Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,683)

Search Parameters:
Keywords = COVID-19 virus disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 258 KiB  
Article
COVID-19 Clinical Predictors in Patients Treated via a Telemedicine Platform in 2022
by Liliane de Fátima Antonio Oliveira, Lúcia Regina do Nascimento Brahim Paes, Luiz Claudio Ferreira, Gabriel Garcez de Araújo Souza, Guilherme Souza Weigert, Layla Lorena Bezerra de Almeida, Rafael Kenji Fonseca Hamada, Lyz Tavares de Sousa, Andreza Pain Marcelino and Cláudia Maria Valete
Trop. Med. Infect. Dis. 2025, 10(8), 213; https://doi.org/10.3390/tropicalmed10080213 - 29 Jul 2025
Viewed by 202
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus, whose 2020 outbreak was characterized as a pandemic by the World Health Organization. Restriction measures changed healthcare delivery, with telehealth providing a viable alternative throughout the pandemic. This study analyzed a [...] Read more.
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus, whose 2020 outbreak was characterized as a pandemic by the World Health Organization. Restriction measures changed healthcare delivery, with telehealth providing a viable alternative throughout the pandemic. This study analyzed a telemedicine platform database with the goal of developing a diagnostic prediction model for COVID-19 patients. This is a longitudinal study of patients seen on the Conexa Saúde telemedicine platform in 2022. A multiple binary logistic regression model of controls (negative confirmation for COVID-19 or confirmation of other influenza-like illness) versus COVID-19 was developed to obtain an odds ratio (OR) and a 95% confidence interval (CI). In the final binary logistic regression model, six factors were considered significant: presence of rhinorrhea, ocular symptoms, abdominal pain, rhinosinusopathy, and wheezing/asthma and bronchospasm were more frequent in controls, thus indicating a greater chance of flu-like illnesses than COVID-19. The presence of tiredness and fatigue was three times more prevalent in COVID-19 cases (OR = 3.631; CI = 1.138–11.581; p-value = 0.029). Our findings suggest potential predictors associated with influenza-like illness and COVID-19 that may distinguish between these infections. Full article
13 pages, 1231 KiB  
Article
Respiratory Virus Prevalence Across Pre-, During-, and Post-SARS-CoV-2 Pandemic Periods
by Michele Manno, Grazia Pavia, Simona Gigliotti, Marta Pantanella, Giorgio Settimo Barreca, Cinzia Peronace, Luigia Gallo, Francesca Trimboli, Elena Colosimo, Angelo Giuseppe Lamberti, Nadia Marascio, Giovanni Matera and Angela Quirino
Viruses 2025, 17(8), 1040; https://doi.org/10.3390/v17081040 - 25 Jul 2025
Viewed by 359
Abstract
The COVID-19 pandemic significantly impacted the circulation, seasonality, and disease burden of viral respiratory infections. This study aimed to evaluate the impact of SARS-CoV-2 on the frequency of viral respiratory infections at a teaching hospital in Southern Italy by comparing data from before, [...] Read more.
The COVID-19 pandemic significantly impacted the circulation, seasonality, and disease burden of viral respiratory infections. This study aimed to evaluate the impact of SARS-CoV-2 on the frequency of viral respiratory infections at a teaching hospital in Southern Italy by comparing data from before, during, and after the COVID-19 pandemic and by investigating how the emergence of SARS-CoV-2 affected the circulation and seasonality of other respiratory viruses. This retrospective and prospective study was performed on de-identified nasopharyngeal specimens classified as pre-COVID-19 (before 15 March 2020), during-COVID-19 (from 16 March 2020 to 5 May 2023), and post-COVID-19 (from 6 May 2023 to 31 December 2024). Overall, 790 out of 3930 (20%) patient samples tested positive for at least one respiratory virus. The mean age of patients was 60 ± 19 years, with significant positivity rates observed in the 65–98 age group (p ≤ 0.05) across all periods. In the pre-COVID-19 period, the most prevalent virus was influenza A (47.5%, 47/99), followed by the human rhinovirus (19.2%, 19/99). During the COVID-19 pandemic, SARS-CoV-2 was the most prevalent (64.9%, 290/447), before decreasing to 38% (92/244) after the pandemic, while influenza A’s positivity prevalence increased to 14.3% (35/244). Rhinovirus/enterovirus remained relatively stable throughout all periods. The pandemic notably altered viral co-infection dynamics, with its effects lasting into the post-COVID-19 period. Specifically, a marked decrease in influenza A circulation was observed, while respiratory syncytial virus (RSV) epidemiology remained stable and significant co-circulation of rhinovirus/enterovirus with SARS-CoV-2 persisted. Therefore, since COVID-19 and influenza affect the same high-risk groups, those individuals must be vaccinated against both viruses. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

