Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = CRESS-DNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6674 KB  
Article
Metagenomic Sequencing Reveals the Viral Diversity of Bactrian Camels in China
by Jun Li, Ling Hou, Yuhang Liu, Yue Sun, Yong Li, Biao He, Changchun Tu and Xuezhang Zhou
Microorganisms 2025, 13(11), 2589; https://doi.org/10.3390/microorganisms13112589 - 13 Nov 2025
Viewed by 609
Abstract
The Bactrian camel is a key economic livestock species in China and around the world. It yields meat and milk (high-quality functional foods), and the milk reports health benefits. Dromedary camels, as intermediate hosts of MERS-CoV, have garnered significant public health attention. In [...] Read more.
The Bactrian camel is a key economic livestock species in China and around the world. It yields meat and milk (high-quality functional foods), and the milk reports health benefits. Dromedary camels, as intermediate hosts of MERS-CoV, have garnered significant public health attention. In contrast, viral surveillance in Bactrian camels from the same genus as dromedaries has received limited attention, with only sporadic or regionally confined reports available. Systematic investigations into the virome of viral species, viral diversity, and novel viruses in Bactrian camels are lacking. In this study, swabs were collected from 701 Bactrian camels in China. Through metagenomics, 3262 viral contigs were classified into 16 viral phyla, 29 viral families, and an unclassified group. The different landforms were found to influence viral diversity and composition in Bactrian camels, with mountainous area exerting the greatest impact. The viral composition significantly differed between captive and free-ranging camels. The study identified at least 12 viruses with zoonotic potential, and phylogenetic analysis indicated cross-species transmission in some of them. Additionally, picornavirus, circular Rep-encoding single-stranded (CRESS) DNA virus, and polyomavirus from Bactrian camels may represent novel species or genotypes. To summarize, in this study, we described the baseline virome profile of Chinese Bactrian camels, investigated the ecological factors influencing the viral distribution of Bactrian camels, identified key potential viral risks, and provided a scientific basis for the prevention, control, and early warning of critical viral diseases in Bactrian camels from China. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

8 pages, 1274 KB  
Brief Report
Identification and Full-Genome Characterisation of Genomoviruses in Cassava Leaves Infected with Cassava Mosaic Disease
by Olabode Onile-ere, Oluwagboadurami John, Oreoluwa Sonowo, Pakyendou Estel Name, Ezechiel Bionimian Tibiri, Fidèle Tiendrébéogo, Justin Pita, Solomon Oranusi and Angela O. Eni
Viruses 2025, 17(11), 1418; https://doi.org/10.3390/v17111418 - 25 Oct 2025
Viewed by 768
Abstract
This study identified and characterised three Genomoviruses during a circular DNA-enriched sequencing project aimed at assessing the evolution of Cassava mosaic begomoviruses in Nigeria. Using a combination of rolling circle amplification, Oxford Nanopore Sequencing and targeted amplicon sequencing, three full-length Genomovirus genomes were [...] Read more.
This study identified and characterised three Genomoviruses during a circular DNA-enriched sequencing project aimed at assessing the evolution of Cassava mosaic begomoviruses in Nigeria. Using a combination of rolling circle amplification, Oxford Nanopore Sequencing and targeted amplicon sequencing, three full-length Genomovirus genomes were recovered. The recovered genomes ranged from 2090 to 2188 nucleotides in length, contained two open reading frames (Rep and CP) in an ambisense orientation and shared between 84.81 and 95.37% nucleotide similarity with isolates in the NCBI GenBank repository. Motif analyses confirmed the presence of conserved rolling circle replication (RCR) and helicase motifs in all three isolates; however, one isolate lacked the RCR II motif. Phylogenetic inference using Rep and CP nucleotide sequences suggested that the isolates belonged to a divergent lineage within the Genomovirus family. These findings expand current knowledge of Genomovirus diversity and highlight the potential of cassava as a source for identifying novel CRESS-DNA viruses. Full article
(This article belongs to the Special Issue Economically Important Viruses in African Crops)
Show Figures

