Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,049)

Search Parameters:
Keywords = CO2 mapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 10996 KB  
Article
Electromagnetic Wave Absorption Properties of Cation-Substituted Ba0.5Sr0.5Zn2−xMexFe16O27 (Me = Fe, Ni, Co, Cu, Mn) W-Type Hexagonal Ferrites
by Jae-Hee Heo and Young-Min Kang
Appl. Sci. 2025, 15(17), 9586; https://doi.org/10.3390/app15179586 (registering DOI) - 30 Aug 2025
Abstract
W-type hexaferrites with compositions Ba0.5Sr0.5Zn2-xMexFe16O27 (Me = Fe, Ni, Co, Cu, Mn; x = 1) and Ba0.5Sr0.5Zn2−xMnxFe16O27 (x [...] Read more.
W-type hexaferrites with compositions Ba0.5Sr0.5Zn2-xMexFe16O27 (Me = Fe, Ni, Co, Cu, Mn; x = 1) and Ba0.5Sr0.5Zn2−xMnxFe16O27 (x = 0–2.0) were synthesized via solid-state reaction and optimized using a two-step calcination process to obtain single-phase or nearly single-phase structures. Their electromagnetic (EM) wave absorption properties were investigated by fabricating composites with 10 wt% epoxy and measuring the complex permittivity and permeability across two frequency bands: 0.1–18 GHz and 26.5–40 GHz. Reflection loss (RL) was calculated and visualized as two-dimensional (2D) maps with respect to frequency and sample thickness. In the 0.1–18 GHz range, only the Co-substituted sample exhibited strong ferromagnetic resonance (FMR) and broadband absorption, achieving a minimum RL of –41.5 dB at 4.84 GHz and a –10 dB bandwidth of 11.8 GHz. In contrast, the other Ba0.5Sr0.5Zn2-xMexFe16O27 samples (Me = Fe, Mn, Ni, Cu) showed no significant absorption in this range due to the absence of FMR. However, all these samples clearly exhibited FMR characteristics and distinct absorption peaks in the 26.5–40 GHz range, particularly the Mn-substituted series, which demonstrated RL values below –10 dB over the 32.0–40 GHz range with absorber thicknesses below 1 mm. The FMR frequency varied depending on the substitution type and amount. In the Mn-substituted series, the FMR frequency was lowest at x = 1.0 and increased as x deviated from this composition. This study confirms the potential of Co-free W-type hexaferrites as efficient, cost-effective, and broadband EM wave absorbers in the 26.5–40 GHz range. Full article
(This article belongs to the Topic Advanced Composite Materials)
20 pages, 3801 KB  
Article
Structural Study of Metakaolin-Phosphate Geopolymers Prepared with Wide Range of Al/P Molar Ratios
by Martin Keppert, Martina Urbanová, Ivana Šeděnková, Václav Pokorný, Michala Breníková, Jitka Krejsová, Vojtěch Pommer, Eva Vejmelková, Dana Koňáková and Jiří Brus
Polymers 2025, 17(17), 2358; https://doi.org/10.3390/polym17172358 (registering DOI) - 30 Aug 2025
Abstract
Geopolymers represent an innovative and environmentally sustainable alternative to traditional construction materials, offering significant potential for reducing anthropogenic CO2 emissions. Among these, phosphoric acid-activated metakaolin-based systems have attracted increasing attention for their chemical and thermal resilience. In this study, we present a [...] Read more.
Geopolymers represent an innovative and environmentally sustainable alternative to traditional construction materials, offering significant potential for reducing anthropogenic CO2 emissions. Among these, phosphoric acid-activated metakaolin-based systems have attracted increasing attention for their chemical and thermal resilience. In this study, we present a comprehensive structural and mechanical evaluation of metakaolin-based geopolymers synthesized across a wide range of Al/P molar ratios (0.8–4.0). Six formulations were systematically prepared and analyzed using X-ray powder diffraction (XRPD), small-angle X-ray scattering (SAXS), Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (ssNMR), and complementary mechanical testing. The novelty of this work lies in the integrated mapping of composition–structure–property relationships across the broad Al/P spectrum under controlled synthesis, combined with the rare application of SAXS to reveal composition-dependent nanoscale domains (~18–50 nm). We identify a stoichiometric window at Al/P ≈ 1.5, where complete acid consumption leads to a structurally homogeneous AlVI–O–P network, yielding the highest compressive strength. In contrast, acid-rich systems exhibit divergent flexural and compressive behaviors, with enhanced flexural strength linked to hydrated silica domains arising from metakaolin dealumination, quantitatively tracked by 29Si MAS NMR. XRPD further reveals the formation of uncommon Si–P crystalline phases (SiP2O7, Si5P6O25) under low-temperature curing in acid-rich compositions. Together, these findings provide new insights into the nanoscale structuring, phase evolution, and stoichiometric control of silica–alumino–phosphate geopolymers, highlighting strategies for optimizing their performance in demanding thermal and chemical environments. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 1382 KB  
