Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (470)

Search Parameters:
Keywords = CNS Injury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1743 KB  
Review
Dynamic Intercellular Networks in the CNS: Mechanisms of Crosstalk from Homeostasis to Neurodegeneration
by Yutian Zheng, Rui Huang and Jie Pan
Int. J. Mol. Sci. 2025, 26(17), 8155; https://doi.org/10.3390/ijms26178155 - 22 Aug 2025
Viewed by 120
Abstract
Intercellular communication in the central nervous system (CNS) is essential for maintaining neural function and coordinating responses to injury or disease. With recent advances in single-cell and spatial transcriptomics, a growing body of research has revealed that this communication is highly dynamic, shifting [...] Read more.
Intercellular communication in the central nervous system (CNS) is essential for maintaining neural function and coordinating responses to injury or disease. With recent advances in single-cell and spatial transcriptomics, a growing body of research has revealed that this communication is highly dynamic, shifting across states of health, aging, demyelination, and neurodegeneration. In this review, we synthesize the current findings on intercellular communication networks involving neurons, astrocytes, microglia, oligodendrocytes, and other glial populations in the CNS across four major states: healthy homeostasis, aging, demyelinating diseases, and Alzheimer’s disease (AD). We focus on how changes in intercellular communication contribute to the maintenance or disruption of CNS integrity and function. Mechanistic insights into these signaling networks have revealed new molecular targets and pathways that may be exploited for therapeutic intervention. By comparing the intercellular signaling mechanisms across different disease contexts, we underscore the importance of CNS crosstalk not only as a hallmark of disease progression, but also as a potential gateway for precision therapy. Full article
(This article belongs to the Special Issue Role of Glia in Human Health and Disease)
Show Figures

Figure 1

23 pages, 1324 KB  
Review
Engineered Healing: Synergistic Use of Schwann Cells and Biomaterials for Spinal Cord Regeneration
by Theo Andriot, Mousumi Ghosh and Damien D. Pearse
Int. J. Mol. Sci. 2025, 26(16), 7922; https://doi.org/10.3390/ijms26167922 - 16 Aug 2025
Viewed by 611
Abstract
Spinal cord injury (SCI) remains a devastating neurological condition characterized by loss of sensory, motor and autonomic function. Despite decades of research, no FDA-approved regenerative therapies currently exist to restore lost function following SCI. Schwann cells (SCs) support axon regeneration, remyelination, and neuroprotection [...] Read more.
Spinal cord injury (SCI) remains a devastating neurological condition characterized by loss of sensory, motor and autonomic function. Despite decades of research, no FDA-approved regenerative therapies currently exist to restore lost function following SCI. Schwann cells (SCs) support axon regeneration, remyelination, and neuroprotection after SCI, with their therapeutic potential validated in clinical trials demonstrating safe and feasible transplantation in humans. Although SC transplantation has shown promising results, challenges remain, including modest graft survival, limited host integration, and restricted migration that collectively contribute to constrain efficacy. To address these limitations, biomaterial scaffolds have been explored as synergistic platforms to enhance SC delivery and function. When combined with natural or synthetic biomaterials such as hydrogels, nanofiber scaffolds, or ECM-mimetic matrices, SCs demonstrate improved survival, retention, spatial distribution, and regenerative activity. The intrinsic regenerative properties of SCs, first demonstrated in models of peripheral nerve injury, make them particularly well-suited for neural repair of the central nervous system (CNS) compared to other cell types and their effectiveness can be enhanced synergistically when combined with biomaterials. These constructs not only provide structural support but also modulate the lesion microenvironment, enhance axon growth and improve SC integration with host tissue. Combinatorial approaches incorporating biomaterials with SCs are emerging as next-generation strategies to optimize repair for clinical translation. This review focuses on current progress in SC-based therapies combined with biomaterials, highlighting key preclinical advances, clinical translation efforts, and the path forward toward effective regenerative interventions for SCI. Full article
(This article belongs to the Special Issue Biomedical Polymer Materials: Design, Synthesis or Applications)
Show Figures