Figure 1

28 pages, 17376 KB  
Review
Structural Capsidomics of Single-Stranded DNA Viruses
by Mario Mietzsch, Antonette Bennett and Robert McKenna
Viruses 2025, 17(3), 333; https://doi.org/10.3390/v17030333 - 27 Feb 2025
Cited by 3 | Viewed by 3206
Abstract
Single-stranded DNA (ssDNA) viruses are a diverse group of pathogens with broad host range, including bacteria, archaea, protists, fungi, plants, invertebrates, and vertebrates. Their small compact genomes have evolved to encode multiple proteins. This review focuses on the structure and functional diversity of [...] Read more.
Single-stranded DNA (ssDNA) viruses are a diverse group of pathogens with broad host range, including bacteria, archaea, protists, fungi, plants, invertebrates, and vertebrates. Their small compact genomes have evolved to encode multiple proteins. This review focuses on the structure and functional diversity of the icosahedral capsids across the ssDNA viruses. To date, X-ray crystallography and cryo-electron microscopy structural studies have provided detailed capsid architectures for 8 of the 35 ssDNA virus families, illustrating variations in assembly mechanisms, symmetry, and structural adaptations of the capsid. However, common features include the conserved jelly-roll motif of the capsid protein and strategies for genome packaging, also showing evolutionary convergence. The ever-increasing availability of genomic sequences of ssDNA viruses and predictive protein modeling programs, such as using AlphaFold, allows for the extension of structural insights to the less-characterized families. Therefore, this review is a comparative analysis of the icosahedral ssDNA virus families and how the capsid proteins are arranged with different tessellations to form icosahedral spheres. It summarizes the current knowledge, emphasizing gaps in the structural characterization of the ssDNA capsidome, and it underscores the importance of continued exploration to understand the molecular underpinnings of capsid function and evolution. These insights have implications for virology, molecular biology, and therapeutic applications. Full article
(This article belongs to the Special Issue Virus Assembly and Genome Packaging)
Show Figures

Figure 1

22 pages, 6076 KB  
Article
Genomic Insights of Wheat Root-Associated Lysinibacillus fusiformis Reveal Its Related Functional Traits for Bioremediation of Soil Contaminated with Petroleum Products
by Roderic Gilles Claret Diabankana, Akerke Altaikyzy Zhamalbekova, Aigerim Erbolkyzy Shakirova, Valeriia Igorevna Vasiuk, Maria Nikolaevna Filimonova, Shamil Zavdatovich Validov, Radik Ilyasovich Safin and Daniel Mawuena Afordanyi
Microorganisms 2024, 12(11), 2377; https://doi.org/10.3390/microorganisms12112377 - 20 Nov 2024
Cited by 3 | Viewed by 1850
Abstract
The negative ecological impact of industrialization, which involves the use of petroleum products and dyes in the environment, has prompted research into effective, sustainable, and economically beneficial green technologies. For green remediation primarily based on active microbial metabolites, these microbes are typically from [...] Read more.
The negative ecological impact of industrialization, which involves the use of petroleum products and dyes in the environment, has prompted research into effective, sustainable, and economically beneficial green technologies. For green remediation primarily based on active microbial metabolites, these microbes are typically from relevant sources. Active microbial metabolite production and genetic systems involved in xenobiotic degradation provide these microbes with the advantage of survival and proliferation in polluted ecological niches. In this study, we evaluated the ability of wheat root-associated L. fusiformis MGMM7 to degrade xenobiotic contaminants such as crude oil, phenol, and azo dyes. We sequenced the whole genome of MGMM7 and provided insights into the genomic structure of related strains isolated from contaminated sources. The results revealed that influenced by its isolation source, L. fusiformis MGMM7 demonstrated remediation and plant growth-promoting abilities in soil polluted with crude oil. Lysinibacillus fusiformis MGMM7 degraded up to 44.55 ± 5.47% crude oil and reduced its toxicity in contaminated soil experiments with garden cress (Lepidium sativum L.). Additionally, L. fusiformis MGMM7 demonstrated a significant ability to degrade Congo Red azo dye (200 mg/L), reducing its concentration by over 60% under both static and shaking cultivation conditions. However, the highest degradation efficiency was observed under shaking conditions. Genomic comparison among L. fusiformis strains revealed almost identical genomic profiles associated with xenobiotic assimilation. Genomic relatedness using Average Nucleotide Identity (ANI) and digital DNA–DNA hybridization (DDH) revealed that MGMM7 is distantly related to TZA38, Cu-15, and HJ.T1. Furthermore, subsystem distribution and pangenome analysis emphasized the distinctive features of MGMM7, including functional genes in its chromosome and plasmid, as well as the presence of unique genes involved in PAH assimilation, such as phnC/T/E, which is involved in phosphonate biodegradation, and nemA, which is involved in benzoate degradation and reductive degradation of N-ethylmaleimide. These findings highlight the potential properties of petroleum-degrading microorganisms isolated from non-contaminated rhizospheres and offer genomic insights into their functional diversity for xenobiotic remediation. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