26 pages, 542 KiB  
Review
Challenges to the Effectiveness and Immunogenicity of COVID-19 Vaccines: A Narrative Review with a Systematic Approach
by Alexander A. Soldatov, Nickolay A. Kryuchkov, Dmitry V. Gorenkov, Zhanna I. Avdeeva, Oxana A. Svitich and Sergey Soshnikov
Vaccines 2025, 13(8), 789; https://doi.org/10.3390/vaccines13080789 - 24 Jul 2025
Viewed by 1043
Abstract
The COVID-19 pandemic accelerated the rapid development and distribution of various vaccine platforms, resulting in a significant reduction in disease severity, hospitalizations, and mortality. However, persistent challenges remain concerning the durability and breadth of vaccine-induced protection, especially in the face of emerging SARS-CoV-2 [...] Read more.
The COVID-19 pandemic accelerated the rapid development and distribution of various vaccine platforms, resulting in a significant reduction in disease severity, hospitalizations, and mortality. However, persistent challenges remain concerning the durability and breadth of vaccine-induced protection, especially in the face of emerging SARS-CoV-2 variants. This review aimed to evaluate the factors influencing the immunogenicity and effectiveness of COVID-19 vaccines to inform future vaccine advancement strategies. A narrative review with systematic approach was conducted following PRISMA guidelines for narrative review. Literature was sourced from databases including PubMed, Embase, and Web of Science for studies published between December 2019 and May 2025. Encompassed studies assessed vaccine efficacy, immunogenicity, and safety across various populations and vaccine platforms. Data were collected qualitatively, with quantitative data from reviews highlighted where available. We have uncovered a decline in vaccine efficacy over time and weakened protection against novel variants such as Delta and Omicron. Booster doses, specifically heterologous regimens, improved immunogenicity and increased protection. Vaccine-induced neutralizing antibody titers have been found to correlate with clinical protection, although the long-term correlates of immunity remain poorly defined. The induction of IgG4 antibodies after repeated mRNA vaccinations raised concerns about potential modulation of the immune response. COVID-19 vaccines have contributed significantly to pandemic control; however, their efficacy is limited by the evolution of the virus and declining immunity. Forthcoming vaccine strategies should focus on broad-spectrum, variant-adapted formulations and defining robust comparisons of protection. Recognizing the immunological basis of vaccine response, including the role of specific antibody subclasses, is fundamental for optimizing long-term protection. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

