Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,022)

Search Parameters:
Keywords = CO2 trading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1152 KiB  
Article
PortRSMs: Learning Regime Shifts for Portfolio Policy
by Bingde Liu and Ryutaro Ichise
J. Risk Financial Manag. 2025, 18(8), 434; https://doi.org/10.3390/jrfm18080434 - 5 Aug 2025
Abstract
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties [...] Read more.
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties over short periods and maintaining sensitivity to sudden shocks in price sequences. PortRSMs also performs cross-asset regime fusion through hypergraph attention mechanisms, providing a more comprehensive state space for describing changes in asset correlations and co-integration. Experiments conducted on two different trading frequencies in the stock markets of the United States and Hong Kong show the superiority of PortRSMs compared to other approaches in terms of profitability, risk–return balancing, robustness, and the ability to handle sudden market shocks. Specifically, PortRSMs achieves up to a 0.03 improvement in the annual Sharpe ratio in the U.S. market, and up to a 0.12 improvement for the Hong Kong market compared to baseline methods. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

16 pages, 3373 KiB  
Article
Knowledge-Augmented Zero-Shot Method for Power Equipment Defect Grading with Chain-of-Thought LLMs
by Jianguang Du, Bo Li, Zhenyu Chen, Lian Shen, Pufan Liu and Zhongyang Ran
Electronics 2025, 14(15), 3101; https://doi.org/10.3390/electronics14153101 - 4 Aug 2025
Abstract
As large language models (LLMs) increasingly enter specialized domains, inference without external resources often leads to knowledge gaps, opaque reasoning, and hallucinations. To address these challenges in power equipment defect grading, we propose a zero-shot question-answering framework that requires no task-specific examples. Our [...] Read more.
As large language models (LLMs) increasingly enter specialized domains, inference without external resources often leads to knowledge gaps, opaque reasoning, and hallucinations. To address these challenges in power equipment defect grading, we propose a zero-shot question-answering framework that requires no task-specific examples. Our system performs two-stage retrieval—first using a Sentence-BERT model fine-tuned on power equipment maintenance texts for coarse filtering, then combining TF-IDF and semantic re-ranking for fine-grained selection of the most relevant knowledge snippets. We embed both the user query and the retrieved evidence into a Chain-of-Thought (CoT) prompt, guiding the pre-trained LLM through multi-step reasoning with self-validation and without any model fine-tuning. Experimental results show that on a held-out test set of 218 inspection records, our method achieves a grading accuracy of 54.2%, which is 6.0 percentage points higher than the fine-tuned BERT baseline at 48.2%; an Explanation Coherence Score (ECS) of 4.2 compared to 3.1 for the baseline; a mean retrieval latency of 28.3 ms; and an average LLM inference time of 5.46 s. Ablation and sensitivity analyses demonstrate that a fine-stage retrieval pool size of k = 30 offers the optimal trade-off between accuracy and latency; human expert evaluation by six senior engineers yields average Usefulness and Trustworthiness scores of 4.1 and 4.3, respectively. Case studies across representative defect scenarios further highlight the system’s robust zero-shot performance. Full article
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 170
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

13 pages, 553 KiB  
Article
Biorefinery-Based Energy Recovery from Algae: Comparative Evaluation of Liquid and Gaseous Biofuels
by Panagiotis Fotios Chatzimaliakas, Dimitrios Malamis, Sofia Mai and Elli Maria Barampouti
Fermentation 2025, 11(8), 448; https://doi.org/10.3390/fermentation11080448 - 1 Aug 2025
Viewed by 179
Abstract
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested [...] Read more.
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested and sedimented algal biomass. Employing a factorial experimental design, various trials were conducted, with ethanol yield as the primary optimization target. The findings indicated that the sodium hydroxide concentration during pretreatment and the amylase dosage in enzymatic hydrolysis were key parameters influencing the ethanol production efficiency. Under optimized conditions—using 0.3 M NaOH, 25 μL/g starch, and 250 μL/g cellulose—fermentation yielded ethanol concentrations as high as 2.75 ± 0.18 g/L (45.13 ± 2.90%), underscoring the significance of both enzyme loading and alkali treatment. Biomethane potential tests on the residues of fermentation revealed reduced methane yields in comparison with the raw algal feedstock, with a peak value of 198.50 ± 25.57 mL/g volatile solids. The integrated process resulted in a total energy recovery of up to 809.58 kWh per tonne of algal biomass, with biomethane accounting for 87.16% of the total energy output. However, the energy recovered from unprocessed biomass alone was nearly double, indicating a trade-off between sequential valorization steps. A comparison between fresh and dried feedstocks also demonstrated marked differences, largely due to variations in moisture content and biomass composition. Overall, this study highlights the promise of integrated algal biomass utilization as a viable and energy-efficient route for sustainable biofuel production. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