6 pages, 652 KB  
Brief Report
First Detection and Characterization of Smacovirus in the Human Vagina in Two Sequential Samples over a Twelve-Day Interval
by Antonio Charlys da Costa, Tania Regina Tozetto-Mendoza, Endrya do Socorro Foro Ramos, Pietro Bortoletto, Noely Evangelista Ferreira, Layla Honorato, Erick Matheus Garcia Barbosa, Heuder Gustavo Oliveira Paião, Amanda Fernandes de Souza, Iara M. Linhares, Steven D. Spandorfer, Elcio Leal, Maria Cassia Mendes-Correa and Steven S. Witkin
Viruses 2024, 16(10), 1545; https://doi.org/10.3390/v16101545 - 30 Sep 2024
Viewed by 1325
Abstract
Background: Smacovirus is a CRESS-DNA virus identified almost exclusively in transient fecal samples from various vertebrate species. Objective: We evaluated human vaginal samples for the presence and maintenance of Smacovirus. Methods: Viral metagenomics analysis was performed on vaginal samples collected from 28 [...] Read more.
Background: Smacovirus is a CRESS-DNA virus identified almost exclusively in transient fecal samples from various vertebrate species. Objective: We evaluated human vaginal samples for the presence and maintenance of Smacovirus. Methods: Viral metagenomics analysis was performed on vaginal samples collected from 28 apparently healthy women in New York City, USA. Twenty-one of the women provided duplicate samples over a 12–21-day interval. Results: Phylogenetic analysis identified two samples from the same individual, collected over a twelve-day interval, that were positive for the complete Smacovirus genome. All detected sequence contigs belonged to a single variant of CRESS-DNA. Conclusions: The continuous presence of Smacovirus in the human vagina over a twelve-day period was identified. Full article
(This article belongs to the Special Issue Women in Virology 2025)
Show Figures