Article
Reducing Within-Vineyard Spatial Variability Through Real-Time Variable-Rate Fertilization: A Case Study in the Conegliano Valdobbiadene Prosecco DOCG Region
by Marco Sozzi, Davide Boscaro, Alessandro Zanchin, Francesco Marinello and Diego Tomasi
AgriEngineering 2025, 7(9), 280; https://doi.org/10.3390/agriengineering7090280 - 29 Aug 2025
Abstract
Spatial variability in vine vigour and yield components is a major challenge for vineyard management and consistent grape quality, particularly in hilly landscapes. This study evaluates the impact of on-the-go variable-rate fertilisation (VRA) in reducing within-vineyard variability in an 8.5 hectares commercial vineyard [...] Read more.
Spatial variability in vine vigour and yield components is a major challenge for vineyard management and consistent grape quality, particularly in hilly landscapes. This study evaluates the impact of on-the-go variable-rate fertilisation (VRA) in reducing within-vineyard variability in an 8.5 hectares commercial vineyard in the Conegliano Valdobbiadene Prosecco DOCG region (Italy). Over two growing seasons, a proximal NDVI sensor (GreenSeeker) guided real-time fertiliser applications without prescription maps. Vine vigour, yield components, and grape quality were evaluated using geostatistical analysis and coefficient of variation (CV) metrics. VRA reduced total spatial variability (sill) by 55% and erratic variance (nugget effect) by 39% for NDVI measurements. Variability in yield components also decrease (−21.1% for cluster number, −6.25% for cluster weight), while grape composition parameters (total soluble solids, titratable acidity, and pH) was not significantly altered despite a slightly higher variability (in titratable acidity and pH), indicating that fertiliser modulation did not compromise grape quality. Nitrogen input was reduced by 50%, highlighting economic and environmental benefits (−302 kg CO2). These results show that simplified, sensor-based, on-the-go VRA is a practical and sustainable precision viticulture tool, even in small and heterogeneous vineyards typical of the Conegliano Valdobbiadene Prosecco DOCG area. Full article
16 pages, 25639 KB  
Article
Comparative Analysis of LiDAR-SLAM Systems: A Study of a Motorized Optomechanical LiDAR and an MEMS Scanner LiDAR
by Simone Fortuna, Sebastiano Chiodini, Andrea Valmorbida and Marco Pertile
Sensors 2025, 25(17), 5352; https://doi.org/10.3390/s25175352 - 29 Aug 2025
Abstract
Simultaneous Localization and Mapping (SLAM) is crucial for the safe navigation of autonomous systems. Its accuracy is not based solely on the robustness of the algorithm employed or the metrological performances of the sensor, but rather on a combination of both factors. In [...] Read more.
Simultaneous Localization and Mapping (SLAM) is crucial for the safe navigation of autonomous systems. Its accuracy is not based solely on the robustness of the algorithm employed or the metrological performances of the sensor, but rather on a combination of both factors. In this work, we present a comprehensive comparison framework for evaluating LiDAR-SLAM systems, focusing on key performance indicators including absolute trajectory error, uncertainty, number of tracked features, and computational time. Our case study compares two LiDAR-inertial SLAM configurations: one based on a motorized optomechanical scanner (the Ouster OS1) with a 360° field of view and the other based on MEMS scanners (the Livox Horizon) with a limited field of view and a non-repetitive scanning pattern. The sensors were mounted on a UGV for the experiments, where data were collected by driving the UGV along a predefined path at different speeds and angles. Despite substantial differences in field of view, detection range, and noise, both systems demonstrated comparable trajectory estimation performance, with average absolute trajectory errors of 0.25 m for the Livox-based system and 0.24 m for the Ouster-based system. These findings underscore the importance of sensor–algorithm co-design and demonstrate that even cost-effective, lower-field-of-view solutions can deliver competitive SLAM performance in real-world conditions. Full article
(This article belongs to the Special Issue Intelligent Control Systems for Autonomous Vehicles)
Show Figures