Graphical abstract

15 pages, 6702 KB  
Article
CREB5 Promotes the Proliferation of Neural Stem/Progenitor Cells in the Rat Subventricular Zone via the Regulation of NFIX Expression
by Tao Yu, Hanyue Zhang, Chuang Zhang, Guorui Ma, Tu Shen, Yan Luan and Zhichao Zhang
Cells 2025, 14(16), 1240; https://doi.org/10.3390/cells14161240 - 12 Aug 2025
Viewed by 402
Abstract
Neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) of the central nervous system (CNS) are critical for tissue repair following injury or disease. These cells retain the capacity to proliferate, migrate, and differentiate into neurons, astrocytes, and oligodendrocytes, making them a promising [...] Read more.
Neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) of the central nervous system (CNS) are critical for tissue repair following injury or disease. These cells retain the capacity to proliferate, migrate, and differentiate into neurons, astrocytes, and oligodendrocytes, making them a promising therapeutic target for neurodegenerative disorders and traumatic injuries. However, the molecular mechanisms regulating their proliferation remain incompletely understood. This study investigates the role of cAMP responsive element-binding protein 5 (CREB5) in the proliferation of rat SVZ-derived NSPCs and elucidates its regulatory mechanism. Using RNA interference, we demonstrated that CREB5 knockdown significantly reduced cell viability, neurosphere formation capacity, and the number of proliferating cells (BrdU- and Ki-67-positive cells) both in vitro and in vivo. In contrast, CREB5 overexpression played opposing roles in cell proliferation. Additionally, alteration of CREB5 expression did not affect apoptosis, as assessed by TUNEL staining, indicating a specific role in proliferation rather than in cell death. Mechanistically, we identified Nuclear Factor One X (NFIX) as a transcriptional target of CREB5. CREB5 binds to the AP-1 site in the NFIX promoter, enhancing its expression. CREB5 knockdown inhibited NFIX expression, while CREB5 overexpression exerted the opposite function. ChIP and luciferase reporter assays further confirmed that CREB5 directly regulates NFIX promoter activity. More importantly, alteration of NFIX expression could reverse the effect of CREB5 on NSPC proliferation. These findings highlight CREB5 as a key regulator of NSPC proliferation through its interaction with NFIX, providing a potential therapeutic target for stem cell-based treatments of CNS disorders. Full article
(This article belongs to the Special Issue Advances in the Regulation of Proteins and Genes for Stem Cells)
Show Figures

Graphical abstract

16 pages, 745 KB  
Review
Bidirectional Interplay Between Microglia and Mast Cells
by Szandra Lakatos and Judit Rosta
Int. J. Mol. Sci. 2025, 26(15), 7556; https://doi.org/10.3390/ijms26157556 - 5 Aug 2025
Viewed by 367
Abstract
Microglia, the brain’s resident innate immune cells, play a fundamental role in maintaining neural homeostasis and mediating responses to injury or infection. Upon activation, microglia undergo morphological and functional changes, including phenotypic switching between pro- and anti-inflammatory types and the release of different [...] Read more.
Microglia, the brain’s resident innate immune cells, play a fundamental role in maintaining neural homeostasis and mediating responses to injury or infection. Upon activation, microglia undergo morphological and functional changes, including phenotypic switching between pro- and anti-inflammatory types and the release of different inflammatory mediators. These processes contribute to neuroprotection and the pathogenesis of various central nervous system (CNS) disorders. Mast cells, although sparsely located in the brain, exert a significant influence on neuroinflammation through their interactions with microglia. Through degranulation and secretion of different mediators, mast cells disrupt the blood–brain barrier and modulate microglial responses, including alteration of microglial phenotypes. Notably, mast cell-derived factors, such as histamine, interleukins, and tryptase, activate microglia through various pathways including protease-activated receptor 2 and purinergic receptors. These interactions amplify inflammatory cascades via various signaling pathways. Previous studies have revealed an exceedingly complex crosstalk between mast cells and microglia suggesting a bidirectional regulation of CNS immunity, implicating their cooperation in both neurodegenerative progression and repair mechanisms. Here, we review some of the diverse communication pathways involved in this complex interplay. Understanding this crosstalk may offer novel insights into the cellular dynamics of neuroinflammation and highlight potential therapeutic targets for a variety of CNS disorders. Full article
Show Figures