Figure 1

21 pages, 6614 KB  
Article
Anti-Oxidative and Anti-Apoptotic Oligosaccharides from Pichia pastoris-Fermented Cress Polysaccharides Ameliorate Chromium-Induced Liver Toxicity
by Imdad Ullah Khan, Aqsa Aqsa, Yusra Jamil, Naveed Khan, Amjad Iqbal, Sajid Ali, Muhammad Hamayun, Abdulwahed Fahad Alrefaei, Turki Kh. Faraj, Bokyung Lee and Ayaz Ahmad
Pharmaceuticals 2024, 17(7), 958; https://doi.org/10.3390/ph17070958 - 18 Jul 2024
Cited by 4 | Viewed by 2038 | Correction
Abstract
Oxidative stress impairs the structure and function of the cell, leading to serious chronic diseases. Antioxidant-based therapeutic and nutritional interventions are usually employed for combating oxidative stress-related disorders, including apoptosis. Here, we investigated the hepatoprotective effect of oligosaccharides, produced through Pichia pastoris-mediated [...] Read more.
Oxidative stress impairs the structure and function of the cell, leading to serious chronic diseases. Antioxidant-based therapeutic and nutritional interventions are usually employed for combating oxidative stress-related disorders, including apoptosis. Here, we investigated the hepatoprotective effect of oligosaccharides, produced through Pichia pastoris-mediated fermentation of water-soluble polysaccharides isolated from Lepidium sativum (cress) seed mucilage, on chromium(VI)-induced oxidative stress and apoptosis in mice. Gel permeation chromatography (GPC), using Bio-Gel P-10 column, of the oligosaccharides product of fermentation revealed that P. pastoris effectively fermented polysaccharides as no long chain polysaccharides were observed. At 200 µg/mL, fractions DF73, DF53, DF72, and DF62 exhibited DPPH radical scavenging activity of 92.22 ± 2.69%, 90.35 ± 0.43%, 88.83 ± 3.36%, and 88.83 ± 3.36%, respectively. The antioxidant potential of the fermentation product was further confirmed through in vitro H2O2 radical scavenging assay. Among the screened samples, the highest H2O2 radical scavenging activity was displayed by DF73, which stabilized the free radicals by 88.83 ± 0.38%, followed by DF53 (86.48 ± 0.83%), DF62 (85.21 ± 6.66%), DF72 (79.9 4± 1.21%), and EPP (77.76 ± 0.53%). The oligosaccharide treatment significantly alleviated chromium-induced liver damage, as evident from the increase in weight gain, improved liver functions, and reduced histopathological alterations in the albino mice. A distinctly increased level of lipid peroxide (LPO) free radicals along with the endogenous hepatic enzymes were evident in chromium induced hepatotoxicity in mice. However, oligosaccharides treatment mitigated these effects by reducing the LPO production and increasing ALT, ALP, and AST levels, probably due to relieving the oxidative stress. DNA fragmentation assays illustrated that Cr(VI) exposure induced massive apoptosis in liver by damaging the DNA which was then remediated by oligosaccharides supplementation. Histopathological observations confirmed that the oligosaccharide treatment reverses the architectural changes in liver induced by chromium. These results suggest that oligosaccharides obtained from cress seed mucilage polysaccharides through P. pastoris fermentation ameliorate the oxidative stress and apoptosis and act as hepatoprotective agent against chromium-induced liver injury. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

11 pages, 5314 KB  
Article
DNA Virome in Cardiac Tissue from Green Sea Turtles (Chelonia mydas) with Myocarditis
by Christabel Hannon, Subir Sarker, Willy W. Suen and Helle Bielefeldt-Ohmann
Viruses 2024, 16(7), 1053; https://doi.org/10.3390/v16071053 - 29 Jun 2024
Cited by 1 | Viewed by 1764
Abstract
As part of a sea turtle health monitoring program on the central east coast of Queensland, Australia, stranded and sick green sea turtles (Chelonia mydas) were subjected to necropsy and histopathology. A subset of these turtles had myocarditis of varying severity, [...] Read more.
As part of a sea turtle health monitoring program on the central east coast of Queensland, Australia, stranded and sick green sea turtles (Chelonia mydas) were subjected to necropsy and histopathology. A subset of these turtles had myocarditis of varying severity, which could not be attributed to parasitism by spirorchid flukes or bacterial infections. We, therefore, undertook an investigation to determine whether virus infections might be part of the pathogenesis. Deep sequencing revealed abundant DNA virus contigs in the heart tissue, of which CRESS and circoviruses appeared to be the most consistently present. Further analysis revealed the homology of some of the circoviruses to the beak and feather disease virus. While a causative link to myocarditis could not be established, the presence of these viruses may play a contributing role by affecting the immune system and overall health of animals exposed to pollutants, higher water temperatures, and decreasing nutrition. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