Figure 1

21 pages, 4257 KB  
Article
Repetitive DNAs and Karyotype Evolution in Phyllostomid Bats (Chiroptera: Phyllostomidae)
by Geize Aparecida Deon, Tariq Ezaz, José Henrique Forte Stornioli, Rodrigo Zeni dos Santos, Anderson José Baia Gomes, Príncia Grejo Setti, Edivaldo Herculano Correa de Oliveira, Fábio Porto-Foresti, Ricardo Utsunomia, Thomas Liehr and Marcelo de Bello Cioffi
Biomolecules 2025, 15(9), 1248; https://doi.org/10.3390/biom15091248 - 29 Aug 2025
Abstract
Bats are great models for studying repetitive DNAs due to their compact genomes and extensive chromosomal rearrangements. Here, we investigated the repetitive DNA content of two phyllostomid bat species, Artibeus lituratus (2nn = 30♀/31♂) and Carollia perspicillata (2n = 20♀/21♂), both [...] Read more.
Bats are great models for studying repetitive DNAs due to their compact genomes and extensive chromosomal rearrangements. Here, we investigated the repetitive DNA content of two phyllostomid bat species, Artibeus lituratus (2nn = 30♀/31♂) and Carollia perspicillata (2n = 20♀/21♂), both harboring a multiple XY1Y2 sex chromosome system. Satellite DNA (satDNA) libraries were isolated and characterized, revealing four and ten satDNA families in A. lituratus and C. perspicillata, respectively. These sequences, along with selected microsatellites, were in situ mapped onto chromosomes in both species and phylogenetically related taxa. SatDNAs showed strong accumulation in centromeric and subtelomeric regions, especially pericentromeric areas. Cross-species mapping with C. perspicillata-derived probes indicated terminal localization patterns in other bat species, suggesting conserved distribution. Microsatellites co-localized with 45S rDNA clusters on the neo-sex chromosomes. Additionally, genomic hybridization revealed a male-specific signal on the Y1 chromosome, pointing to potential sex-linked repetitive regions. These findings confirm that bat genomes display relatively low amounts of repetitive DNA compared to other mammals and underscore the role of these elements in genome organization and sex chromosome evolution in phyllostomid bats. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

37 pages, 2412 KB  
Systematic Review
Unlocking the Potential of the Prompt Engineering Paradigm in Software Engineering: A Systematic Literature Review
by Irdina Wanda Syahputri, Eko K. Budiardjo and Panca O. Hadi Putra
AI 2025, 6(9), 206; https://doi.org/10.3390/ai6090206 - 28 Aug 2025
Abstract
Prompt engineering (PE) has emerged as a transformative paradigm in software engineering (SE), leveraging large language models (LLMs) to support a wide range of SE tasks, including code generation, bug detection, and software traceability. This study conducts a systematic literature review (SLR) combined [...] Read more.
Prompt engineering (PE) has emerged as a transformative paradigm in software engineering (SE), leveraging large language models (LLMs) to support a wide range of SE tasks, including code generation, bug detection, and software traceability. This study conducts a systematic literature review (SLR) combined with a co-citation network analysis of 42 peer-reviewed journal articles to map key research themes, commonly applied PE methods, and evaluation metrics in the SE domain. The results reveal four prominent research clusters: manual prompt crafting, retrieval-augmented generation, chain-of-thought prompting, and automated prompt tuning. These approaches demonstrate notable progress, often matching or surpassing traditional fine-tuning methods in terms of adaptability and computational efficiency. Interdisciplinary collaboration among experts in AI, machine learning, and software engineering is identified as a key driver of innovation. However, several research gaps remain, including the absence of standardized evaluation protocols, sensitivity to prompt brittleness, and challenges in scalability across diverse SE applications. To address these issues, a modular prompt engineering framework is proposed, integrating human-in-the-loop design, automated prompt optimization, and version control mechanisms. Additionally, a conceptual pipeline is introduced to support domain adaptation and cross-domain generalization. Finally, a strategic research roadmap is presented, emphasizing future work on interpretability, fairness, and collaborative development platforms. This study offers a comprehensive foundation and practical insights to advance prompt engineering research tailored to the complex and evolving needs of software engineering. Full article
(This article belongs to the Topic Challenges and Solutions in Large Language Models)
Show Figures

