Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = CMSX-4 superalloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6320 KiB  
Article
Effect of Ni-Based Superalloy on the Composition and Lifetime of Aluminide Coatings
by Maryana Zagula-Yavorska
Materials 2025, 18(13), 3138; https://doi.org/10.3390/ma18133138 - 2 Jul 2025
Viewed by 375
Abstract
Aluminide coatings on nickel-based superalloys were synthesized via a high-temperature “clean” low-activity vapor-phase process. This process is environmentally friendly and meets manufacturers’ environmental protection requirements. Hence, it fulfils the Industry 4.0 requirements, where the reduction of environmental impact in the industrial sector is [...] Read more.
Aluminide coatings on nickel-based superalloys were synthesized via a high-temperature “clean” low-activity vapor-phase process. This process is environmentally friendly and meets manufacturers’ environmental protection requirements. Hence, it fulfils the Industry 4.0 requirements, where the reduction of environmental impact in the industrial sector is a key issue. Surface morphology, cross-section microstructure, and phase composition of the coatings were studied and compared by using an optical microscope and a scanning electron microscope (SEM) equipped with an energy dispersive spectroscope (EDS) and X-ray diffraction (XRD). Bare and coated superalloys’ lifetime was evaluated and compared via air exposure at 1100 °C. High-temperature low-activity aluminizing of the IN713, IN625, and CMSX4 superalloys enabled the obtainment of the desirable β-NiAl phase. The highest nickel content in the chemical composition of the IN713 superalloy among the investigated superalloys resulted in the highest aluminide coatings’ thickness. Moreover, the higher refractory elements concentration in the IN625 and CMSX4 superalloys than that in the IN713 superalloy may contribute to a thinner aluminide coatings’ thickness. Refractory elements diffused to the surface of the superalloy and formed carbides or intermetallic phases, which impeded outward nickel diffusion from the substrate to the surface and thereby inhibited coating growth. The obtained coatings fulfilled the requirements of ASTM B 875. Despite the fact that the coating formed on IN713 was thicker than that formed on IN625, the lifetime of both coated superalloys was comparable. Oxidation resistance of the aluminide coatings formed on the IN713 and IN625 superalloys makes them the favored choice for gas turbine applications. Full article
Show Figures

Figure 1

19 pages, 11860 KiB  
Article
Improved Properties of Ceramic Shells by Optimizing the Surface Composition from Lanthanide-Based Composites
by Minghui Li, Jianbo Yu, Xia Li, Zhigang Yang, Zhongming Ren and Xiaoxin Zhang
Coatings 2025, 15(7), 746; https://doi.org/10.3390/coatings15070746 - 23 Jun 2025
Viewed by 419
Abstract
The precision casting of nickel-based single-crystal superalloys imposes stringent requirements on the high-temperature stability and chemical inertness of ceramic shell face coats. To address the issue of traditional EC95 shells (95% Al2O3–5% SiO2) being prone to react [...] Read more.
The precision casting of nickel-based single-crystal superalloys imposes stringent requirements on the high-temperature stability and chemical inertness of ceramic shell face coats. To address the issue of traditional EC95 shells (95% Al2O3–5% SiO2) being prone to react with the alloy melt at elevated temperatures, thereby inducing casting defects, this study proposes a lanthanide oxide-based ceramic face coat material. Three distinct powders—LaAlO3 (LA), LaAlO3/La2Si2O7 (LAS), and LaAl11O18/La2Si2O7/Al2O3 (LA11S)—are successfully prepared through solid-phase sintering of the La2O3-Al2O3-SiO2 ternary system. Their slurry properties, shell sintering processes, and high-temperature performance are systematically investigated. The results demonstrate that optimal slurry coating effectiveness is achieved when LA powder is processed with a liquid-to-powder ratio of 3:1 and a particle size of 300 mesh. While LA shells show no cracking at 1300 °C, their face coats fail above 1400 °C due to the formation of a La2Si2O7 phase. In contrast, LAS and LA11S shells suppress cracking through the La2Si2O7 and LaAl11O18 phases, respectively, exhibiting exceptionally high-temperature stability at 1400 °C and 1500 °C. All three shells meet the high-temperature strength requirements for CMSX-4 single-crystal alloy casting. Interfacial reaction analysis and Gibbs free energy calculations reveal that Al2O3-forming reactions occur between the novel shells and alloy melt, accompanied by minor dissolution erosion without other chemical side reactions. This work provides a high-performance face coat material solution for investment casting of nickel-based superalloys. Full article
(This article belongs to the Special Issue Advances in Ceramic Materials and Coatings)
Show Figures

