaking variants. Future sustainability hinges on system-level integration of single-cell transcriptomics, midgut-specific CRISPR screens, microbiome engineering, and AI-accelerated protein design to preempt resistance trajectories and secure Bt biotechnology within integrated resistance and pest management frameworks. Full article
Show Figures

Figure 1

23 pages, 3080 KB  
Article
Manipulation of Alternative Splicing of IKZF1 Elicits Distinct Gene Regulatory Responses in T Cells
by Lucia Pastor, Jeremy R. B. Newman, Colin M. Callahan, Rebecca R. Pickin, Mark A. Atkinson, Suna Onengut-Gumuscu and Patrick Concannon
Cells 2026, 15(3), 221; https://doi.org/10.3390/cells15030221 - 24 Jan 2026
Viewed by 177
Abstract
Genome-wide studies have identified significant allelic associations between genetic variants in or near the IKZF1 gene and multiple autoimmune disorders. IKZF1, encoding the transcription factor IKAROS, produces at least 10 distinct transcripts. To explore the impact of alternative splicing of IKZF1 on [...] Read more.
Genome-wide studies have identified significant allelic associations between genetic variants in or near the IKZF1 gene and multiple autoimmune disorders. IKZF1, encoding the transcription factor IKAROS, produces at least 10 distinct transcripts. To explore the impact of alternative splicing of IKZF1 on the function of mature T cells and the risk of autoimmunity, we generated a panel of human T-cell clones with truncating mutations in IKZF1 exons 4, 6, or both. Differences in gene expression, chromatin accessibility, and protein abundance among clones were assessed by RNA-seq, ATAC-seq, and immunoblotting. Clones with single targeting events clustered separately from double-targeted clones on multiple parameters, but overall, clone responses were highly heterogeneous. Perturbation of IKZF1 splicing resulted in significant differences in expression and chromatin accessibility of other autoimmunity-associated genes and elicited compensatory expression changes in other IKAROS family members. Our results suggest that even modest alterations of IKZF1 splicing can have significant effects on gene expression and function in mature T cells, potentially contributing to autoimmunity in susceptible individuals. Full article
Show Figures

Figure 1

17 pages, 1590 KB  
Article
Neurofibromin 1 (NF1) Splicing Mutation c.61-2A>G: From Aberrant mRNA Processing to Therapeutic Implications In Silico
by Asta Blazyte, Hojun Lee, Changhan Yoon, Sungwon Jeon, Jaesuk Lee, Delger Bayarsaikhan, Jungeun Kim, Sangsoo Park, Juok Cho, Sun Ah Baek, Gabin Byun, Bonghee Lee and Jong Bhak
Int. J. Mol. Sci. 2026, 27(3), 1177; https://doi.org/10.3390/ijms27031177 - 23 Jan 2026
Viewed by 294
Abstract
The neurofibromin 1 (NF1) splice-site mutation c.61-2A>G (rs1131691100) is a rare, pathogenic, autosomal dominant variant that disrupts NF1 tumor-suppressor function, causing neurofibromatosis type 1 (NF1). Its pathogenic mechanism is poorly understood, and the potential for personalized therapeutic genome editing remains unknown [...] Read more.
The neurofibromin 1 (NF1) splice-site mutation c.61-2A>G (rs1131691100) is a rare, pathogenic, autosomal dominant variant that disrupts NF1 tumor-suppressor function, causing neurofibromatosis type 1 (NF1). Its pathogenic mechanism is poorly understood, and the potential for personalized therapeutic genome editing remains unknown due to the absence of a standard framework for investigating splicing disorders. Here, we performed a comprehensive multi-omics analysis of a de novo c.61-2A>G case from South Korea, integrating short- and long-read whole genome sequencing, whole transcriptome sequencing, and methylation profiling. We confirm that c.61-2A>G abolishes the canonical splice acceptor site, activating a cryptic splice acceptor 16 nucleotides downstream in exon 2. This splicing shift generates a 16-nucleotide deletion, causing a frameshift and premature stop codon that truncates the protein’s N-terminal region. Long-read sequencing further reveals that the mutation creates a novel CpG dinucleotide, which is methylated in the majority of reads. Finally, we assessed therapeutic correction strategies, revealing that CRISPR-Cas9 prime editing is the only viable approach for in vivo correction. This study provides the first comprehensive multi-omics characterization of the NF1 c.61-2A>G mutation and establishes a minimal framework for precision therapeutic development in silico in monogenic splicing disorders. Full article
Show Figures