13 pages, 2406 KB  
Article
Genomoviruses in Liver Samples of Molossus molossus Bats
by Roseane da Silva Couto, Wandercleyson Uchôa Abreu, Luís Reginaldo Ribeiro Rodrigues, Luis Fernando Marinho, Vanessa dos Santos Morais, Fabiola Villanova, Ramendra Pati Pandey, Xutao Deng, Eric Delwart, Antonio Charlys da Costa and Elcio Leal
Microorganisms 2024, 12(4), 688; https://doi.org/10.3390/microorganisms12040688 - 29 Mar 2024
Cited by 1 | Viewed by 2187
Abstract
CRESS-DNA encompasses a broad spectrum of viruses documented across diverse organisms such as animals, plants, diatoms, fungi, and marine invertebrates. Despite this prevalence, the full extent of these viruses’ impact on the environment and their respective hosts remains incompletely understood. Furthermore, an increasing [...] Read more.
CRESS-DNA encompasses a broad spectrum of viruses documented across diverse organisms such as animals, plants, diatoms, fungi, and marine invertebrates. Despite this prevalence, the full extent of these viruses’ impact on the environment and their respective hosts remains incompletely understood. Furthermore, an increasing number of viruses within this category lack detailed characterization. This investigation focuses on unveiling and characterizing viruses affiliated with the Genomoviridae family identified in liver samples from the bat Molossus molossus. Leveraging viral metagenomics, we identified seven sequences (MmGmV-PA) featuring a circular DNA genome housing two ORFs encoding replication-associated protein (Rep) and capsid protein (Cap). Predictions based on conserved domains typical of the Genomoviridae family were established. Phylogenetic analysis revealed the segregation of these sequences into two clades aligning with the genera Gemycirculavirus (MmGmV-06-PA and MmGmV-07-PA) and Gemykibivirus (MmGmV-01-PA, MmGmV-02-PA, MmGmV-03-PA, MmGmV-05-PA, and MmGmV-09-PA). At the species level, pairwise comparisons based on complete nucleotide sequences indicated the potential existence of three novel species. In summary, our study significantly contributes to an enhanced understanding of the diversity of Genomoviridae within bat samples, shedding light on previously undiscovered viral entities and their potential ecological implications. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

15 pages, 17935 KB  
Article
Unveiling CRESS DNA Virus Diversity in Oysters by Virome
by Peng Zhu, Chang Liu, Guang-Feng Liu, Hong Liu, Ke-Ming Xie, Hong-Sai Zhang, Xin Xu, Jian Xiao and Jing-Zhe Jiang
Viruses 2024, 16(2), 228; https://doi.org/10.3390/v16020228 - 31 Jan 2024
Cited by 4 | Viewed by 3261
Abstract
Oysters that filter feed can accumulate numerous pathogens, including viruses, which can serve as a valuable viral repository. As oyster farming becomes more prevalent, concerns are mounting about diseases that can harm both cultivated and wild oysters. Unfortunately, there is a lack of [...] Read more.
Oysters that filter feed can accumulate numerous pathogens, including viruses, which can serve as a valuable viral repository. As oyster farming becomes more prevalent, concerns are mounting about diseases that can harm both cultivated and wild oysters. Unfortunately, there is a lack of research on the viruses and other factors that can cause illness in shellfish. This means that it is harder to find ways to prevent these diseases and protect the oysters. This is part of a previously started project, the Dataset of Oyster Virome, in which we further study 30 almost complete genomes of oyster-associated CRESS DNA viruses. The replication-associated proteins and capsid proteins found in CRESS DNA viruses display varying evolutionary rates and frequently undergo recombination. Additionally, some CRESS DNA viruses have the capability for cross-species transmission. A plethora of unclassified CRESS DNA viruses are detectable in transcriptome libraries, exhibiting higher levels of transcriptional activity than those found in metagenome libraries. The study significantly enhances our understanding of the diversity of oyster-associated CRESS DNA viruses, emphasizing the widespread presence of CRESS DNA viruses in the natural environment and the substantial portion of CRESS DNA viruses that remain unidentified. This study’s findings provide a basis for further research on the biological and ecological roles of viruses in oysters and their environment. Full article
(This article belongs to the Special Issue Virus Discovery, Classification and Characterization)
Show Figures

Graphical abstract

13 pages, 4028 KB  
Article
Metagenomic Identification of Novel Eukaryotic Viruses with Small DNA Genomes in Pheasants
by Eszter Kaszab, Krisztina Bali, Szilvia Marton, Krisztina Ursu, Szilvia L. Farkas, Enikő Fehér, Marianna Domán, Vito Martella and Krisztián Bányai
Animals 2024, 14(2), 237; https://doi.org/10.3390/ani14020237 - 12 Jan 2024
Cited by 3 | Viewed by 2854
Abstract
A panel of intestinal samples collected from common pheasants (Phasianus colchicus) between 2008 and 2017 was used for metagenomic investigation using an unbiased enrichment protocol and different bioinformatic pipelines. The number of sequence reads in the metagenomic analysis ranged from 1,419,265 [...] Read more.
A panel of intestinal samples collected from common pheasants (Phasianus colchicus) between 2008 and 2017 was used for metagenomic investigation using an unbiased enrichment protocol and different bioinformatic pipelines. The number of sequence reads in the metagenomic analysis ranged from 1,419,265 to 17,507,704 with a viral sequence read rate ranging from 0.01% to 59%. When considering the sequence reads of eukaryotic viruses, RNA and DNA viruses were identified in the samples, including but not limited to coronaviruses, reoviruses, parvoviruses, and CRESS DNA viruses (i.e., circular Rep-encoding single-stranded DNA viruses). Partial or nearly complete genome sequences were reconstructed of at least three different parvoviruses (dependoparvovirus, aveparvovirus and chaphamaparvovirus), as well as gyroviruses and diverse CRESS DNA viruses. Generating information of virus diversity will serve as a basis for developing specific diagnostic tools and for structured epidemiological investigations, useful to assess the impact of these novel viruses on animal health. Full article
(This article belongs to the Special Issue Infectious Diseases and Surveillance of Farm and Wild Animals)
Show Figures