Figure 1

25 pages, 16068 KiB  
Article
Mechanical Properties and Fracture Analysis of Advanced Nickel-Based Nanomembranes
by Janik Marius Lück and Joachim Rösler
Materials 2025, 18(9), 1961; https://doi.org/10.3390/ma18091961 - 25 Apr 2025
Cited by 1 | Viewed by 326
Abstract
Nanoporous membranes based on the single crystalline nickel-based superalloy CMSX-4 are a promising class of materials for membranes, especially for use in premix membrane emulsification. In addition to the pore size, the strength and stability of the membrane structure are key factors for [...] Read more.
Nanoporous membranes based on the single crystalline nickel-based superalloy CMSX-4 are a promising class of materials for membranes, especially for use in premix membrane emulsification. In addition to the pore size, the strength and stability of the membrane structure are key factors for subsequent use. The production of the membranes is based on the directional coarsening of the γ/γ′-microstructure by creep deformation, in which the material is subjected to a tensile load at high temperatures so that a bicontinuous network of the γ- and γ′-phase is formed. The subsequent dissolution of the γ-phase leaves a network of γ′-phase, which can be used as a membrane structure; the former γ-matrix channels now serve as pores. Previous investigations focusing on the evolution of the microstructure during membrane fabrication found that a particularly small pore size can be achieved when the creep deformation temperature is lowered from 1000 °C to 950 °C while increasing the stress from 170 MPa to 250 MPa. This study will now investigate the strength and fracture behaviour of membranes produced by these improved parameters. For this purpose, four creep states with creep strains between 1.3% and 5.7% are investigated in tensile tests at room temperature, with the load being applied perpendicular and parallel to the raft structure. The results show that the strength of nanomembranes during perpendicular loading essentially depends on the cross-linking between γ′-rafts. Generally, an increase in creep strain leads to an increase of the cross-linking resulting in higher tensile strength. During parallel loading, γ′-inhomogeneities play an important role resulting in a loss of strength. The analysis of the fracture surfaces and evaluation of EBSD measurements reveal an insufficient cross-linking between dendrites and around γ′-inhomogeneities, leading to preferred crack paths. Therefore, the differences in orientation within the single crystal play a key role in the strength of the nanomembranes. Full article
(This article belongs to the Special Issue Advanced Nanoporous and Mesoporous Materials)
Show Figures

Figure 1

17 pages, 11183 KiB  
Article
Multiscale Analysis of Defect Structures in Single-Crystalline CMSX-4 Superalloys
by Robert Paszkowski, Sławomir Kołodziej, Mirosława Pawlyta and Beata Chrząszcz
Materials 2025, 18(8), 1819; https://doi.org/10.3390/ma18081819 - 16 Apr 2025
Viewed by 474
Abstract
An analysis of defects creation in the vicinity of the selector-root connection plane in single-crystalline turbine blades made of CMSX-4 Ni-base superalloy was performed using several experimental methods. A coupling of scanning electron microscopy and X-ray diffraction topography allowed the visualization of dendritic [...] Read more.
An analysis of defects creation in the vicinity of the selector-root connection plane in single-crystalline turbine blades made of CMSX-4 Ni-base superalloy was performed using several experimental methods. A coupling of scanning electron microscopy and X-ray diffraction topography allowed the visualization of dendritic arrays and surface defects in the root part of the blades. As a result, contrast inversions and areas where internal stresses occur were observed. The defects on a microscopic scale were characterized using positron annihilation lifetime spectroscopy and transmission electron microscopy. The registered positron lifetimes, above 0.5 ns, beyond the range characteristic for defects generally reported in metals and their alloys suggest the presence extremely large void type defects. Herein, we have identified large defects, ca. 2–5 nm in diameter, formed due to the contraction of fluid metal, captured in inter-dendritic regions during the liquid-to-solid transition. This work is a precursor to the almost untouched area of the discussion of lifetimes characteristic for positron bound states, called positronium (>0.5 ns) in relation to the morphology of void-type defects in single-crystalline superalloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