Figure 1

25 pages, 2120 KB  
Review
Artificial Intelligence in Human–Robot Collaboration in the Construction Industry: A Scoping Review
by Bo Peng, Maxwell Fordjour Antwi-Afari, Bilal Manzoor, Evans Boateng, Emmanuel Nyamekye Antwi Afari and Zezhou Wu
Buildings 2025, 15(17), 3060; https://doi.org/10.3390/buildings15173060 - 27 Aug 2025
Viewed by 295
Abstract
With the gradual rise of automation and human–robot collaboration (HRC), artificial intelligence (AI) is expected to significantly change the construction industry by automating design and decision-making processes, thus improving both productivity and safety. Despite the growing research trends in AI and HRC, no [...] Read more.
With the gradual rise of automation and human–robot collaboration (HRC), artificial intelligence (AI) is expected to significantly change the construction industry by automating design and decision-making processes, thus improving both productivity and safety. Despite the growing research trends in AI and HRC, no study has synthesized the existing studies of AI in HRC in the construction industry. This paper aims to conduct a review of AI in HRC in construction and summarize the current mainstream topics, research gaps, and future research directions. A scoping review and science mapping analysis were used to explore extant literature in the studied domain and conduct keyword co-occurrence analysis, respectively. In this study, 210 relevant articles were retrieved from the Scopus database from 1993 to July 2025. The results revealed five main clusters regarding the co-occurrence of keywords. Four mainstream research topics were discussed, including (1) AI techniques and applications, (2) the use of extended reality (XR) in HRC, (3) the challenges of HRC, and (4) the application of HRC in the architecture, engineering, and construction (AEC) sector. Moreover, this study provided a detailed summary of research gaps and future research directions. These findings offer researchers and practitioners a deeper understanding of AI applications in HRC for construction case studies and serve as actionable directions to advance this field. Full article
Show Figures

Figure 1

19 pages, 11783 KB  
Article
Participation and University Teaching in La Paz: An Urban Diagnosis Through a ‘Map of Gender Insecurity’
by Sara González Álvarez and Isidoro Fasolino
Land 2025, 14(9), 1737; https://doi.org/10.3390/land14091737 - 27 Aug 2025
Viewed by 178
Abstract
This article presents the results of a participatory urban diagnosis conducted in District 2 of La Paz, Bolivia, as part of an educational cooperation project aimed at exploring the spatial and symbolic dimensions of urban insecurity. Drawing on feminist and intersectional frameworks, this [...] Read more.
This article presents the results of a participatory urban diagnosis conducted in District 2 of La Paz, Bolivia, as part of an educational cooperation project aimed at exploring the spatial and symbolic dimensions of urban insecurity. Drawing on feminist and intersectional frameworks, this research combined participatory action methods, digital surveys, and collective mapping to identify patterns of fear and exclusion in public space. The analysis revealed significant disparities in how insecurity is perceived and experienced by different social groups—especially women, Indigenous peoples, and LGTBQ+ individuals—highlighting the importance of spatial configuration, social presence, and care infrastructure in shaping everyday urban life. The project also served as a pedagogical innovation, integrating architecture students into a process of civic engagement and co-production of knowledge. The resulting ‘Map of Gender Insecurity’ contributed to local planning efforts through the “Seguras, No Valientes” initiative. While the limited representation of some groups restricts statistical generalization, the approach offers a replicable model for linking research, education, and public action in pursuit of more inclusive and safer cities. Full article
(This article belongs to the Special Issue Participatory Land Planning: Theory, Methods, and Case Studies)
Show Figures