Figure 1

16 pages, 10244 KB  
Article
Dynamics and Conformations of a Full-Length CRESS-DNA Replicase
by Elvira Tarasova and Reza Khayat
Viruses 2023, 15(12), 2393; https://doi.org/10.3390/v15122393 - 8 Dec 2023
Cited by 2 | Viewed by 1975
Abstract
Circular Rep-encoding single-stranded DNA (CRESS-DNA) viruses encode for a Replicase (Rep) that is essential for viral replication. Rep is a helicase with three domains: an endonuclease, an oligomeric, and an ATPase domain (ED, OD, and AD). Our recent cryo-EM structure of the porcine [...] Read more.
Circular Rep-encoding single-stranded DNA (CRESS-DNA) viruses encode for a Replicase (Rep) that is essential for viral replication. Rep is a helicase with three domains: an endonuclease, an oligomeric, and an ATPase domain (ED, OD, and AD). Our recent cryo-EM structure of the porcine circovirus 2 (PCV2) Rep provided the first structure of a CRESS-DNA Rep. The structure visualized the ED to be highly mobile, Rep to form a homo-hexamer, bound ssDNA and nucleotides, and the AD to adopt a staircase arrangement around the ssDNA. We proposed a hand-over-hand mechanism by the ADs for ssDNA translocation. The hand-over-hand mechanism requires extensive movement of the AD. Here, we scrutinize this mechanism using all-atom Molecular Dynamics (MD) simulation of Rep in three states: (1) Rep bound to ssDNA and ADP, (2) Rep bound to ssDNA, and (3) Rep by itself. Each of the 700 nsec simulations converges within 200 nsec and provides important insight into the dynamics of Rep, the dynamics of Rep in the presence of these biomolecules, and the importance of ssDNA and ADP in driving the AD to adopt the staircase arrangement around the ssDNA. To the best of our knowledge, this is the first example of an all-atom MD simulation of a CRESS-DNA Rep. This study sets the basis of further MD studies aimed at obtaining a chemical understanding of how Rep uses nucleotide binding and hydrolysis to translocate ssDNA. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 3793 KB  
Article
Identification and Characterization of Novel SPHINX/BMMF-like DNA Sequences Isolated from Non-Bovine Foods
by Diana Habermann, Martin Klempt and Charles M. A. P. Franz
Genes 2023, 14(7), 1307; https://doi.org/10.3390/genes14071307 - 21 Jun 2023
Cited by 6 | Viewed by 2163
Abstract
Sixteen novel circular rep-encoding DNA sequences with high sequence homologies to previously described SPHINX and BMMF sequences were isolated for the first time from non-bovine foods (pork, wild boar, chicken meat, Alaska pollock, pangasius, black tiger shrimp, apple, carrot, and sprouts from alfalfa, [...] Read more.
Sixteen novel circular rep-encoding DNA sequences with high sequence homologies to previously described SPHINX and BMMF sequences were isolated for the first time from non-bovine foods (pork, wild boar, chicken meat, Alaska pollock, pangasius, black tiger shrimp, apple, carrot, and sprouts from alfalfa, radish, and broccoli). The phylogenetic analysis of the full-length circular genomes grouped these together with previously described representatives of SPHINX/BMMF group 1 and 2 sequences (eight in each group). The characterization of genome lengths, genes present, and conserved structures confirmed their relationship to the known SPHINX/BMMF sequences. Further analysis of iteron-like tandem repeats of SPHINX/BMMF group 1-related genomes revealed a correlation with both full-length