Figure 1

24 pages, 6639 KB  
Article
CNS Axon Regeneration in the Long Primary Afferent System in E15/E16 Hypoxic-Conditioned Fetal Rats: A Thrust-Driven Concept
by Frits C. de Beer and Harry W. M. Steinbusch
Anatomia 2025, 4(3), 12; https://doi.org/10.3390/anatomia4030012 - 1 Aug 2025
Viewed by 267
Abstract
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells [...] Read more.
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells and their effective medical applications has intensified research into spinal cord regeneration. However, despite these advances, the impact of clinical trials involving spinal cord-injured (SCI) patients remains disappointingly low. Long-distance regeneration has yet to be proven. Methods: Our study involved a microsurgical dorsal myelotomy in fetal rats. The development of pioneering long primary afferent axons during early gestation was examined long after birth. Results: A single cut triggered the intrinsic ability of the dorsal root ganglion (DRG) neurons to reprogram. Susceptibility to hypoxia caused the axons to stop developing. However, the residual axonal outgrowth sheds light on the intriguing temporal and spatial events that reveal long-distance CNS regeneration. The altered phenotypes displayed axons of varying lengths and different features, which remained visible throughout life. The previously designed developmental blueprint was crucial for interpreting these enigmatic features. Conclusions: This research into immaturity enabled the exploration of the previously impenetrable domain of early life and the identification of a potential missing link in CNS regeneration research. Central axon regeneration appeared to occur much faster than is generally believed. The paradigm provides a challenging approach for exhaustive intrauterine reprogramming. When the results demonstrate pre-clinical effectiveness in CNS regeneration research, the transformational impact may ultimately lead to improved outcomes for patients with spinal cord injuries. Full article
(This article belongs to the Special Issue From Anatomy to Clinical Neurosciences)
Show Figures

Graphical abstract

21 pages, 719 KB  
Review
Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease
by Taishi Honda, Masahito Kawabori and Miki Fujimura
Int. J. Mol. Sci. 2025, 26(15), 7405; https://doi.org/10.3390/ijms26157405 - 31 Jul 2025
Viewed by 665
Abstract
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating [...] Read more.
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes—small vesicles enclosed by a lipid bilayer, secreted by stem cells—as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood–brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach. Full article
(This article belongs to the Special Issue Stem Cells Research: Advancing Science and Medicine)
Show Figures

Graphical abstract

26 pages, 5080 KB  
Review
Reviewing Breakthroughs and Limitations of Implantable and External Medical Device Treatments for Spinal Cord Injury
by Tooba Wallana, Konstantinos Banitsas and Wamadeva Balachandran
Appl. Sci. 2025, 15(15), 8488; https://doi.org/10.3390/app15158488 - 31 Jul 2025
Viewed by 581
Abstract
Spinal cord injury (SCI) is a major disability that, to this day, does not have a permanent cure. The spinal cord extends caudally through the body structure of the vertebral column and is part of the central nervous system (CNS). The spinal cord [...] Read more.
Spinal cord injury (SCI) is a major disability that, to this day, does not have a permanent cure. The spinal cord extends caudally through the body structure of the vertebral column and is part of the central nervous system (CNS). The spinal cord enables neural communication and motor coordination, so injuries can disrupt sensation, movement, and autonomic functions. Mechanical and traumatic damage to the spinal cord causes lesions to the nerves, resulting in the disruption of relayed messages to the extremities. Various forms of treatment for the spinal cord include functional electrical stimulation (FES), epidural electrical stimulation (EES), ‘SMART’ devices, exoskeleton and robotic systems, transcranial magnetic stimulation, and neuroprostheses using AI for the brain–computer interface. This research is going to analyse and review these current treatment methods for spinal cord injury and identify the current gaps and limitations in these, such as long-term biocompatibility, wireless adaptability, cost, regulatory barriers, and risk of surgery. Future advancements should work on implementing wireless data logging with AI algorithms to increase SCI device adaptability, as well as maintaining regulatory and health system integration. Full article
Show Figures