15 pages, 30326 KiB  
Article
Effects of Cr and Al Contents on the Oxide Structures of Ni-Based Superalloys at High Temperatures
by Kwangsoo Choi, Byunghak Choe, Sunghee Han, Daehyun Kim, Seong-Moon Seo and Dae Won Yun
Metals 2025, 15(4), 388; https://doi.org/10.3390/met15040388 - 29 Mar 2025
Viewed by 324
Abstract
In this study, the morphology of high-temperature surface oxides in Ni-based superalloys was investigated as a function of Cr and Al content. First, the oxide layer morphologies of various alloys published in the literature were classified according to the basic model of Cr [...] Read more.
In this study, the morphology of high-temperature surface oxides in Ni-based superalloys was investigated as a function of Cr and Al content. First, the oxide layer morphologies of various alloys published in the literature were classified according to the basic model of Cr and Al content. Then, the high-temperature oxide layers of high-Cr/low-Al and low-Cr/high-Al alloys were investigated using SEM/EDX mapping. The high-temperature oxidation of Ni-based superalloys is affected by the amount of added elements such as Ti, Cr, and Al. The oxidation rate of each element is NiO > TiO2 > Cr2O3 > Al2O3, and the shape of the surface oxide layer is determined by the oxidation rate. The oxide layer is mainly classified according to the flat and fibrous shapes of Cr2O3 and Al2O3 on the outermost layer. In this study, IN738LC and IN792, as the high Cr-low Al alloys, were found to have flat Cr2O3 and fibrous type Al2O3 in the outermost layer after long-term exposure to high temperatures, while CM247LC and CMSX4 which are the low Cr-high Al alloys were found to have flat type Al2O3 in the outermost layer after long-term exposure to high temperatures, which is in good agreement with the results of various literature on oxide layers on Ni-based superalloys. Full article
Show Figures

Figure 1

15 pages, 3576 KiB  
Article
Effect of Solidification Direction on the Freckle Formation in Single-Crystal Superalloy Castings
by Dexin Ma, Hongyuan Sun, Yunxing Zhao, Weitai Xu, Zaiwang Huang, Bowen Cheng, Yang Liu, Fu Wang, Qiang Yang, Lv Li, Yangpi Deng, Fuze Xu, Haijie Zhang and Menghuai Wu
Materials 2025, 18(7), 1534; https://doi.org/10.3390/ma18071534 - 28 Mar 2025
Cited by 1 | Viewed by 658
Abstract
Solidification experiments in two opposite directions were conducted to investigate the buoyancy effect on freckle formation during directional solidification in single-crystal superalloy castings. During conventional upward solidification with the superalloy CMSX-4, severe freckles were observed in castings of various geometries. By reversing the [...] Read more.
Solidification experiments in two opposite directions were conducted to investigate the buoyancy effect on freckle formation during directional solidification in single-crystal superalloy castings. During conventional upward solidification with the superalloy CMSX-4, severe freckles were observed in castings of various geometries. By reversing the solidification direction from upward to downward, freckle-free castings could be obtained. To visually verify the effect of the solidification direction, an in situ observation experiment by varying the solidification direction was performed using a Ga-In alloy. In the upward solidification process, strong solutal convection was visually observed due to the decrease in the density of the interdendritic liquid. Conversely, a stable condition without visible flow was established during downward solidification, due to the stable state of the top-light, bottom-heavy liquid system. A new Rayleigh-number model was successfully applied to characterize the freckle features in superalloy cluster castings. When the solidification direction was reversed from upward to downward, the driving force for solutal convection was suppressed, leading to the complete elimination of freckle formation in single-crystal superalloy castings. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