sequence tree branches as well as Rep protein sequence tree branches and was able to differentiate subtypes of SPHINX/BMMF group 1 members. For the SPHINX/BMMF group 2 members, a distinct grouping of sequences into two clades (A and B) with subgroups could be detected. A deeper investigation of potential functional regions upstream of the rep gene of the new SPHINX/BMMF group 2 sequences revealed homologies to the dso and sso regions of known plasmid groups that replicate via the rolling circle mechanism. Phylogenetic analyses were accomplished by a Rep protein sequence analysis of different ssDNA viruses, pCRESS, and plasmids with the known replication mechanism, as this yielded deeper insights into the relationship of SPHINX/BMMF group 1 and 2 Rep proteins. A clear relation of these proteins to the Rep proteins of plasmids could be confirmed. Interestingly, for SPHINX/BMMF group 2 members, the relationship to rolling circle replication plasmids could also be verified. Furthermore, a relationship of SPHINX/BMMF group 1 Rep proteins to theta-replicating plasmid Reps is discussed. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 647 KB  
Article
Unbiased Virus Detection in a Danish Zoo Using a Portable Metagenomic Sequencing System
by Anna S. Fomsgaard, Stamatios A. Tahas, Katja Spiess, Charlotta Polacek, Jannik Fonager and Graham J. Belsham
Viruses 2023, 15(6), 1399; https://doi.org/10.3390/v15061399 - 20 Jun 2023
Cited by 5 | Viewed by 3872
Abstract
Metagenomic next-generation sequencing (mNGS) is receiving increased attention for the detection of new viruses and infections occurring at the human–animal interface. The ability to actively transport and relocate this technology enables in situ virus identification, which could reduce response time and enhance disease [...] Read more.
Metagenomic next-generation sequencing (mNGS) is receiving increased attention for the detection of new viruses and infections occurring at the human–animal interface. The ability to actively transport and relocate this technology enables in situ virus identification, which could reduce response time and enhance disease management. In a previous study, we developed a straightforward mNGS procedure that greatly enhances the detection of RNA and DNA viruses in human clinical samples. In this study, we improved the mNGS protocol with transportable battery-driven equipment for the portable, non-targeted detection of RNA and DNA viruses in animals from a large zoological facility, to simulate a field setting for point-of-incidence virus detection. From the resulting metagenomic data, we detected 13 vertebrate viruses from four major virus groups: (+)ssRNA, (+)ssRNA-RT, dsDNA and (+)ssDNA, including avian leukosis virus in domestic chickens (Gallus gallus), enzootic nasal tumour virus in goats (Capra hircus) and several small, circular, Rep-encoding, ssDNA (CRESS DNA) viruses in several mammal species. More significantly, we demonstrate that the mNGS method is able to detect potentially lethal animal viruses, such as elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus) and the newly described human-associated gemykibivirus 2, a human-to-animal cross-species virus, in a Linnaeus two-toed sloth (Choloepus didactylus) and its enclosure, for the first time. Full article
(This article belongs to the Special Issue Applications of Next-Generation Sequencing in Virus Discovery 2.0)
Show Figures