15 pages, 4578 KiB  
Article
Improving Balance Between Oxygen Permeability and Stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Through High-Entropy Design
by Yongfan Zhu, Meng Wu, Guangru Zhang, Zhengkun Liu and Gongping Liu
Membranes 2025, 15(8), 232; https://doi.org/10.3390/membranes15080232 - 1 Aug 2025
Viewed by 200
Abstract
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of [...] Read more.
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of a high-entropy perovskite, Ba0.5Sr0.5Co0.71Fe0.2Ta0.03Ni0.03Zr0.03O3−δ. The crystal structure, microstructure, and elemental composition of the material were systematically characterized and analyzed. Theoretical analysis and experimental characterization confirm that the material exhibits a stable single-phase high-entropy perovskite oxide structure. Under He as the sweep gas, the membrane achieved an oxygen permeation flux of 1.28 mL·cm−2·min−1 and operated stably for over 100 h (1 mm thick, 900 °C). In a 20% CO2/He atmosphere, the flux remained above 0.92 mL·cm−2·min−1 for over 100 h, demonstrating good CO2 tolerance. Notably, when the sweep gas is returned to the pure He atmosphere, the oxygen permeation flux fully recovers to 1.28 mL·cm−2·min−1, with no evidence of leakage. These findings indicate that the proposed B-site doping strategy can break the trade-off between oxygen permeability and structural stability in conventional perovskite membranes. This advancement supports the industrialization of oxygen permeable membranes and offers valuable theoretical guidance for the design of high-performance perovskite materials. Full article
Show Figures

Figure 1

35 pages, 3218 KiB  
Article
Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers
by Merve Akbas
Appl. Sci. 2025, 15(15), 8516; https://doi.org/10.3390/app15158516 (registering DOI) - 31 Jul 2025
Viewed by 139
Abstract
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing [...] Read more.
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing transport distance, processing energy intensity, initial moisture content, gradation adjustments, and regional electricity emission factors. Four advanced tree-based ensemble regression algorithms—Random Forest Regressor (RFR), Extremely Randomized Trees (ERTs), Gradient Boosted Regressor (GBR), and Extreme Gradient Boosting Regressor (XGBR)—were rigorously evaluated. Among these, GBR demonstrated superior predictive performance (R2 > 0.95, RMSE < 7.5), effectively capturing complex nonlinear interactions inherent in slag processing and logistics operations. Feature importance analysis via SHapley Additive exPlanations (SHAP) provided interpretative insights, highlighting transport distance and energy intensity as dominant factors affecting unit cost, while moisture content and grid emission factor predominantly influenced CO2 emissions. Subsequently, the Gradient Boosted Regressor model was integrated into a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) framework to explore optimal trade-offs between cost and emissions. The resulting Pareto front revealed a diverse solution space, with significant nonlinear trade-offs between economic efficiency and environmental performance, clearly identifying strategic inflection points. To facilitate actionable decision-making, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method was applied, identifying an optimal balanced solution characterized by a transport distance of 47 km, energy intensity of 1.21 kWh/ton, moisture content of 6.2%, moderate gradation adjustment, and a grid CO2 factor of 0.47 kg CO2/kWh. This scenario offered a substantial reduction (45%) in CO2 emissions relative to cost-minimized solutions, with a moderate increase (33%) in total cost, presenting a realistic and balanced pathway for sustainable infrastructure practices. Overall, this study introduces a robust, scalable, and interpretable optimization framework, providing valuable methodological advancements for sustainable decision making in infrastructure planning and circular economy initiatives. Full article
Show Figures

Figure 1

17 pages, 11742 KiB  
Article
The Environmental and Grid Impact of Boda Boda Electrification in Nairobi, Kenya
by Halloran Stratford and Marthinus Johannes Booysen
World Electr. Veh. J. 2025, 16(8), 427; https://doi.org/10.3390/wevj16080427 - 31 Jul 2025
Viewed by 206
Abstract
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, [...] Read more.
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, we simulated the effects of a full-scale transition from internal combustion engine (ICE) vehicles to electric motorbikes. We analysed various scenarios, including different battery charging strategies (swapping and home charging), motor efficiencies, battery capacities, charging rates, and the potential for solar power offsetting. The results indicate that electrification could reduce daily CO2 emissions by approximately 85% and eliminate tailpipe particulate matter emissions. However, transitioning the entire country’s fleet would increase the national daily energy demand by up to 6.85 GWh and could introduce peak grid loads as high as 2.40 GW, depending on the charging approach and vehicle efficiency. Battery swapping was found to distribute the grid load more evenly and better complement solar power integration compared to home charging, which concentrates demand in the evening. This research provides a scalable, data-driven framework for policymakers to assess the impacts of transport electrification in similar urban contexts, highlighting the critical trade-offs between environmental benefits and grid infrastructure requirements. Full article
Show Figures