27 pages, 1201 KiB  
Review
Non-Viral Therapy in COVID-19: Where Are We Standing? How Our Experience with COVID May Help Us Develop Cell Therapies for Long COVID Patients
by Aitor Gonzaga, Gema Martinez-Navarrete, Loreto Macia, Marga Anton-Bonete, Gladys Cahuana, Juan R. Tejedo, Vanessa Zorrilla-Muñoz, Eduardo Fernandez-Jover, Etelvina Andreu, Cristina Eguizabal, Antonio Pérez-Martínez, Carlos Solano, Luis Manuel Hernández-Blasco and Bernat Soria
Biomedicines 2025, 13(8), 1801; https://doi.org/10.3390/biomedicines13081801 - 23 Jul 2025
Viewed by 467
Abstract
Objectives: COVID-19, caused by the SARS-CoV-2 virus, has infected over 777 million individuals and led to approximately 7 million deaths worldwide. Despite significant efforts to develop effective therapies, treatment remains largely supportive, especially for severe complications like acute respiratory distress syndrome (ARDS). [...] Read more.
Objectives: COVID-19, caused by the SARS-CoV-2 virus, has infected over 777 million individuals and led to approximately 7 million deaths worldwide. Despite significant efforts to develop effective therapies, treatment remains largely supportive, especially for severe complications like acute respiratory distress syndrome (ARDS). Numerous compounds from diverse pharmacological classes are currently undergoing preclinical and clinical evaluation, targeting both the virus and the host immune response. Methods: Despite the large number of articles published and after a preliminary attempt was published, we discarded the option of a systematic review. Instead, we have done a description of therapies with these results and a tentative mechanism of action. Results: Preliminary studies and early-phase clinical trials have demonstrated the potential of Mesenchymal Stem Cells (MSCs) in mitigating severe lung damage in COVID-19 patients. Previous research has shown MSCs to be effective in treating various pulmonary conditions, including acute lung injury, idiopathic pulmonary fibrosis, ARDS, asthma, chronic obstructive pulmonary disease, and lung cancer. Their ability to reduce inflammation and promote tissue repair supports their potential role in managing COVID-19-related complications. This review demonstrates the utility of MSCs in the acute phase of COVID-19 and postulates the etiopathogenic role of mitochondria in Long-COVID. Even more, their combination with other therapies is also analyzed. Conclusions: While the therapeutic application of MSCs in COVID-19 is still in early stages, emerging evidence suggests promising outcomes. As research advances, MSCs may become an integral part of treatment strategies for severe COVID-19, particularly in addressing immune-related lung injury and promoting recovery. However, a full pathogenic mechanism may explain or unify the complexity of signs and symptoms of Long COVID and Post-Acute Sequelae (PASC). Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

23 pages, 2202 KiB  
Article
Afucosylated IgG Promote Thrombosis in Mouse Injected with SARS-CoV-2 Spike Expressing Megakaryocytes
by Meryem Mabrouk, Farah Atifi, Hicham Wahnou, Afaf Allaoui, Nabil Zaid, Abdallah Naya, Ejaife O. Agbani, Loubna Khalki, Meriem Khyatti, Youssef Tijani, Khadija Akarid, Damien Arnoult, Haissam Abou-Saleh, Othman El Faqer, Salma Labied, Mounia Ammara, Fadila Guessous, Farid Jalali and Younes Zaid
Int. J. Mol. Sci. 2025, 26(14), 7002; https://doi.org/10.3390/ijms26147002 - 21 Jul 2025
Viewed by 531
Abstract
Despite the prevalence of fucosylated IgG in plasma, specific IgGs with low core fucosylation sporadically emerge in response to virus infections and blood cell alloantigens. This low fucosylation of IgG is implicated in the pathogenesis of SARS-CoV-2 and dengue infections. In COVID-19, the [...] Read more.
Despite the prevalence of fucosylated IgG in plasma, specific IgGs with low core fucosylation sporadically emerge in response to virus infections and blood cell alloantigens. This low fucosylation of IgG is implicated in the pathogenesis of SARS-CoV-2 and dengue infections. In COVID-19, the presence of IgGs with low core fucosylation (afucosylated IgGs) targeting spike protein predicts disease progression to a severe form and actively mediates this progression. This study reveals that SARS-CoV-2 infection of megakaryocytes promotes the generation of pathogenic afucosylated anti-spike IgGs, leading to outcomes, such as pulmonary vascular thrombosis, acute lung injury, and mortality in FcγRIIa-transgenic mice. Platelets from mice injected with virus-infected human megakaryocytes express significant activation biomarkers, indicating a direct link between the immune response and platelet activation. Mice injected with virus-infected human megakaryocytes demonstrate an elevated rate of thrombus formation induced by FeCl3 (4%) and a reduction in bleeding time, emphasizing the intricate interplay of viral infection, immune response, and hemostatic complications. Treatment with inhibitors targeting FcγRIIa, serotonin, or complement anaphylatoxins of mice injected with spike-expressing MKs successfully prevents observed platelet activation, thrombus formation, and bleeding abnormalities, offering potential therapeutic strategies for managing severe outcomes associated with afucosylated IgGs in COVID-19 and related disorders. Full article
(This article belongs to the Special Issue The Molecular Role of Platelets in Human Diseases)
Show Figures