Figure 1

23 pages, 8937 KB  
Article
Neuro-Cells Mitigate Amyloid Plaque Formation and Behavioral Deficits in the APPswe/PS1dE9 Model of Alzheimer Disease While Also Reducing IL-6 Production in Human Monocytes
by Johannes de Munter, Kirill Chaprov, Ekkehard Lang, Kseniia Sitdikova, Erik Ch. Wolters, Evgeniy Svirin, Aliya Kassenova, Andrey Tsoy, Boris W. Kramer, Sholpan Askarova, Careen A. Schroeter, Daniel C. Anthony and Tatyana Strekalova
Cells 2025, 14(15), 1168; https://doi.org/10.3390/cells14151168 - 29 Jul 2025
Viewed by 395
Abstract
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in [...] Read more.
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in models of central nervous system (CNS) injury and neurodegeneration. Here, we studied the effects of NC in APPswe/PS1dE9 mice, an AD mouse model. Twelve-month-old APPswe/PS1dE9 mice or their wild-type littermates were injected with NC or vehicle into the cisterna magna. Five to six weeks post-injection, cognitive, locomotor, and emotional behaviors were assessed. The brain was stained for amyloid plaque density using Congo red, and for astrogliosis using DAPI and GFAP staining. Gene expression of immune activation markers (Il-1β, Il-6, Cd45, Tnf) and plasticity markers (Tubβ3, Bace1, Trem2, Stat3) was examined in the prefrontal cortex. IL-6 secretion was measured in cultured human monocytes following endotoxin challenge and NC treatment. Untreated APPswe/PS1dE9 mice displayed impaired learning in the conditioned taste aversion test, reduced object exploration, and anxiety-like behavior, which were improved in the NC-treated mutants. NC treatment normalized the expression of several immune and plasticity markers and reduced the density of GFAP-positive cells in the hippocampus and thalamus. NC treatment decreased amyloid plaque density in the hippocampus and thalamus, targeting plaques of <100 μm2. Additionally, NC treatment suppressed IL-6 secretion by human monocytes. Thus, NC treatment alleviated behavioral deficits and reduced amyloid plaque formation in APPswe/PS1dE9 mice, likely via anti-inflammatory mechanisms. The reduction in IL-6 production in human monocytes further supports the potential of NC therapy for the treatment of AD. Full article
Show Figures

Figure 1

31 pages, 2317 KB  
Review
Roles of Ion Channels in Oligodendrocyte Precursor Cells: From Physiology to Pathology
by Jianing Wang, Yu Shen, Ping Liao, Bowen Yang and Ruotian Jiang
Int. J. Mol. Sci. 2025, 26(15), 7336; https://doi.org/10.3390/ijms26157336 - 29 Jul 2025
Viewed by 585
Abstract
Oligodendrocyte precursor cells (OPCs) are a distinct and dynamic glial population that retain proliferative and migratory capacities throughout life. While traditionally recognized for differentiating into oligodendrocytes (OLs) and generating myelin to support rapid nerve conduction, OPCs are now increasingly appreciated for their diverse [...] Read more.
Oligodendrocyte precursor cells (OPCs) are a distinct and dynamic glial population that retain proliferative and migratory capacities throughout life. While traditionally recognized for differentiating into oligodendrocytes (OLs) and generating myelin to support rapid nerve conduction, OPCs are now increasingly appreciated for their diverse and non-canonical roles in the central nervous system (CNS), including direct interactions with neurons. A notable feature of OPCs is their expression of diverse ion channels that orchestrate essential cellular functions, including proliferation, migration, and differentiation. Given their widespread distribution across the CNS, OPCs are increasingly recognized as active contributors to the development and progression of various neurological disorders. This review aims to present a detailed summary of the physiological and pathological functions of ion channels in OPCs, emphasizing their contribution to CNS dysfunction. We further highlight recent advances suggesting that ion channels in OPCs may serve as promising therapeutic targets across a broad range of disorders, including, but not limited to, multiple sclerosis (MS), spinal cord injury, amyotrophic lateral sclerosis (ALS), psychiatric disorders, Alzheimer’s disease (AD), and neuropathic pain (NP). Finally, we discuss emerging therapeutic strategies targeting OPC ion channel function, offering insights into potential future directions in the treatment of CNS diseases. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