Figure 1

18 pages, 2111 KiB  
Article
Modelling Renewable Energy and Resource Interactions Using CLEWs to Support Thailand’s 2050 Carbon Neutrality Goal
by Nat Nakkorn, Surasak Janchai, Suparatchai Vorarat and Prayuth Rittidatch
Sustainability 2025, 17(15), 6909; https://doi.org/10.3390/su17156909 - 30 Jul 2025
Viewed by 323
Abstract
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate [...] Read more.
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate the long-term trade-offs among energy, water, and land systems. Data were sourced from esteemed international organisations (e.g., the IEA, FAO, and OECD) and national agencies and organised into a tailored OSeMOSYS Starter Data Kit for Thailand, comprising a baseline and a carbon neutral trajectory. The baseline scenario, primarily reliant on fossil fuels, is projected to generate annual CO2 emissions exceeding 400 million tons and water consumption surpassing 85 billion cubic meters by 2025. By the mid-century, the carbon neutral scenario will have approximately 40% lower water use and a 90% reduction in power sector emissions. Under the carbon neutral path, renewable energy takes the front stage; the share of renewable electricity goes from under 20% in the baseline scenario to almost 80% by 2050. This transition and large reforestation initiatives call for consistent investment in solar energy (solar energy expenditures exceeding 20 billion USD annually by 2025). Still, it provides notable co-benefits, including greater resource sustainability and better alignment with international climate targets. The results provide strategic insights aligned with Thailand’s National Energy Plan (NEP) and offer modelling evidence toward achieving international climate goals under COP29. Full article
Show Figures

Graphical abstract

18 pages, 2688 KiB  
Article
Generalized Hierarchical Co-Saliency Learning for Label-Efficient Tracking
by Jie Zhao, Ying Gao, Chunjuan Bo and Dong Wang
Sensors 2025, 25(15), 4691; https://doi.org/10.3390/s25154691 - 29 Jul 2025
Viewed by 124
Abstract
Visual object tracking is one of the core techniques in human-centered artificial intelligence, which is very useful for human–machine interaction. State-of-the-art tracking methods have shown their robustness and accuracy on many challenges. However, a large amount of videos with precisely dense annotations are [...] Read more.
Visual object tracking is one of the core techniques in human-centered artificial intelligence, which is very useful for human–machine interaction. State-of-the-art tracking methods have shown their robustness and accuracy on many challenges. However, a large amount of videos with precisely dense annotations are required for fully supervised training of their models. Considering that annotating videos frame-by-frame is a labor- and time-consuming workload, reducing the reliance on manual annotations during the tracking models’ training is an important problem to be resolved. To make a trade-off between the annotating costs and the tracking performance, we propose a weakly supervised tracking method based on co-saliency learning, which can be flexibly integrated into various tracking frameworks to reduce annotation costs and further enhance the target representation in current search images. Since our method enables the model to explore valuable visual information from unlabeled frames, and calculate co-salient attention maps based on multiple frames, our weakly supervised methods can obtain competitive performance compared to fully supervised baseline trackers, using only 3.33% of manual annotations. We integrate our method into two CNN-based trackers and a Transformer-based tracker; extensive experiments on four general tracking benchmarks demonstrate the effectiveness of our method. Furthermore, we also demonstrate the advantages of our method on egocentric tracking task; our weakly supervised method obtains 0.538 success on TREK-150, which is superior to prior state-of-the-art fully supervised tracker by 7.7%. Full article
Show Figures