19 pages, 10708 KiB  
Article
Evaluation of the Influence of Primary and Secondary Crystal Orientations and Selected Structural Characteristics on Creep Resistance in Single-Crystal Nickel-Based Turbine Blades
by Kamil Gancarczyk, Robert Albrecht, Paweł Sułkowicz, Mirosław Szala and Mariusz Walczak
Materials 2025, 18(5), 919; https://doi.org/10.3390/ma18050919 - 20 Feb 2025
Cited by 2 | Viewed by 767
Abstract
This study evaluates the perfection of the crystal structure of single-crystal turbine blade castings made from the CMSX-4 nickel superalloy. The analysis included primary and secondary crystal orientation measurements using the Ω-scan method and the novel OD-EFG X-ray diffractometer. The selected microstructural parameters [...] Read more.
This study evaluates the perfection of the crystal structure of single-crystal turbine blade castings made from the CMSX-4 nickel superalloy. The analysis included primary and secondary crystal orientation measurements using the Ω-scan method and the novel OD-EFG X-ray diffractometer. The selected microstructural parameters of the single crystals were also analyzed, including the assessment of stereological parameters and the degree of porosity. A creep test was performed according to standard procedures and under conditions simulating real operational environments. The model single-crystal turbine blades were manufactured using the Bridgman–Stockbarger method, with variable withdrawal rates of 1 and 3 mm/min. Heat treatment of the single-crystal castings involved solution treatment followed by double aging. The evaluation of structural perfection was carried out in three states: as-cast, after solution heat treatment, and after double aging. The crystallographic orientation of the blades was determined on both the airfoil and the root part. The study determined how crystallographic orientation and microstructural parameters influence the creep resistance of the castings. It was found that in the as-cast condition, the greatest influence on high creep strength has a small deviation of the primary and constant value of secondary crystal orientation along the height of the blade casting. After heat treatment, the highest creep resistance was obtained for the blade manufactured at a withdrawal rate at 1 mm/min. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 11286 KiB  
Article
Lifetime Prediction of Single Crystal Nickel-Based Superalloys
by Çağatay Kasar, Utku Kaftancioglu, Emin Bayraktar and Ozgur Aslan
Appl. Sci. 2025, 15(1), 201; https://doi.org/10.3390/app15010201 - 29 Dec 2024
Viewed by 1294
Abstract
Single crystal nickel-based superalloys are extensively used in turbine blade applications due to their superior creep resistance compared to their polycrystalline counterparts. With the high creep resistance, high cycle fatigue (HCF) and low cycle fatigue (LCF) become primary failure mechanisms for such applications. [...] Read more.
Single crystal nickel-based superalloys are extensively used in turbine blade applications due to their superior creep resistance compared to their polycrystalline counterparts. With the high creep resistance, high cycle fatigue (HCF) and low cycle fatigue (LCF) become primary failure mechanisms for such applications. This study investigates the fatigue life prediction of CMSX-4 using a combination of crystal plasticity and lifetime assessment models. The constitutive crystal plasticity model simulates the anisotropic, rate-dependent deformation behavior of CMSX-4, while the modified Chaboche damage model is used for lifetime assessment, focusing on cleavage stresses on active slip planes to include anisotropy. Both qualitative and quantitative data obtained from HCF experiments on single crystal superalloys with notched geometry were used for validation of the model. Furthermore, artificial neural networks (ANNs) were employed to enhance the accuracy of lifetime predictions across varying temperatures by analyzing the fatigue curves obtained from the damage model. The integration of crystal plasticity, damage mechanics, and ANNs resulted in an accurate prediction of fatigue life and crack initiation points under complex loading conditions of single crystals superalloys. Full article
Show Figures

Figure 1

20 pages, 4937 KiB  
Article
Numerical Simulations to Predict the Melt Pool Dynamics and Heat Transfer during Single-Track Laser Melting of Ni-Based Superalloy (CMSX-4)
by Mohammad Reza Azadi Tinat, Murali Uddagiri, Ingo Steinbach and Inmaculada López-Galilea
Metals 2023, 13(6), 1091; https://doi.org/10.3390/met13061091 - 8 Jun 2023
Cited by 7 | Viewed by 3923
Abstract
Computational Fluid Dynamics (CFD) simulations are used in this work to study the dynamic behavior of the melt pool and heat transfer during the single-track laser melting process of a nickel-based superalloy (CMSX-4). To include the effects of powder inhomogeneities and obtain a [...] Read more.
Computational Fluid Dynamics (CFD) simulations are used in this work to study the dynamic behavior of the melt pool and heat transfer during the single-track laser melting process of a nickel-based superalloy (CMSX-4). To include the effects of powder inhomogeneities and obtain a realistic distribution of the powder layer on the bed chamber, the CFD model is coupled with a Discrete Element Method (DEM) solver. The coupled model is implemented in the open-source software package OpenFOAM. In the CFD model’s governing equations, some key physical mechanisms, such as the Marangoni effect and recoil pressure, are considered. With the help of the coupled CFD-DEM model, we have investigated the effect of key process parameters, such as laser power, scanning speed of the laser, powder size, and powder shape, on the size and homogeneity of the melt pool. From the simulation results, it was discovered that high laser power and slow scanning speed create a deep and narrow keyhole that leads to porosity. In contrast, balling defects are found to be caused by a small melt pool obtained from fast scanning speeds and inadequate laser power. Full article
Show Figures