37 pages, 8221 KB  
Review
Epigenetic Profiling of Cell-Free DNA in Cerebrospinal Fluid: A Novel Biomarker Approach for Metabolic Brain Diseases
by Kyle Sporn, Rahul Kumar, Kiran Marla, Puja Ravi, Swapna Vaja, Phani Paladugu, Nasif Zaman and Alireza Tavakkoli
Life 2025, 15(8), 1181; https://doi.org/10.3390/life15081181 - 25 Jul 2025
Viewed by 752
Abstract
Due to their clinical heterogeneity, nonspecific symptoms, and the limitations of existing biomarkers and imaging modalities, metabolic brain diseases (MBDs), such as mitochondrial encephalopathies, lysosomal storage disorders, and glucose metabolism syndromes, pose significant diagnostic challenges. This review examines the growing potential of cell-free [...] Read more.
Due to their clinical heterogeneity, nonspecific symptoms, and the limitations of existing biomarkers and imaging modalities, metabolic brain diseases (MBDs), such as mitochondrial encephalopathies, lysosomal storage disorders, and glucose metabolism syndromes, pose significant diagnostic challenges. This review examines the growing potential of cell-free DNA (cfDNA) derived from cerebrospinal fluid (CSF) epigenetic profiling as a dynamic, cell-type-specific, minimally invasive biomarker approach for MBD diagnosis and monitoring. We review important technological platforms and their use in identifying CNS-specific DNA methylation patterns indicative of neuronal injury, neuroinflammation, and metabolic reprogramming, including cfMeDIP-seq, enzymatic methyl sequencing (EM-seq), and targeted bisulfite sequencing. By synthesizing current findings across disorders such as MELAS, Niemann–Pick disease, Gaucher disease, GLUT1 deficiency syndrome, and diabetes-associated cognitive decline, we highlight the superior diagnostic and prognostic resolution offered by CSF cfDNA methylation signatures relative to conventional CSF markers or neuroimaging. We also address technical limitations, interpretive challenges, and translational barriers to clinical implementation. Ultimately, this review explores CSF cfDNA epigenetic analysis as a liquid biopsy modality. The central objective is to assess whether epigenetic profiling of CSF-derived cfDNA can serve as a reliable and clinically actionable biomarker for improving the diagnosis and longitudinal monitoring of metabolic brain diseases. Full article
(This article belongs to the Special Issue Cell-Free DNA as a Biomarker in Metabolic Diseases)
Show Figures

Figure 1

16 pages, 1871 KB  
Article
Integrative Constraint-Based Modeling and Proteomics Uncover Astrocytic Metabolic Adaptations to the Post-TBI Microenvironment
by Kelsey A. Wilson, Caiti-Erin Talty, Brian C. Parker and Pamela J. VandeVord
Int. J. Mol. Sci. 2025, 26(13), 6456; https://doi.org/10.3390/ijms26136456 - 4 Jul 2025
Viewed by 428
Abstract
Traumatic brain injury (TBI) is a major neurological condition affecting millions of individuals each year. Mild TBI (mTBI) manifests differently, with some individuals experiencing persistent, debilitating symptoms while others recover more rapidly. Despite its classification as “mild,” mTBI leads to both short- and [...] Read more.
Traumatic brain injury (TBI) is a major neurological condition affecting millions of individuals each year. Mild TBI (mTBI) manifests differently, with some individuals experiencing persistent, debilitating symptoms while others recover more rapidly. Despite its classification as “mild,” mTBI leads to both short- and long-term neurological effects, many of which occur due to functional changes in the brain. TBI-induced environmental changes within the brain play a critical role in shaping these functional outcomes. The importance of astrocytes in maintaining central nervous system (CNS) homeostasis has been increasingly recognized for their pivotal role in the brain’s response to TBI. Previous studies showed significant TBI-associated metabolic dysregulations. Therefore, we sought to analyze how astrocytes might adapt to persistent metabolic stressors in the post-injury microenvironment and identify injury-induced shifts occurring in vivo that may contribute to chronic metabolic dysfunction. We used an astrocyte-specific genome-scale metabolic model that allowed for the input of biologically relevant uptake rates corresponding to healthy astrocytes to analyze how the activity of metabolic pathways differed in hypoxic and acidic conditions. Additionally, these fluxes were integrated with mass spectrometry-based proteomics from male Sprague-Dawley rats subjected to mTBI to identify chronic adaptive neural responses post-injury. Comparison of modeled metabolic fluxes and experimental proteomic data demonstrated remarkable alignment, with both predicting significant changes in key metabolic processes including glycolysis, oxidative phosphorylation, the TCA cycle, and the Pentose Phosphate Pathway. These overlapping signatures may represent core survival strategies, offering insight into metabolic priorities and potentially serving as biomarkers of injury adaptation or recovery capacity. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease: 2nd Edition)
Show Figures