Figure 1

21 pages, 2776 KiB  
Article
Comparing DNA Methylation Landscapes in Peripheral Blood from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID Patients
by Katie Peppercorn, Sayan Sharma, Christina D. Edgar, Peter A. Stockwell, Euan J. Rodger, Aniruddha Chatterjee and Warren P. Tate
Int. J. Mol. Sci. 2025, 26(14), 6631; https://doi.org/10.3390/ijms26146631 - 10 Jul 2025
Viewed by 1623
Abstract
Post-viral conditions, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long COVID (LC), share > 95% of their symptoms, but the connection between disturbances in their underlying molecular biology is unclear. This study investigates DNA methylation patterns in peripheral blood mononuclear cells (PBMC) from patients [...] Read more.
Post-viral conditions, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long COVID (LC), share > 95% of their symptoms, but the connection between disturbances in their underlying molecular biology is unclear. This study investigates DNA methylation patterns in peripheral blood mononuclear cells (PBMC) from patients with ME/CFS, LC, and healthy controls (HC). Reduced Representation Bisulphite Sequencing (RRBS) was applied to the DNA of age- and sex-matched cohorts: ME/CFS (n = 5), LC (n = 5), and HC (n = 5). The global DNA methylomes of the three cohorts were similar and spread equally across all chromosomes, except the sex chromosomes, but there were distinct minor changes in the exons of the disease cohorts towards more hypermethylation. A principal component analysis (PCA) analysing significant methylation changes (p < 0.05) separated the ME/CFS, LC, and HC cohorts into three distinct clusters. Analysis with a limit of >10% methylation difference and at p < 0.05 identified 214 Differentially Methylated Fragments (DMF) in ME/CFS, and 429 in LC compared to HC. Of these, 118 DMFs were common to both cohorts. Those in promoters and exons were mainly hypermethylated, with a minority hypomethylated. There were rarer examples with either no change in methylation in ME/CFS but a change in LC, or a methylation change in ME/CFS but in the opposite direction in LC. The differential methylation in a number of fragments was significantly greater in the LC cohort than in the ME/CFS cohort. Our data reveal a generally shared epigenetic makeup between ME/CFS and LC but with specific, distinct changes. Differences between the two cohorts likely reflect the stage of the disease from onset (LC 1 year vs. ME/CFS 12 years), but specific changes imposed by the SARS-CoV-2 virus in the case of the LC patients cannot be discounted. These findings provide a foundation for further studies with larger cohorts at the same disease stage and for functional analyses to establish clinical relevance. Full article
Show Figures

Figure 1

18 pages, 1527 KiB  
Review
NK Cells: A Powerful Squad Versus SARS-CoV-2
by Diana Lorena Alvarado-Hernández, Marlen Vitales Noyola, Ricardo Martínez-Rider, Sofía Bernal-Silva and Andreu Comas-Garcia
Int. J. Mol. Sci. 2025, 26(13), 6500; https://doi.org/10.3390/ijms26136500 - 6 Jul 2025
Viewed by 539
Abstract
The function of NK cells in cancer and viral infections is well documented and understood. NK cell activity, including cytokine secretion, cytotoxic activity, and the coordination of inhibitory and activating receptors, linking innate and adaptive immunity, among others, has been examined for numerous [...] Read more.
The function of NK cells in cancer and viral infections is well documented and understood. NK cell activity, including cytokine secretion, cytotoxic activity, and the coordination of inhibitory and activating receptors, linking innate and adaptive immunity, among others, has been examined for numerous pathogens, including parasites, bacteria, and viruses. The emergence of the SARS-CoV-2 health crisis has exposed a deficiency in understanding the previously elucidated mechanisms; the rationale for the reported variability in symptomatology among COVID-19 patients is extensive and intricate. It is evident that NK cells exert a significant influence on symptom severity, and their absence, with the presence or absence of their surface receptors, elicits a tailored response to the virus. This overview examines the impact of NK cells on the progression of several viral diseases, emphasizing their involvement in the pathogenesis of SARS-CoV-2 via the activation of surface receptors. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 1463 KiB  
Article
Persistent Changes in Hormones and Growth Factors Involved in Ageing in Patients That Recovered from Severe COVID-19
by Alice Cuchi-Cabral, André C. Palma, Guilherme A. Nogueira, Henrique Ceretta Oliveira, Suzimar F. Benato Fusco, Maria L. Moretti, Licio A. Velloso and Eliana P. Araujo
Diseases 2025, 13(7), 209; https://doi.org/10.3390/diseases13070209 - 3 Jul 2025
Viewed by 1060
Abstract
Background: The coronavirus disease-19 pandemic affected millions of people and its long-term impact on the health of survivors is under evaluation. Objectives: In this study, we hypothesized that severe coronavirus disease-19 could promote long-term changes in the blood levels of hormones and growth [...] Read more.
Background: The coronavirus disease-19 pandemic affected millions of people and its long-term impact on the health of survivors is under evaluation. Objectives: In this study, we hypothesized that severe coronavirus disease-19 could promote long-term changes in the blood levels of hormones and growth factors known to be involved in the regulation of ageing. Methods: We evaluated 49 patients that recovered from severe COVID-19 and compared them with matched controls that were never infected by the virus. The blood levels of growth hormone, insulin-like growth factor-1, insulin, brain-derived neurotrophic factor, nerve growth factor, oxytocin, ghrelin, platelet-derived growth factor, fibroblast growth factor-1, and transforming growth factor-beta were determined using enzyme-linked immunosorbent assays. Results: After six months of recovery, patients presented reduced blood levels of growth hormone, insulin-like growth factor-1, brain-derived neurotrophic factor, and platelet-derived growth factor. Fifteen months after, the reductions in the blood levels of all four hormones/growth factors persisted. Conclusions: Our study advances the field by identifying hormones and growth factors involved in ageing that undergo persistent changes in patients that recover from severe COVID-19. Further studies could explore the potential of the identified hormones/growth factors as therapeutic targets for the late complications and accelerated ageing that may affect patients recovering from severe COVID-19. Full article
Show Figures