Figure 1

15 pages, 228 KB  
Article
Co-Designing a National Family Handbook for Childhood Brain Tumor
by Melanie L. Rolfe, Evonne Miller, Liesje Donkin, Stuart Ekberg and Natalie K. Bradford
Children 2025, 12(9), 1126; https://doi.org/10.3390/children12091126 - 26 Aug 2025
Viewed by 156
Abstract
Background/Objectives: Parents report unmet information needs relating to childhood brain tumors. Existing research shows that providing information to families supports self-efficacy and well-being. The project therefore aimed to co-design resources tailored to the informational needs of families navigating childhood brain tumors in Australia. [...] Read more.
Background/Objectives: Parents report unmet information needs relating to childhood brain tumors. Existing research shows that providing information to families supports self-efficacy and well-being. The project therefore aimed to co-design resources tailored to the informational needs of families navigating childhood brain tumors in Australia. Methods: Mixed methods were used across multiple phases. A landscape analysis in Phase 1 confirmed the gap in Australian resources as well as the identification of international resources suitable to inform local solutions. Following the Double Diamond Design Framework, subsequent phases of the project aimed to discover and define the problems faced by families before developing and delivering the solution. Parents of children with brain tumors participated in a journey mapping workshop, content adaptation through feedback, and an online survey to determine the preferred delivery mode of information. Clinicians provided iterative feedback as the resource was developed and refined. Results: Nine mothers participated in journey mapping and iterative adaptation of the resource along with twelve clinicians. There were 46 respondents to the survey, which identified a preference for multi-modal delivery of information, and 23 clinical and consumer reviewers in the final revision phase. The process of adaptation is presented, providing transparency on the development of this national resource. Conclusions: The use of self-efficacy theory and co-design was pivotal in this project. Integration of concepts from self-efficacy moves beyond simply presenting information to empowering the audience to feel capable of the task ahead of them. Co-design ensured the content and tone of the resulting resource are fit-for-purpose from the perspective of both clinicians and consumers. The resource is available as a physical book, digital resource, and audiobook and disseminated through children’s hospitals, professional networks, and brain tumor support groups. Full article
(This article belongs to the Section Pediatric Hematology & Oncology)
28 pages, 7508 KB  
Article
Multiplex Imaging Mass Cytometry Reveals Prognostic Immunosuppressive Subpopulations and Macrophage-Driven Metastasis in Osteosarcoma
by Benjamin B. Gyau, Junyan Wang, Weiguo Wu, Brooks Scull, Angela M. Major, Weidong Jin, Justin M. M. Cates, John Hicks and Tsz-Kwong Man
Cancers 2025, 17(17), 2780; https://doi.org/10.3390/cancers17172780 - 26 Aug 2025
Viewed by 199
Abstract
Background: Metastasis continues to be a leading cause of mortality in osteosarcoma (OS) among pediatric and young adult populations, with few effective therapeutic options available. Despite immunotherapy advancements, its efficacy in OS is hindered by an incomplete understanding of the immunosuppressive tumor microenvironment [...] Read more.
Background: Metastasis continues to be a leading cause of mortality in osteosarcoma (OS) among pediatric and young adult populations, with few effective therapeutic options available. Despite immunotherapy advancements, its efficacy in OS is hindered by an incomplete understanding of the immunosuppressive tumor microenvironment (TME). Methods: We utilized multiplex imaging mass cytometry and phenoplexing to characterize immune and stromal cell populations within the TME of a tissue microarray comprising 51 primary OS tumors. The prognostic significance of TME cell abundance and spatial cell–cell distance was evaluated using Kaplan–Meier and Cox regression analyses. To investigate macrophage functionality in vivo, we employed orthotopic xenograft mouse models by co-injecting THP-1-derived M0 or M2 macrophages with 143B OS cells to assess their impact on tumor growth and pulmonary metastasis. Mechanisms of macrophage-mediated metastasis were explored using Luminex, ELISA, and transwell migration assays. Results: Our results showed that macrophages dominated the TME, with M0 and M2 subtypes significantly outnumbering M1 macrophages (M1) and other myeloid cells. T cells and myeloid-derived suppressor cells (MDSC) were the second and third most abundant immune populations, respectively. Among stromal cells, endothelial cells predominated over fibroblasts. While individual immunosuppressive cell populations (M2, MDSC, and Treg) showed no direct correlation with clinical outcomes, the collective abundance of M2 and MDSC was significantly associated with reduced metastasis-free survival (MFS, p = 0.0244) and recurrence-free survival (RFS, p = 0.0040). Notably, closer spatial proximity between M2 macrophages and immunosuppressive cells (p = 0.0248) or Ki-67+ cells (p = 0.0321) correlated with decreased MFS, suggesting the formation of an M2-centric immunosuppressive and pro-tumor hub. In vivo, co-injection of M2 macrophages with 143B cells significantly enhanced pulmonary metastasis (p = 0.0140). Luminex analysis identified M2-derived MIP-1α (CCL3) as a candidate chemokine driving OS cell metastatic potential. Conclusions: This study provides a high-resolution map of the OS TME, highlighting the prognostic significance of M2 and immunosuppressive cell interactions in driving metastasis, potentially through MIP-1α signaling. These findings establish a foundation for developing targeted immunotherapies to improve outcomes in metastatic OS. Full article
Show Figures