Figure 1

18 pages, 8749 KB  
Article
Reduced LOXL3 Expression Disrupts Microtubule Acetylation and Drives TP53-Dependent Cell Fate in Glioblastoma
by Talita de Sousa Laurentino, Roseli da Silva Soares, Antônio Marcondes Lerario, Ricardo Cesar Cintra, Suely Kazue Nagahashi Marie and Sueli Mieko Oba-Shinjo
Cells 2026, 15(3), 219; https://doi.org/10.3390/cells15030219 - 23 Jan 2026
Viewed by 208
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, marked by molecular heterogeneity and poor clinical prognosis. Lysyl oxidase-like 3 (LOXL3) is frequently upregulated in GBM, but its mechanistic contribution remains insufficiently defined. Here, we investigated the functional role of LOXL3 in GBM [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, marked by molecular heterogeneity and poor clinical prognosis. Lysyl oxidase-like 3 (LOXL3) is frequently upregulated in GBM, but its mechanistic contribution remains insufficiently defined. Here, we investigated the functional role of LOXL3 in GBM using CRISPR-Cas9-mediated LOXL3 knockdown in two genetically distinct GBM cell lines: U87MG (wild-type TP53) and U251 (mutant TP53). Reduced LOXL3 expression markedly reduced α-tubulin acetylation, particularly in U87MG cells, and downregulated genes involved in cell cycle progression and proliferation. Both cell lines exhibited mitotic defects, including delayed cell cycle progression and spindle abnormalities; however, cell fate diverged according to TP53 status. U87MG cells, sustained spindle checkpoint activation triggered a p53-dependent spindle checkpoint response culminating in apoptosis, while U251 cells underwent mitotic slippage and senescence. Transcriptomic analyses confirmed differential regulation of apoptosis versus senescence pathways in accordance with TP53 functionality. Additionally, reduced LOXL3 expression markedly impaired adhesion and migration in U87MG cells, whereas U251 cells were minimally affected, consistent with more pronounced microtubule destabilization. Collectively, these findings identify that LOXL3 is a key regulator of microtubule homeostasis, mitotic fidelity, adhesion, and invasive behavior in GBM. Targeting LOXL3 may therefore provide a therapeutic opportunity for genotype-informed intervention in GBM. Full article
Show Figures

Figure 1

24 pages, 4161 KB  
Article
Pmel17 Deficiency Affects Melanogenesis and Promotes Tumor Vascularization
by Justyna Sopel, Katarzyna Sarad, Anna Kozinska, Krystian Mokrzyński, Dariusz Szczygieł, Aleksandra Murzyn, Agnieszka Drzał, Andrzej Słomiński, Małgorzata Szczygieł and Martyna Elas
Int. J. Mol. Sci. 2026, 27(3), 1147; https://doi.org/10.3390/ijms27031147 - 23 Jan 2026
Viewed by 70
Abstract
Premelanosomal protein (Pmel, also known as Pmel17) is the major component of melanosomal fibrils and plays a key role in melanin polymerization, making it an important factor in melanogenesis. We investigated how the absence of Pmel affects the properties of B16F10 melanoma cells. [...] Read more.
Premelanosomal protein (Pmel, also known as Pmel17) is the major component of melanosomal fibrils and plays a key role in melanin polymerization, making it an important factor in melanogenesis. We investigated how the absence of Pmel affects the properties of B16F10 melanoma cells. Pmel-knockout B16F10 cells were generated using CRISPR/Cas9-mediated genome editing. A viability assay revealed no significant differences between wild-type (WT) and Pmel-knockout (KO) sublines; however, melanosome maturation was impaired. In Pmel KO cells, the cell cycle was disrupted, and higher levels of reactive oxygen species (ROS) were observed compared with WT cells. Moreover, the migration capacity and tube formation of melanoma cells were increased. Tumors derived from Pmel KO cells exhibited unchanged growth kinetics but reduced melanin content, along with enhanced vascularization and oxygenation. Thus, knockout of the Pmel17 gene in melanoma cells alters pigmentation, vascularization, and oxygenation of tumors. These parameters are crucial for both tumor progression and therapeutic response. Full article
Show Figures

Figure 1

16 pages, 2785 KB  
Article
Knockout of MDHAR Paralogs Suggests Broader Regulatory Roles Beyond Ascorbic Acid Recycling in Lettuce
by Ugo Rogo, Samuel Simoni, Ambra Viviani, Claudio Pugliesi, Marco Fambrini, Alberto Vangelisti, Lucia Natali, Andrea Cavallini, Richard Michelmore and Tommaso Giordani
Horticulturae 2026, 12(1), 122; https://doi.org/10.3390/horticulturae12010122 - 21 Jan 2026
Viewed by 115
Abstract
Ascorbic acid (AsA) is a key antioxidant and nutrient in plants, regulating reactive oxygen species (ROS) levels and maintaining cellular redox homeostasis. The AsA recycling pathway sustains AsA pools by restoring its oxidized forms, ensuring intracellular balance. Among the enzymes involved, monodehydroascorbate reductase [...] Read more.
Ascorbic acid (AsA) is a key antioxidant and nutrient in plants, regulating reactive oxygen species (ROS) levels and maintaining cellular redox homeostasis. The AsA recycling pathway sustains AsA pools by restoring its oxidized forms, ensuring intracellular balance. Among the enzymes involved, monodehydroascorbate reductase (MDHAR) is important for the regeneration of AsA from monodehydroascorbate. In this study, we analyzed the four MDHAR paralogs in Lactuca sativa using CRISPR/Cas9 to determine whether disruption of individual MDHAR genes could alter AsA levels in lettuce leaves. Unexpectedly, none of the knockouts caused long-term changes in leaf AsA content. Transcriptomic analyses at 14 and 28 days showed minimal effects on AsA recycling or biosynthesis genes, except MDHAR genes. However, several other genes indirectly implicated in AsA regulation displayed differential expression in all mutants compared to the wild type, suggesting the presence of a complex regulatory network. In particular, genes encoding transcription factors (TFs), such as mTERF15, COL9, UPBEAT1, NAC28, and NAC42, were differentially regulated in all MDHAR mutants compared to the wild type at 28 days. These findings indicate that, although AsA content remains unchanged, MDHAR single knockouts alter expression of other genes through which the plants may indirectly compensate to maintain redox homeostasis. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Graphical abstract