Figure 1

21 pages, 2246 KiB  
Review
Potential Resistance Mechanisms Exhibited by Cystic Fibrosis Patients Against SARS-CoV-2
by Yasmin K. Elsharabassi, Nuha T. Swaidan and Mohamed M. Emara
Viruses 2025, 17(7), 919; https://doi.org/10.3390/v17070919 - 27 Jun 2025
Viewed by 394
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 2019 coronavirus disease pandemic. The virus primarily spreads through person-to-person contact via aerosols and droplets, contributing to high case numbers and related morbidities. SARS-CoV-2 targets the respiratory tract, causing acute [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 2019 coronavirus disease pandemic. The virus primarily spreads through person-to-person contact via aerosols and droplets, contributing to high case numbers and related morbidities. SARS-CoV-2 targets the respiratory tract, causing acute respiratory distress syndrome, particularly in immunocompromised individuals such as those with cystic fibrosis (CF). CF is a life-threatening genetic disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, leading to impaired respiratory function and recurrent severe respiratory symptoms. Despite their potential vulnerability, CF patients have shown a lower incidence of severe COVID-19, suggesting protective factors against SARS-CoV-2. Differential expression of the ACE2 receptor, crucial for viral entry, and other host factors, such as TMPRSS2, may play a role in this resistance to SARS-CoV-2. Analyzing the genomics and transcriptomics profiles of CF patients could provide insights into potential resistance mechanisms. The potential resistance mechanisms include blood and extracellular ATP levels, a deleted/dysfunctional CFTR gene, ACE and ACE2 regulation and expression, ACE and ACE2 polymorphism effects, host proteins and SARS-CoV-2 interactions, and SMN1 and ACE/ACE2 interactions. This review discusses the underlying factors and potential resistance mechanisms contributing to CF patients’ responses to SARS-CoV-2 infection. The review provides an opportunity to further investigate future therapy and research through understanding the underlying potential resistance mechanisms exhibited by CF patients against SARS-CoV-2, including ACE and ACE2 polymorphisms. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