Figure 1

18 pages, 4134 KB  
Article
Stirring-Assisted In Situ Construction of Highly Dispersed MoS2/g-C3N4 Heterojunctions with Enhanced Edge Exposure for Efficient Photocatalytic Hydrogen Evolution
by Shuai Liu, Yipei Chen, Honglei Zhang, Yang Meng, Tao Wu and Guangsuo Yu
Catalysts 2025, 15(9), 808; https://doi.org/10.3390/catal15090808 - 25 Aug 2025
Viewed by 277
Abstract
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during [...] Read more.
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during synthesis significantly enhanced the uniform dispersion of MoS2 nanosheets and exposed abundant edge sites, leading to well-integrated heterojunctions with enhanced interfacial contact. Comprehensive structural and photoelectronic characterizations (XRD, SEM, TEM, EDS mapping, UV–Vis, TRPL, EIS, EPR) confirmed that the composite exhibited improved visible-light absorption, accelerated charge separation, and suppressed recombination. Under simulated solar irradiation with triethanolamine (TEOA) as a sacrificial agent, the optimized 24% MoS2/g-C3N4-S catalyst achieved a high hydrogen evolution rate of 14.33 mmol·g−1·h−1 at a catalyst loading of 3.2 mg, significantly outperforming the unstirred and pristine components, and demonstrating excellent cycling stability. Mechanistic studies revealed that the performance enhancement is attributed to the synergistic effects of Type-II heterojunction formation and edge-site-rich MoS2 co-catalysis. This work provides a scalable approach for non-noble metal interface engineering and offers insight into the design of efficient and durable photocatalysts for solar hydrogen production. Full article
Show Figures

Figure 1

23 pages, 2512 KB  
Article
Combined Effects of 1-MCP and Modified Atmosphere Packaging on Flavor Quality and Volatile Profile of Cold-Stored Strawberries Revealed by Untargeted GC-MS Analysis
by Yukang Gu, Minghui Xu, Jun Liu, Juan Kan, Man Zhang, Lixia Xiao, Xiaodong Yang, Xiaohua Qi and Chunlu Qian
Foods 2025, 14(17), 2936; https://doi.org/10.3390/foods14172936 - 22 Aug 2025
Viewed by 312
Abstract
Strawberries are highly perishable despite their popularity, as their limited shelf life compromises both freshness and market value. The study investigated the effects of 1-methylcyclopropene (1-MCP), modified atmosphere packaging (MAP), and their combined treatments on the quality and flavor of strawberries during cold [...] Read more.
Strawberries are highly perishable despite their popularity, as their limited shelf life compromises both freshness and market value. The study investigated the effects of 1-methylcyclopropene (1-MCP), modified atmosphere packaging (MAP), and their combined treatments on the quality and flavor of strawberries during cold storage and simulated shelf life. 1-MCP was applied by enclosing strawberry fruits in a hermetically sealed container and exposing them to 250 nL/L 1-MCP at 20 °C for 18 h. Three initial MAP gas compositions were tested: MAP1 (5% O2, 15% CO2, 80% N2), MAP2 (10% O2, 10% CO2, 80% N2), and MAP3 (15% O2, 5% CO2, 80% N2), with MAP1 identified as optimal based on strawberry postharvest quality metrics. The results showed that all treatments could inhibit the deterioration of strawberry quality, and the 1-MCP + MAP treatment had the best fresh-keeping effect. Untargeted Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified 85 volatile compounds, and sensory correlation analysis revealed that 1-MCP + MAP-treated strawberries maintained the highest consumer acceptability, with odor characteristics closely resembling those of pre-storage controls. Further studies demonstrated that the combined treatment uniquely suppressed the generation of fatty acid oxidation-derived volatiles while stabilizing critical aroma-active esters, thereby decelerating flavor degradation. Collectively, these findings highlight the potential of 1-MCP + MAP as a postharvest strategy to delay the postharvest senescence of strawberries and maintain their storage quality. GC-MS provided a scientific method for the flavor quality evaluation of this preservation technology. Full article
Show Figures