Figure 1

17 pages, 24556 KiB  
Article
New Approach in the Determination of a Suitable Directionally Coarsened Microstructure for the Fabrication of Nanoporous Superalloy Membranes Based on CMSX-4
by Janik Marius Lück and Joachim Rösler
Materials 2023, 16(10), 3715; https://doi.org/10.3390/ma16103715 - 13 May 2023
Cited by 2 | Viewed by 1354
Abstract
The pore size of nanoporous superalloy membranes produced by directional coarsening is directly related to the γ-channel width after creep deformation, since the γ-phase is removed subsequently by selective phase extraction. The continuous network of the γ′-phase thus remaining is based on complete [...] Read more.
The pore size of nanoporous superalloy membranes produced by directional coarsening is directly related to the γ-channel width after creep deformation, since the γ-phase is removed subsequently by selective phase extraction. The continuous network of the γ′-phase thus remaining is based on complete crosslinking of the γ′-phase in the directionally coarsened state forming the subsequent membrane. In order to be able to achieve the smallest possible droplet size in the later application in premix membrane emulsification, a central aspect of this investigation is to minimize the γ-channel width. For this purpose, we use the 3w0-criterion as a starting point and gradually increase the creep duration at constant stress and temperature. Stepped specimens with three different stress levels are used as creep specimens. Subsequently, the relevant characteristic values of the directionally coarsened microstructure are determined and evaluated using the line intersection method. We show that the approximation of an optimal creep duration via the 3w0-criterion is reasonable and that coarsening occurs at different rates in dendritic and interdendritic regions. The use of staged creep specimens shows significant material and time savings in determining the optimal microstructure. Optimization of the creep parameters results in a γ-channel width of 119 ± 43 nm in dendritic and 150 ± 66 nm in interdendritic regions while maintaining complete crosslinking. Furthermore, our investigations show that unfavorable stress and temperature combinations favor undirectional coarsening before the rafting process is completed. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys)
Show Figures

Figure 1

13 pages, 15815 KiB  
Article
Microstructure, Mechanical Properties and Thermal Stability of Ni-Based Single Crystal Superalloys with Low Specific Weight
by Dengyu Liu, Qingqing Ding, Qian Zhou, Dingxin Zhou, Xiao Wei, Xinbao Zhao, Ze Zhang and Hongbin Bei
Crystals 2023, 13(4), 610; https://doi.org/10.3390/cryst13040610 - 2 Apr 2023
Cited by 9 | Viewed by 4348
Abstract
Ni-based single crystal (SX) superalloy with low specific weight is vital for developing aero engines with a high strength-to-weight ratio. Based on an alloy system with 3 wt.% Re but without W, namely Ni-Co-Cr-Mo-Ta-Re-Al-Ti, a specific weight below 8.4 g/cm3 has been [...] Read more.
Ni-based single crystal (SX) superalloy with low specific weight is vital for developing aero engines with a high strength-to-weight ratio. Based on an alloy system with 3 wt.% Re but without W, namely Ni-Co-Cr-Mo-Ta-Re-Al-Ti, a specific weight below 8.4 g/cm3 has been achieved. To reveal the relationship among the composition, mechanical properties, and thermal stability of Ni-based SX superalloys, SXs with desirable microstructures are fabricated. Tensile tests revealed that the SX alloys have comparable strength to commercial second-generation SX CMSX-4 (3 wt.% Re and 6 wt.% W) and Rene′ N5 alloys (3 wt.% Re and 5 wt.% W) above 800 °C. Moreover, the elongation to fracture (EF) below 850 °C (>20%) is better than that of those two commercial SX superalloys. During thermal exposure at 1050 °C for up to 500 h, the topological close-packed (TCP) phase does not appear, indicating excellent phase stability. Decreasing Al concentration increases the resistance of γ′ rafting and replacing 1 wt.% Ti with 3 wt.% Ta is beneficial to the stability of the shape and size of γ′ phase during thermal exposure. The current work might provide scientific insights for developing Ni-based SX superalloys with low specific weight. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials)
Show Figures