26 pages, 1044 KiB  
Review
Immunomodulatory Mechanisms Underlying Neurological Manifestations in Long COVID: Implications for Immune-Mediated Neurodegeneration
by Zaw Myo Hein, Thazin, Suresh Kumar, Muhammad Danial Che Ramli and Che Mohd Nasril Che Mohd Nassir
Int. J. Mol. Sci. 2025, 26(13), 6214; https://doi.org/10.3390/ijms26136214 - 27 Jun 2025
Viewed by 2169
Abstract
The COVID-19 pandemic has revealed the profound and lasting impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the nervous system. Beyond acute infection, SARS-CoV-2 acts as a potent immunomodulatory agent, disrupting immune homeostasis and contributing to persistent inflammation, autoimmunity, and neurodegeneration. [...] Read more.
The COVID-19 pandemic has revealed the profound and lasting impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the nervous system. Beyond acute infection, SARS-CoV-2 acts as a potent immunomodulatory agent, disrupting immune homeostasis and contributing to persistent inflammation, autoimmunity, and neurodegeneration. Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), is characterized by a spectrum of neurological symptoms, including cognitive dysfunction, fatigue, neuropathy, and mood disturbances. These are linked to immune dysregulation involving cytokine imbalance, blood–brain barrier (BBB) disruption, glial activation, and T-cell exhaustion. Key biomarkers such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NFL) correlate with disease severity and chronicity. This narrative review examines the immunopathological mechanisms underpinning the neurological sequelae of long COVID, focusing on neuroinflammation, endothelial dysfunction, and molecular mimicry. We also assess the role of viral variants in shaping neuroimmune outcomes and explore emerging diagnostic and therapeutic strategies, including biomarker-guided and immune-targeted interventions. By delineating how SARS-CoV-2 reshapes neuroimmune interactions, this review aims to support the development of precision-based diagnostics and targeted therapies for long COVID-related neurological dysfunction. Emerging approaches include immune-modulatory agents (e.g., anti-IL-6), neuroprotective drugs, and strategies for repurposing antiviral or anti-inflammatory compounds in neuro-COVID. Given the high prevalence of comorbidities, personalized therapies guided by biomarkers and patient-specific immune profiles may be essential. Advancements in vaccine technologies and targeted biologics may also hold promise for prevention and disease modification. Finally, continued interdisciplinary research is needed to clarify the complex virus–immune–brain axis in long COVID and inform effective clinical management. Full article
Show Figures

Figure 1

31 pages, 1849 KiB  
Review
The Application of Single-Cell Technologies for Vaccine Development Against Viral Infections
by Hong Nhi Nguyen, Isabel O. Vanderzee and Fei Wen
Vaccines 2025, 13(7), 687; https://doi.org/10.3390/vaccines13070687 - 26 Jun 2025
Viewed by 951
Abstract
The development of vaccines against viral infections has advanced rapidly over the past century, propelled by innovations in laboratory and molecular technologies. These advances have expanded the range of vaccine platforms beyond live-attenuated and inactivated vaccines to include recombinant platforms, such as subunit [...] Read more.
The development of vaccines against viral infections has advanced rapidly over the past century, propelled by innovations in laboratory and molecular technologies. These advances have expanded the range of vaccine platforms beyond live-attenuated and inactivated vaccines to include recombinant platforms, such as subunit proteins and virus-like particles (VLPs), and more recently, mRNA-based vaccines, while also enhancing methods for evaluating vaccine performance. Despite these innovations, a persistent challenge remains: the inherent complexity and heterogeneity of immune responses continue to impede efforts to achieve consistently effective and durable protection across diverse populations. Single-cell technologies have emerged as transformative tools for dissecting this immune heterogeneity, providing comprehensive and granular insights into cellular phenotypes, functional states, and dynamic host–pathogen interactions. In this review, we examine how single-cell epigenomic, transcriptomic, proteomic, and multi-omics approaches are being integrated across all stages of vaccine development—from infection-informed discovery to guide vaccine design, to high-resolution evaluation of efficacy, and refinement of cell lines for manufacturing. Through representative studies, we highlight how insights from these technologies contribute to the rational design of more effective vaccines and support the development of personalized vaccination strategies. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