Figure 1

18 pages, 8498 KB  
Article
Plasma Metabolomic Profiling Reveals Systemic Alterations in a Mouse Model of Type 2 Diabetes
by Masuma Akter Brishti, Fregi Vazhappully Francis and M. Dennis Leo
Metabolites 2025, 15(9), 564; https://doi.org/10.3390/metabo15090564 - 22 Aug 2025
Viewed by 293
Abstract
Background: Type 2 diabetes (T2D), the most common form of diabetes, is associated with a significantly elevated risk of cardiovascular and cerebrovascular complications. However, circulating metabolic signatures that reliably predict the transition to insulin resistance, and are potentially linked to increased vascular risk, [...] Read more.
Background: Type 2 diabetes (T2D), the most common form of diabetes, is associated with a significantly elevated risk of cardiovascular and cerebrovascular complications. However, circulating metabolic signatures that reliably predict the transition to insulin resistance, and are potentially linked to increased vascular risk, remain incompletely characterized. Rodent models, particularly those induced by a high-fat diet (HFD) combined with low-dose streptozotocin (STZ), are widely used to study the progression of T2D. However, the systemic metabolic shifts associated with this model, especially at the plasma level, are poorly defined. Methods: In this study, we performed untargeted liquid chromatography–mass spectrometry (LC-MS)-based metabolomic profiling on plasma samples from control, HFD-only (obese, insulin-sensitive), and HFD + STZ (obese, insulin-resistant) C57BL/6 mice. Results: In the HFD + STZ cohort, plasma profiles showed a global shift toward lipid classes; depletion of aromatic and branched-chain amino acids (BCAAs); accumulation of phenylalanine-derived co-metabolites, consistent with gut–liver axis dysregulation; elevations in glucose, fructose-6-phosphate, and nucleoside catabolites, indicating impaired glucose handling and heightened nucleotide turnover; increased free fatty acids, reflecting membrane remodeling and lipotoxic stress; and higher cAMP, thyroxine, hydrocortisone, and uric acid, consistent with endocrine and redox imbalance. By contrast, HFD-only mice exhibited elevations in aromatic amino acids and BCAAs relative to controls, a pattern compatible with early obesity-associated adaptation while insulin signaling remained partially preserved. KEGG analysis revealed disturbances in carbohydrate metabolism, amino acid degradation, nucleotide turnover, and hormone-related pathways, and HMDB mapping linked these changes to T2D, obesity, heart failure, and renal dysfunction. Conclusion: Collectively, these findings delineate insulin resistance-specific plasma signatures of metabolic inflexibility and inflammatory stress in the HFD + STZ model, distinguishing it from HFD alone and supporting its utility for mechanistic studies and biomarker discovery. Importantly, this plasma metabolomics study shows that insulin-sensitive and insulin-resistant states exhibit distinct variation in circulating metabolites and cardiovascular risk factors, underscoring the translational value of plasma profiling. Full article
(This article belongs to the Topic Animal Models of Human Disease 3.0)
Show Figures