30 pages, 1039 KB  
Review
Molecular Identification and RNA-Based Management of Fungal Plant Pathogens: From PCR to CRISPR/Cas9
by Rizwan Ali Ansari, Younes Rezaee Danesh, Ivana Castello and Alessandro Vitale
Int. J. Mol. Sci. 2026, 27(2), 1073; https://doi.org/10.3390/ijms27021073 - 21 Jan 2026
Viewed by 106
Abstract
Fungal diseases continue to limit global crop production and drive major economic losses. Conventional diagnostic and control approaches depend on time-consuming culture-based methods and broad-spectrum chemicals, which offer limited precision. Advances in molecular identification have changed this landscape. PCR, qPCR, LAMP, sequencing and [...] Read more.
Fungal diseases continue to limit global crop production and drive major economic losses. Conventional diagnostic and control approaches depend on time-consuming culture-based methods and broad-spectrum chemicals, which offer limited precision. Advances in molecular identification have changed this landscape. PCR, qPCR, LAMP, sequencing and portable platforms enable rapid and species-level detection directly from plant tissue. These tools feed into RNA-based control strategies, where knowledge of pathogen genomes and sRNA exchange enables targeted suppression of essential fungal genes. Host-induced and spray-induced gene silencing provide selective control without the long-term environmental costs associated with chemical use. CRISPR/Cas9 based tools now refine both diagnostics and resistance development, and bioinformatics improves target gene selection. Rising integration of artificial intelligence indicates a future in which disease detection, prediction and management connect in near real time. The major challenge lies in limited field validation and the narrow range of fungal species with complete molecular datasets, yet coordinated multi-site trials and expansion of annotated genomic resources can enable wider implementation. The combined use of molecular diagnostics and RNA-based strategies marks a shift from disease reaction to disease prevention and moves crop protection towards a precise, sustainable and responsive management system. This review synthesizes the information related to current molecular identification tools and RNA-based management strategies, and evaluates how their integration supports precise and sustainable approaches for fungal disease control under diverse environmental settings. Full article
(This article belongs to the Special Issue Fungal Genetics and Functional Genomics Research)
Show Figures

Figure 1

20 pages, 1857 KB  
Review
Maternal Embryonic Leucine Zipper Kinase (MELK) in Cancer: Biological Functions, Therapeutic Potential, and Controversies
by Alaeddin M. Alzeer and Saad Al-Lahham
Biology 2026, 15(2), 200; https://doi.org/10.3390/biology15020200 - 21 Jan 2026
Viewed by 126
Abstract
The Maternal Embryonic Leucine Zipper Kinase (MELK) gene is a member of the Snf1/AMPK serine/threonine kinase family. MELK has recently attracted considerable interest in cancer biology due to its aberrant overexpression in various malignancies, including glioma, breast, lung, colorectal, gastric, and [...] Read more.
The Maternal Embryonic Leucine Zipper Kinase (MELK) gene is a member of the Snf1/AMPK serine/threonine kinase family. MELK has recently attracted considerable interest in cancer biology due to its aberrant overexpression in various malignancies, including glioma, breast, lung, colorectal, gastric, and hematological cancers. It has been shown that higher MELK levels are often correlated with unfavorable prognosis, aggressive tumor manifestations, resistance to treatment, and stem-like tumor morphologies. In this review we aim to summarize the current understanding of MELK biology, including its functions in cell cycle regulation, apoptosis, oncogenic signaling pathways, and tumor stemness. We also discuss the therapeutic potential, limitations, and controversy of MELK inhibitors, and implications in cancer diagnosis and treatment. MELK may not be a universal driver oncogene; nonetheless, it is consistently linked to aggressive disease, underscoring its potential as a prognostic biomarker and a candidate for therapeutic co-targeting in combination treatments. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

Back to TopTop