16 pages, 1434 KiB  
Article
Exploring Immune Responses to SARS-CoV-2: Insights from Sinopharm (BBIBP-CorV)-Vaccinated Individuals in a Group of Venezuelan Admixed Volunteers
by Alexis Hipólito García, Soriuska José Mayora, Christian Medina, Inírida Amada Belisario, Wendy Yaqueline Martínez, Francis Isamarg Crespo and Juan Bautista De Sanctis
Biomedicines 2025, 13(7), 1550; https://doi.org/10.3390/biomedicines13071550 - 25 Jun 2025
Viewed by 473
Abstract
Background: Vaccines are crucial for preventing infectious diseases, as both humoral and cellular immune responses play a vital role in combating viral infections. The cellular immune response is crucial against SARS-CoV-2, particularly with the emergence of new variants that evade antibody neutralization. [...] Read more.
Background: Vaccines are crucial for preventing infectious diseases, as both humoral and cellular immune responses play a vital role in combating viral infections. The cellular immune response is crucial against SARS-CoV-2, particularly with the emergence of new variants that evade antibody neutralization. This study focuses on the immune memory response in individuals who have been vaccinated with the Sinopharm BBIBP-CorV vaccine. Methods: A cross-sectional study evaluated lymphocyte subpopulations using flow cytometry in 52 vaccinated adults (30 females, 22 males) who had been exposed to SARS-CoV-2 or diagnosed with COVID-19. Conducted from February to June 2023 during the Omicron variant’s circulation, this study assessed antigens—CD154 in CD4+ T cells, CD107 and CD314 in CD8+ T cells, CD314 in NK cells, and CD86 in CD19 B cells—after stimulation with viral peptides and an inactivated virus. Granzyme B and IFN-γ were quantified using ELISA. Results: The memory response, regardless of gender, age, or Body Mass Index (BMI), was mild but significant upon exposure to a viral antigen or inactivated virus. An increase in the secretion of IFN-γ and granzyme B was also observed. Conclusions: It is suggested that the vaccine was able to generate a mild long-term memory against the SARS-CoV-2 virus in vaccinated adult individuals, independent of gender and BMI. Full article
Show Figures

Figure 1

14 pages, 1866 KiB  
Article
Naturally Occurring Angiotensin Peptides Enhance the SARS-CoV-2 Spike Protein Binding to Its Receptors
by Katelin X. Oliveira, Fariha E. Bablu, Emily S. Gonzales, Taisuke Izumi and Yuichiro J. Suzuki
Int. J. Mol. Sci. 2025, 26(13), 6067; https://doi.org/10.3390/ijms26136067 - 24 Jun 2025
Cited by 1 | Viewed by 492
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus responsible for Coronavirus Disease 2019 (COVID-19), utilizes its spike protein to infect host cells. In addition to angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1), AXL acts as a spike protein receptor and mediates infection, [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus responsible for Coronavirus Disease 2019 (COVID-19), utilizes its spike protein to infect host cells. In addition to angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1), AXL acts as a spike protein receptor and mediates infection, especially in respiratory cells with low ACE2 expression. Angiotensin II (1–8) can be cleaved into shorter peptides within the biological system. Antibody-based binding assays showed that angiotensin II causes a two-fold increase in the binding between the spike protein and AXL, but not ACE2 or NRP1. While a longer peptide, angiotensin I (1–10), did not affect the spike–AXL binding, shorter lengths of angiotensin peptides exhibited enhancing effects. The C-terminal deletions of angiotensin II to angiotensin (1–7) or angiotensin (1–6) resulted in peptides with enhanced activity toward spike–AXL binding with a similar capacity as angiotensin II. In contrast, the N-terminal deletions of angiotensin II to angiotensin III (2–8) or angiotensin IV (3–8) as well as the N-terminal deletions of angiotensin (1–7) to angiotensin (2–7) or angiotensin (5–7) produced peptides with a more potent ability to enhance spike–AXL binding (2.7-fold increase with angiotensin IV). When valine was substituted for tyrosine at position 4 in angiotensin II or when tyrosine at position 4 was phosphorylated, spike–AXL binding was increased, suggesting that modifications to tyrosine trigger enhancement. Angiotensin IV also enhances spike protein binding to ACE2 and NRP1. Thus, angiotensin peptides may contribute to COVID-19 pathogenesis by enhancing spike protein binding and thus serve as therapeutic targets. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