Graphical abstract

29 pages, 28833 KB  
Article
Mineralization Styles in the Orogenic (Quartz Vein) Gold Deposits of the Eastern Kazakhstan Gold Belt: Implications for Regional Prospecting
by Dmitry L. Konopelko, Valeriia S. Zhdanova, Sergei Y. Stepanov, Ekaterina S. Sidorova, Sergei V. Petrov, Aleksandr K. Kozin, Emil S. Aliyev, Vasiliy A. Saltanov, Mikhail A. Kalinin, Andrey V. Korneev and Reimar Seltmann
Minerals 2025, 15(8), 885; https://doi.org/10.3390/min15080885 - 21 Aug 2025
Viewed by 328
Abstract
The Eastern Kazakhstan Gold Belt is a major black-shale-hosted gold province in Central Asia where the main types of deposits comprise mineralized zones with auriferous sulfides (micro- and nano-inclusions of gold and refractory gold) and quartz veins with visible gold. The quartz vein [...] Read more.
The Eastern Kazakhstan Gold Belt is a major black-shale-hosted gold province in Central Asia where the main types of deposits comprise mineralized zones with auriferous sulfides (micro- and nano-inclusions of gold and refractory gold) and quartz veins with visible gold. The quartz vein deposits are economically less important but may potentially represent the upper parts of bigger ore systems concealed at depth. In this work, the mineralogy of the quartz vein deposits and related wall rock alteration zones was studied using microscopy and SEM-EDS analysis, and the geochemical dispersion of the ore elements in primary alteration haloes was documented utilizing spatial distribution maps and statistical treatment methods. The studied auriferous quartz veins are classified as epizonal black-shale-hosted orogenic gold deposits. The veins generally have linear shapes with an average width of ca. 1 m and length up to 150 m and contain high-grade native gold with minor amounts of sulfides. In supergene oxidation zones, the native gold is closely associated with Fe-hydroxide minerals cementing brecciated zones within the veins. The auriferous quartz veins are usually enclosed by the wall rock alteration envelopes, where two types of alteration are distinguished. Proximal phyllic alteration (sericite-albite-pyrite ± chlorite, Fe-Mg-Ca carbonates, arsenopyrite, and pyrrhotite) develops as localized alteration envelopes, and pervasive carbonation accompanied by chlorite ± sericite and albite is the dominant process in the distal alteration zones. The rocks within the alteration zones are enriched in Au and chalcophile elements, and three groups of chemical elements showing significant positive mutual correlation have been identified: (1) an early geochemical assemblage includes V, P, and Co (±Ni), which are the chemical elements characteristic for black shale formations, (2) association of Au, As, and other chalcophile elements is distinctly overprinting, and manifests the main stage of sulfide-hosted Au mineralization, and (3) association of Bi and Hg (±Sb and U) includes the chemical elements that are mobile at low temperatures, and can be explained by activity of the late-stage hydrothermal or supergene fluids. The chalcophile elements show negative slopes from proximal to distal alteration zones and form overlapping positive anomalies on spatial distribution mono-elemental maps. Thus, the geochemical methods can provide useful tools to delineate the ore elemental associations and to outline reproducible anomalies for subsequent regional gold prospecting. Full article
Show Figures

Figure 1

18 pages, 4329 KB  
Article
Semi-Automated Mapping of Pockmarks from MBES Data Using Geomorphometry and Machine Learning-Driven Optimization
by Vasileios Giannakopoulos, Peter Feldens and Elias Fakiris
Remote Sens. 2025, 17(16), 2917; https://doi.org/10.3390/rs17162917 - 21 Aug 2025
Viewed by 419
Abstract
Accurate mapping of seafloor morphological features, such as pockmarks, is essential for marine spatial planning, geological hazard assessment, and environmental monitoring. Traditional manual delineation methods are often subjective and inefficient when applied to large, high-resolution bathymetric datasets. This study presents a semi-automated workflow [...] Read more.
Accurate mapping of seafloor morphological features, such as pockmarks, is essential for marine spatial planning, geological hazard assessment, and environmental monitoring. Traditional manual delineation methods are often subjective and inefficient when applied to large, high-resolution bathymetric datasets. This study presents a semi-automated workflow based on the CoMMa (Confined Morphologies Mapping) toolbox to classify pockmarks in Flensburg Fjord, Germany–Denmark. Initial detection employed the Bathymetric Position Index (BPI) with intentionally permissive parameters to ensure high recall of morphologically diverse features. Morphometric descriptors were then extracted and used to train a Random Forest classifier, enabling noise reduction and refinement of overinclusive delineations. Validation against expert-derived mappings showed that the model achieved an overall classification accuracy of 86.16%, demonstrating strong performance across the validation area. These findings highlight how integrating a GIS-based geomorphometry toolbox with machine learning yields a reproducible, objective, and scalable approach to seabed mapping, supporting decision-making processes and advancing standardized methodologies in marine geomorphology. Full article
(This article belongs to the Special Issue Underwater Remote Sensing: Status, New Challenges and Opportunities)
Show Figures

Figure 1

Back to TopTop