Figure 1

16 pages, 4647 KB  
Article
First Insights into the Occurrence of Circular Single-Stranded DNA Genomes in Asian and African Cattle
by Marie-Thérèse König, Kai Frölich, Anabell Jandowsky, Tobias Knauf-Witzens, Christoph Langner, Richard Dietrich, Erwin Märtlbauer and Andrea Didier
Animals 2023, 13(9), 1492; https://doi.org/10.3390/ani13091492 - 27 Apr 2023
Cited by 4 | Viewed by 2332
Abstract
Circular replicase-encoding single-stranded (CRESS) DNA viruses and other circular DNA agents are increasingly found in various samples and animals. A specific class of these agents—termed bovine meat and milk factors (BMMF)—has been supposed to act as a factor in indirect carcinogenesis in humans. [...] Read more.
Circular replicase-encoding single-stranded (CRESS) DNA viruses and other circular DNA agents are increasingly found in various samples and animals. A specific class of these agents—termed bovine meat and milk factors (BMMF)—has been supposed to act as a factor in indirect carcinogenesis in humans. Initial observations attributed the BMMF to European cattle breeds and foodstuffs produced thereof. In the present study, blood and fecal samples from African and Asian cattle were examined. BMMF molecules and genomoviruses were detected in all bovids under study. The majority (79%) of the 29 circular elements could be assigned to BMMF groups 1 and 2, whereas CRESS viruses of the family Genomoviridae accounted for the smaller part (21%). Two genomoviruses belong to the genus Gemykibivirus and one to the genus Gemykrogvirus. The remaining three might be considered as novel species within the genus Gemycircularvirus. The majority of all isolated molecules originated from fecal samples, whereas only three derived from blood. The results from this study expand our knowledge on the diversity and presence of circular DNA in different ruminants that serve for food production in many countries over the world. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

12 pages, 6120 KB  
Communication
First Report on Detection and Complete Genomic Analysis of a Novel CRESS DNA Virus from Sea Turtles
by Kerry Gainor, Kimberly M. Stewart, Angela Picknell, Morgan Russ, Noah Makela, Kierra Watson, Diana M. Mancuso, Yashpal Singh Malik and Souvik Ghosh
Pathogens 2023, 12(4), 601; https://doi.org/10.3390/pathogens12040601 - 15 Apr 2023
Cited by 2 | Viewed by 3160
Abstract
To date, only a handful of viruses have been identified in sea turtles. Although eukaryotic circular Rep (replication initiation protein)-encoding single-stranded DNA (CRESS DNA) viruses have been reported from a wide variety of terrestrial species, and some of these viruses have been associated [...] Read more.
To date, only a handful of viruses have been identified in sea turtles. Although eukaryotic circular Rep (replication initiation protein)-encoding single-stranded DNA (CRESS DNA) viruses have been reported from a wide variety of terrestrial species, and some of these viruses have been associated with clinical conditions in certain animals, limited information is available on CRESS DNA viruses from marine life. The present study aimed to investigate the presence of CRESS DNA viruses in sea turtles. In the present study, two (samples T3 and T33) of the 34 cloacal samples from 31 sea turtles (found in ocean waters around the Caribbean Islands of St. Kitts and Nevis) tested positive for CRESS DNA viruses by a pan-rep nested PCR assay. The partial Rep sequence of T3 shared 75.78% of a deduced amino acid (aa) identity with that of a CRESS DNA virus (classified under family Circoviridae) from a mollusk. On the other hand, the complete genome (2428 bp) of T33 was determined by an inverse nested PCR assay. The genomic organization of T33 mirrored those of type II CRESS DNA viral genomes of cycloviruses, characterized by the putative “origin of replication” in the 5’-intergenic region, and the putative Capsid (Cap)- and Rep-encoding open reading frame on the virion-sense- and antisense-strand, respectively. The putative Rep (322 aa) of T33 retained the conserved “HUH endonuclease” and the “super 3 family helicase” domains and shared pairwise aa identities of ~57% with unclassified CRESS DNA viruses from benthic sediment and mollusks. Phylogenetically, the T33 Rep formed a distinct branch within an isolated cluster of unclassified CRESS DNA viruses. The putative Cap (370 aa) of T33 shared maximum pairwise aa identity of 30.51% with an unclassified CRESS DNA virus from a capybara. Except for a blood sample from T33 that tested negative for CRESS DNA viruses, other tissue samples were not available from the sea turtles. Therefore, we could not establish whether the T3 and T33 viral strains infected the sea turtles or were of dietary origin. To our knowledge, this is the first report on the detection of CRESS DNA viruses from sea turtles, adding yet another animal species to the rapidly expanding host range of these viruses. Complete genome analysis of T33 identified a novel, unclassified CRESS DNA virus, providing insights into the high genetic diversity between viruses within the phylum Cressdnaviricota. Considering that sea turtles are an at-risk species, extensive studies on virus discovery, surveillance, and pathogenesis in these marine animals are of the utmost importance. Full article
(This article belongs to the Special Issue Pathogens in 2023)
Show Figures

Figure 1

Back to TopTop