22 pages, 3669 KiB  
Article
Factors Associated with Impaired Humoral Immune Response to mRNA Vaccines in Patients with Inflammatory Bowel Disease: A Matched-Cohort Analysis from the RisCoin Study
by Katarina Csollarova, Leandra Koletzko, Thu Giang Le Thi, Paul R. Wratil, Ana Zhelyazkova, Simone Breiteneicher, Marcel Stern, Gaia Lupoli, Tobias Schwerd, Alexander Choukér, Veit Hornung, Oliver T. Keppler, Kristina Adorjan, Helga Paula Török and Sibylle Koletzko
Vaccines 2025, 13(7), 673; https://doi.org/10.3390/vaccines13070673 - 23 Jun 2025
Cited by 1 | Viewed by 615
Abstract
Background/Objectives: The SARS-CoV-2 pandemic challenged patients with inflammatory bowel disease (IBD) under immunosuppressive therapies. We used data from the RisCoin cohort to investigate factors associated with a poor immune response to mRNA vaccination in these patients. Methods: From 4115 RisCoin participants, we [...] Read more.
Background/Objectives: The SARS-CoV-2 pandemic challenged patients with inflammatory bowel disease (IBD) under immunosuppressive therapies. We used data from the RisCoin cohort to investigate factors associated with a poor immune response to mRNA vaccination in these patients. Methods: From 4115 RisCoin participants, we matched 110 IBD patients by age and time interval since the second mRNA vaccination with 306 healthcare workers (HCW) without comorbidities (HCW-healthy) and 292 with medical conditions (HCW-plus); all were SARS-CoV-2 infection naïve. Basic questionnaires collected data on medication, COVID-19 vaccinations and side-effects, dietary patterns, lifestyle factors, and self-perceived stress. Main outcomes included anti-spike immunoglobulin levels and antibody-mediated live-virus neutralization immunity (NT) to the Omicron BA.1 variant (threshold NT ≥ 10 defined as IC50 values ≥1:10 serum dilution) after the second (baseline) and third vaccinations. Results: At baseline, IBD patients treated with anti-TNF but not those under vedolizumab or ustekinumab therapy had lower anti-spike levels compared to HCW-healthy and HCW-plus (166 versus 1384 and 1258 BAU/mL, respectively; p < 0.0001). Anti-TNF compared to vedolizumab/ustekinumab-treated patients reached NT titers above threshold in 17% versus 64%, respectively, and HCW-subgroups in 73% and 79% (all p < 0.0001). Current smokers showed a four to five times increased risk for non-neutralizing immunity compared to non-smokers. After the third vaccination, NT titers did not reach threshold in 15% anti-TNF compared to 5% vedolizumab/ustekinumab-treated patients and none of HCW (p < 0.01). Patients with IBD reported fewer clinical symptoms after vaccination. Perceived stress was not increased. Conclusions: Our findings support individualized schedules for mRNA-based vaccines in IBD patients with different immunosuppressive therapies and enforcement of non-smoking. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

23 pages, 986 KiB  
Review
COVID-19 and a Tale of Three Drugs: To Repurpose, or Not to Repurpose–That Was the Question
by Chris R. Triggle and Ross MacDonald
Viruses 2025, 17(7), 881; https://doi.org/10.3390/v17070881 - 23 Jun 2025
Viewed by 962
Abstract
On 11 March 2020, the World Health Organisation (WHO) declared a global pandemic caused by the SARS-CoV-2 coronavirus that earlier in February 2020 the WHO had named COVID-19 (coronavirus disease 2019). There were neither drugs nor vaccines that were known to be effective [...] Read more.
On 11 March 2020, the World Health Organisation (WHO) declared a global pandemic caused by the SARS-CoV-2 coronavirus that earlier in February 2020 the WHO had named COVID-19 (coronavirus disease 2019). There were neither drugs nor vaccines that were known to be effective against the virus, stimulating an urgent worldwide search for treatments. An evaluation of existing drugs by ‘repurposing’ was initiated followed by a transition to de novo drug discovery. Repurposing of an already approved drug may accelerate the introduction of that drug into clinical use by circumventing early, including preclinical studies otherwise essential for a de novo drug and reducing development costs. Early in the pandemic three drugs were identified as repurposing candidates for the treatment of COVID-19: (i) hydroxychloroquine, an anti-malarial also used to treat rheumatoid arthritis and lupus; (ii) ivermectin, an antiparasitic approved for both human and veterinary use; (iii) remdesivir, an anti-viral originally developed to treat hepatitis C. The scientific evidence, both for and against the efficacy of these three drugs as treatments for COVID-19, vied with public demand and politicization as unqualified opinions clashed with evidence-based medicine. To quote Hippocrates, “There are in fact two things, science and opinion; the former begets knowledge, the latter ignorance”. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

Back to TopTop