Figure 1

21 pages, 2965 KiB  
Article
Inspection Method Enabled by Lightweight Self-Attention for Multi-Fault Detection in Photovoltaic Modules
by Shufeng Meng and Tianxu Xu
Electronics 2025, 14(15), 3019; https://doi.org/10.3390/electronics14153019 - 29 Jul 2025
Viewed by 237
Abstract
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity [...] Read more.
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity concurrent detection in existing robotic inspection systems, while stringent onboard compute budgets also preclude the adoption of bulky detectors. To resolve this accuracy–efficiency trade-off for dual-defect detection, we present YOLOv8-SG, a lightweight yet powerful framework engineered for mobile PV inspectors. First, a rigorously curated multi-modal dataset—RGB for stains and long-wave infrared for hotspots—is assembled to enforce robust cross-domain representation learning. Second, the HSV color space is leveraged to disentangle chromatic and luminance cues, thereby stabilizing appearance variations across sensors. Third, a single-head self-attention (SHSA) block is embedded in the backbone to harvest long-range dependencies at negligible parameter cost, while a global context (GC) module is grafted onto the detection head to amplify fine-grained semantic cues. Finally, an auxiliary bounding box refinement term is appended to the loss to hasten convergence and tighten localization. Extensive field experiments demonstrate that YOLOv8-SG attains 86.8% mAP@0.5, surpassing the vanilla YOLOv8 by 2.7 pp while trimming 12.6% of parameters (18.8 MB). Grad-CAM saliency maps corroborate that the model’s attention consistently coincides with defect regions, underscoring its interpretability. The proposed method, therefore, furnishes PV operators with a practical low-latency solution for concurrent bird-dropping and hotspot surveillance. Full article
Show Figures

Figure 1

38 pages, 5375 KiB  
Article
Thinking Green: A Place Lab Approach to Citizen Engagement and Indicators for Nature-Based Solutions in a Case Study from Katowice
by Katarzyna Samborska-Goik, Anna Starzewska-Sikorska and Patrycja Obłój
Sustainability 2025, 17(15), 6857; https://doi.org/10.3390/su17156857 - 28 Jul 2025
Viewed by 279
Abstract
Urban areas are at the forefront in addressing global challenges such as climate change and biodiversity loss. Among the key responses are nature-based solutions, which are increasingly being integrated into policy frameworks but which require strong community engagement for their effective implementation. This [...] Read more.
Urban areas are at the forefront in addressing global challenges such as climate change and biodiversity loss. Among the key responses are nature-based solutions, which are increasingly being integrated into policy frameworks but which require strong community engagement for their effective implementation. This paper presents the findings of surveys conducted within the Place Lab in Katowice, Poland, an initiative developed as part of an international project and used as a participatory tool for co-creating and implementing green infrastructure. The project applies both place-based and people-centred approaches to support European cities in their transition towards regenerative urbanism. Place Lab activities encourage collaboration between local authorities and residents, enhancing awareness and fostering participation in environmental initiatives. The survey data collected during the project allowed for the evaluation of changes in public attitudes and levels of engagement and for the identification of broader societal phenomena that may influence the implementation of nature-based solutions. The findings revealed, for instance, that more women were interested in supporting the project, that residents tended to be sceptical of governmental actions on climate change, and that views were divided on the trade-off between urban infrastructure such as parking and roads and the presence of green areas. Furthermore, questions of responsibility, awareness, and long-term commitment were frequently raised. Building on the survey results and the existing literature, the study proposes a set of indicators to assess the contribution of citizen participation to the adoption of nature-based solutions. While the effectiveness of nature-based solutions in mitigating climate change impacts can be assessed relatively directly, evaluating civic engagement is more complex. Nevertheless, when conducted transparently and interpreted by experts, indicator-based assessment can offer valuable insights. This study introduces a novel perspective by considering not only drivers of engagement but also the obstacles. The proposed indicators provide a foundation for evaluating community readiness and commitment to nature-based approaches and may be adapted for application in other urban settings and in future research on climate resilience strategies. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

27 pages, 1739 KiB  
Article
Hybrid Small Modular Reactor—Renewable Systems for Smart Cities: A Simulation-Based Assessment for Clean and Resilient Urban Energy Transitions
by Nikolay Hinov
Energies 2025, 18(15), 3993; https://doi.org/10.3390/en18153993 - 27 Jul 2025
Viewed by 528
Abstract
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart [...] Read more.
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart grid architecture. SMRs offer compact, low-carbon, and reliable baseload power suitable for urban environments, while PV and storage enhance system flexibility and renewable integration. Six energy mix scenarios are evaluated using a lifecycle-based cost model that incorporates both capital expenditures (CAPEX) and cumulative carbon costs over a 25-year horizon. The modeling results demonstrate that hybrid SMR–renewable systems—particularly those with high nuclear shares—can reduce lifecycle CO2 emissions by over 90%, while maintaining long-term economic viability under carbon pricing assumptions. Scenario C, which combines 50% SMR, 40% PV, and 10% battery, emerges as a balanced configuration offering deep decarbonization with moderate investment levels. The proposed framework highlights key trade-offs between emissions and capital cost and seeking resilient and scalable pathways to support the global clean energy transition and net-zero commitments. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