Figure 1

22 pages, 4242 KB  
Review
Extracellular Vesicle Metabolomics Holds Promise for Adult Axon Regeneration
by Maria D. Cabrera Gonzalez, Jackson Watson, Laura Leal, Isabella Moceri, Camille Plummer, Biraj Mahato, Abdelrahman Y. Fouda and Sanjoy K. Bhattacharya
Metabolites 2025, 15(7), 454; https://doi.org/10.3390/metabo15070454 - 4 Jul 2025
Viewed by 932
Abstract
Extracellular vesicles (EVs) are bilayer lipid membrane particles that are released by every cell type. These secretions are further classified as exosomes, ectosomes, and microvesicles. They contain biomolecules (RNAs, proteins, metabolites, and lipids) with the ability to modulate various biological processes and have [...] Read more.
Extracellular vesicles (EVs) are bilayer lipid membrane particles that are released by every cell type. These secretions are further classified as exosomes, ectosomes, and microvesicles. They contain biomolecules (RNAs, proteins, metabolites, and lipids) with the ability to modulate various biological processes and have been shown to play a role in intercellular communication and cellular rejuvenation. Various studies suggest exosomes and/or microvesicles as a potential platform for drug delivery. EVs may deliver lipids and nucleotides directly to an injury site in an axon, promoting growth cone stabilization and membrane expansion as well as repair, thus positively modulating adult axon regeneration. In this review, we will provide a perspective on the metabolite composition of EVs in adult axonal regeneration relevant to the central nervous system (CNS), specifically that pertaining to the optic nerve. We will present an overview of the methods for isolation, enrichment, omics data analysis and quantification of extracellular vesicles with the goal of providing direction for future studies relevant to axon regeneration. We will also include current resources for multi-omics data integration relevant to extracellular vesicles from diverse cell types. Full article
Show Figures

Graphical abstract

19 pages, 3584 KB  
Article
PRV Induces Neurological Inflammatory Injury by Activating Necroptosis of Brain Tissue
by Chunzi Peng, Jinwu Zhang, Changxu Wu, Danning Liu, Jing Liang, Maojie Lv, Shisen Yang, Xiaoning Li, Yingyi Wei, Hailan Chen, Jiakang He, Tingjun Hu and Meiling Yu
Microorganisms 2025, 13(7), 1531; https://doi.org/10.3390/microorganisms13071531 - 30 Jun 2025
Viewed by 492
Abstract
Pseudorabies virus (PRV) can infect a wide range of animal species, including swine and rodents. Infection in pigs is associated with significant economic losses in the global pork industry and is characterized by acute, often fatal disease, as well as central nervous system [...] Read more.
Pseudorabies virus (PRV) can infect a wide range of animal species, including swine and rodents. Infection in pigs is associated with significant economic losses in the global pork industry and is characterized by acute, often fatal disease, as well as central nervous system (CNS) invasion, which leads to neurological manifestations. Although PRV replication has been extensively characterized in certain murine neuronal cell lines such as Neuro-2a, the mechanisms underlying PRV-induced neuroinflammatory injury and necroptosis remain largely unclear. In this study, Kunming mice and mouse astrocytes (C8-D1A) were infected with PRV-GXLB-2013 at different doses to evaluate neurological injury and inflammatory responses. Given that the NF-κB/MLKL signaling pathway was found to be activated during PRV infection, a selective MLKL inhibitor, necrosulfonamide (NSA), was applied to investigate the role of necroptosis in PRV-induced neuroinflammatory damage. Mice infected with higher viral doses showed increased mortality, severe neurological symptoms, elevated brain inflammation, and pathological changes. In C8-D1A cells, PRV infection significantly upregulated inflammatory cytokines and key components of the NF-κB/MLKL pathway. Importantly, NSA treatment markedly reduced these inflammatory responses, mitochondrial damage, and cellular necrosis. Collectively, these findings suggest that PRV infection triggers neuroinflammatory injury through the activation of necroptosis and the NF-κB/MLKL signaling pathway. This study provides novel mechanistic insights into PRV-induced neurological damage and highlights potential therapeutic targets for intervention. Full article
(This article belongs to the Special Issue The Host Response to Animal Virus Infection)
Show Figures