26 pages, 16740 KiB  
Article
An Integrated Framework for Zero-Waste Processing and Carbon Footprint Estimation in ‘Phulae’ Pineapple Systems
by Phunsiri Suthiluk, Anak Khantachawana, Songkeart Phattarapattamawong, Varit Srilaong, Sutthiwal Setha, Nutthachai Pongprasert, Nattaya Konsue and Sornkitja Boonprong
Agriculture 2025, 15(15), 1623; https://doi.org/10.3390/agriculture15151623 - 26 Jul 2025
Viewed by 362
Abstract
This study proposes an integrated framework for sustainable tropical agriculture by combining biochemical waste valorization with spatial carbon footprint estimation in ‘Phulae’ pineapple production. Peel and eye residues from fresh-cut processing were enzymatically converted into rare sugar, achieving average conversion efficiencies of 35.28% [...] Read more.
This study proposes an integrated framework for sustainable tropical agriculture by combining biochemical waste valorization with spatial carbon footprint estimation in ‘Phulae’ pineapple production. Peel and eye residues from fresh-cut processing were enzymatically converted into rare sugar, achieving average conversion efficiencies of 35.28% for peel and 37.51% for eyes, with a benefit–cost ratio of 1.56 and an estimated unit cost of USD 0.17 per gram. A complementary zero-waste pathway produced functional gummy products using vinegar fermented from pineapple eye waste, with the preferred formulation scoring a mean of 4.32 out of 5 on a sensory scale with 158 untrained panelists. For spatial carbon modeling, the Bare Land Referenced Algorithm (BRAH) and Otsu thresholding were applied to multi-temporal Sentinel-2 and THEOS imagery to estimate plantation age, which strongly correlated with field-measured emissions (r = 0.996). This enabled scalable mapping of plot-level greenhouse gas emissions, yielding an average footprint of 0.2304 kg CO2 eq. per kilogram of fresh pineapple at the plantation gate. Together, these innovations form a replicable model that aligns tropical fruit supply chains with circular economy goals and carbon-related trade standards. The framework supports waste traceability, resource efficiency, and climate accountability using accessible, data-driven tools suitable for smallholder contexts. By demonstrating practical value addition and spatially explicit carbon monitoring, this study shows how integrated circular and geospatial strategies can advance sustainability and market competitiveness for the ‘Phulae’ pineapple industry and similar perennial crop systems. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

28 pages, 5172 KiB  
Article
Machine Learning-Assisted Sustainable Mix Design of Waste Glass Powder Concrete with Strength–Cost–CO2 Emissions Trade-Offs
by Yuzhuo Zhang, Jiale Peng, Zi Wang, Meng Xi, Jinlong Liu and Lei Xu
Buildings 2025, 15(15), 2640; https://doi.org/10.3390/buildings15152640 - 26 Jul 2025
Viewed by 507
Abstract
Glass powder, a non-degradable waste material, offers significant potential to reduce cement consumption and carbon emissions in concrete production. However, existing mix design methods for glass powder concrete (GPC) fail to systematically balance economic efficiency, environmental sustainability, and mechanical performance. To address this [...] Read more.
Glass powder, a non-degradable waste material, offers significant potential to reduce cement consumption and carbon emissions in concrete production. However, existing mix design methods for glass powder concrete (GPC) fail to systematically balance economic efficiency, environmental sustainability, and mechanical performance. To address this gap, this study proposes an AI-assisted framework integrating machine learning (ML) and Multi-Objective Optimization (MOO) to achieve a sustainable GPC design. A robust database of 1154 experimental records was developed, focusing on five key predictors: cement content, water-to-binder ratio, aggregate composition, glass powder content, and curing age. Seven ML models were optimized via Bayesian tuning, with the Ensemble Tree model achieving superior accuracy (R2 = 0.959 on test data). SHapley Additive exPlanations (SHAP) analysis further elucidated the contribution mechanisms and underlying interactions of material components on GPC compressive strength. Subsequently, a MOO framework minimized unit cost and CO2 emissions while meeting compressive strength targets (15–70 MPa), solved using the NSGA-II algorithm for Pareto solutions and TOPSIS for decision-making. The Pareto-optimal solutions provide actionable guidelines for engineers to align GPC design with circular economy principles and low-carbon policies. This work advances sustainable construction practices by bridging AI-driven innovation with building materials, directly supporting global goals for waste valorization and carbon neutrality. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 327
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

Back to TopTop