Figure 1

24 pages, 1874 KB  
Review
Histone Acetylation in Central and Peripheral Nervous System Injuries and Regeneration: Epigenetic Dynamics and Therapeutic Perspectives
by Georgina Palomés-Borrajo, Xavier Navarro and Clara Penas
Int. J. Mol. Sci. 2025, 26(13), 6277; https://doi.org/10.3390/ijms26136277 - 29 Jun 2025
Viewed by 764
Abstract
Traumatic injuries to the peripheral (PNS) and central nervous systems (CNS) trigger distinct regenerative responses, with the PNS displaying limited regenerative capacity and the CNS remaining largely refractory. Recent research highlights the role of epigenetic modifications, particularly histone acetylation, in modulating the gene [...] Read more.
Traumatic injuries to the peripheral (PNS) and central nervous systems (CNS) trigger distinct regenerative responses, with the PNS displaying limited regenerative capacity and the CNS remaining largely refractory. Recent research highlights the role of epigenetic modifications, particularly histone acetylation, in modulating the gene expression programs that drive axonal regeneration. This review synthesizes current findings on post-translational histone modifications, focusing on histone acetyltransferases (HATs), histone deacetylases (HDACs), and epigenetic readers, in addition to their impact on neuronal and non-neuronal cells following injury. While HATs like p300/CBP and PCAF promote the expression of regeneration-associated genes, HDAC inhibition has been shown to facilitate neurite outgrowth, neuroprotection, and functional recovery in both PNS and CNS models. However, HDAC3, HDAC5, and HDAC6 demonstrate context- and cell-type-specific roles in both promoting and limiting regenerative processes. The review also highlights cell-specific findings that have been scarcely covered in the previous literature. Thus, the immunomodulatory roles of epigenetic regulators in microglia and macrophages, their involvement in remyelination via Schwann cells and oligodendrocytes, and their impact on astrocyte function are within the scope of this review. Closely considering cell-context specificity is critical, as some targets can exert opposite effects depending on the cell type involved. This represents a major challenge for current pharmacological therapies, which often lack precision. This complexity underscores the need to develop strategies that allow for cell-specific delivery or target regulators with converging beneficial effects across cell types. Such approaches may enhance regenerative outcomes after CNS or PNS injury. Full article
(This article belongs to the Special Issue Plasticity of the Nervous System after Injury: 2nd Edition)
Show Figures

Figure 1

20 pages, 864 KB  
Review
Refractory Nausea and Vomiting Due to Central Nervous System Injury: A Focused Review
by Stefan Stoica, Christopher Hogge and Brett James Theeler
Life 2025, 15(7), 1021; https://doi.org/10.3390/life15071021 - 27 Jun 2025
Viewed by 1008
Abstract
The area postrema (AP) is a circumventricular organ (CVO) at the base of the fourth ventricle. It has a crucial role in regulating nausea and vomiting due to its unique blood–brain barrier (BBB)-permeability and extensive neural connectivity. Here, we present two cases of [...] Read more.
The area postrema (AP) is a circumventricular organ (CVO) at the base of the fourth ventricle. It has a crucial role in regulating nausea and vomiting due to its unique blood–brain barrier (BBB)-permeability and extensive neural connectivity. Here, we present two cases of area postrema syndrome (APS), a rare condition of intractable nausea and vomiting resulting from direct AP injury. Our cases each occurred in the context of infratentorial neoplasms or their treatment. Using these cases as a framework, we review the literature on central emetic pathways and propose a treatment algorithm for managing refractory nausea and vomiting of central origin. We also highlight other targets beyond conventional serotonergic, dopaminergic, or histaminergic blockade and their roles in central hyperemesis. Our literature review suggests that APS is due to the disruption of the baseline inhibitory tone of outgoing AP signals. When other options fail, our algorithm culminates in the off-label use of combined serotonergic and neurokinin-1 blockade, which is otherwise used to manage chemotherapy-induced nausea and vomiting (CINV). We believe multimodal CNS receptor blockade is efficacious in APS because it addresses the underlying central neural dysregulation, rather than solely targeting peripheral emetic triggers. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

Back to TopTop