Figure 1

12 pages, 21057 KiB  
Article
Precipitation of Topologically Closed Packed Phases during the Heat-Treatment of Rhenium Containing Single Crystal Ni-Based Superalloys
by John Harrison and Paul A. Withey
Crystals 2023, 13(3), 519; https://doi.org/10.3390/cryst13030519 - 17 Mar 2023
Cited by 4 | Viewed by 3474
Abstract
Continual development of nickel-based superalloys for single-crystal turbine applications has pushed their operating temperatures higher and higher, most notably through the addition of rhenium. However, this has left them susceptible to the precipitation of topologically closed packed phases (TCPs), which are widely considered [...] Read more.
Continual development of nickel-based superalloys for single-crystal turbine applications has pushed their operating temperatures higher and higher, most notably through the addition of rhenium. However, this has left them susceptible to the precipitation of topologically closed packed phases (TCPs), which are widely considered detrimental. Whilst these have long been reported as an end-of-life phenomenon in in-service components, they have more recently been observed during the manufacture of turbine blades. Several rhenium-containing alloys (CMSX-4, CMSX-10K, and CMSX-10N) were cast into single-crystal test bars and studied at different times along their solution heat-treatment process to discern if, when, and where these TCPs precipitated. It was seen that all alloys were susceptible to TCPs at some point along the process, with the higher rhenium-containing alloy CMSX-10N being the most prone. They occurred at the earliest stages of the solution process; this was attributed to aluminium diffusion from the segregated interdendritic regions into the dendrite core, causing the concentration of rhenium into the ɣ-matrixes until sufficient potential was achieved for TCP precipitation. As the samples became more homogeneous, fewer TCPs were observed; however, in the case of CMSX-10N, this took longer than the typical 24-h solution time used in industry, leading to components entering service with TCPs still present. Full article
Show Figures

Figure 1

16 pages, 7753 KiB  
Article
Influence of Size Effect in Milling of a Single-Crystal Nickel-Based Superalloy
by Luis Soriano Gonzalez, Fernanda Medina Aguirre, Sein Leung Soo, Richard Hood and Donka Novovic
Micromachines 2023, 14(2), 313; https://doi.org/10.3390/mi14020313 - 26 Jan 2023
Cited by 5 | Viewed by 2275
Abstract
This paper details an experimental investigation on the influence of the size effect when slot-milling a CMSX-4 single-crystal nickel-based superalloy using 1 mm- and 4 mm-diameter TiAlN-coated tungsten carbide (WC) end-mills. With all tools having similar cutting-edge radii (re) of ~6 [...] Read more.
This paper details an experimental investigation on the influence of the size effect when slot-milling a CMSX-4 single-crystal nickel-based superalloy using 1 mm- and 4 mm-diameter TiAlN-coated tungsten carbide (WC) end-mills. With all tools having similar cutting-edge radii (re) of ~6 µm, the feed rate was varied between 25–250 mm/min while the cutting speed and axial depth of cut were kept constant at 126 m/min and 100 µm, respectively. Tests involving the Ø 4 mm end-mills exhibited a considerable elevation in specific cutting forces exceeding 500 GPa, as well as irregular chip morphology and a significant increase in burr size, when operating at the lowest feed rate of 25 mm/min. Correspondingly for the Ø 1 mm micro-end-mills, high levels of specific cutting forces up to ~1000 GPa together with severe material ploughing and grooving at the base of the machined slots were observed. This suggests the prevalence of the size effect in the chip formation mechanism as feed per tooth/uncut chip thickness decreases. The minimum uncut chip thickness (hmin) when micromilling was subsequently estimated to be less than 0.10 re, while this increased to between 0.10–0.42 re when machining with the larger Ø 4 mm tools. Full article
(This article belongs to the Special Issue Advances in Micro-Milling)
Show Figures

Figure 1

15 pages, 2954 KiB  
Article
Effect of Blade Geometry on γ′ Lattice Parameter and Primary Orientation of SX Cored Turbine Blades (I)
by Jacek Krawczyk, Włodzimierz Bogdanowicz and Jan Sieniawski
Materials 2023, 16(1), 112; https://doi.org/10.3390/ma16010112 - 22 Dec 2022
Cited by 2 | Viewed by 1951
Abstract
The γ′ lattice parameter aγ′ and the α angle defining the primary crystal orientation of the single-crystalline cored turbine blades made of CMSX-4 superalloy were measured in the areas located near the selector situated asymmetrically, considering the top view of the blade. [...] Read more.
The γ′ lattice parameter aγ′ and the α angle defining the primary crystal orientation of the single-crystalline cored turbine blades made of CMSX-4 superalloy were measured in the areas located near the selector situated asymmetrically, considering the top view of the blade. The distributions of the aγ′ and the α angle were determined along the lines parallel to the vertical blade axis Z using X-ray diffraction methods. The relations between changes in the aγ′(Z) and α(Z) were analyzed on the Z levels where the shape of the blade’s cross-section changes. For the first time, the local increase in aγ′(Z) was found near the root–airfoil connection level and near certain other root levels, which is related to the change in blade section shapes on such levels. The local extremes in α(Z), representing the dendrite bend, were observed at these levels. The increase in the aγ′(Z) with the local bending of dendrites was discussed concerning the local redistribution of alloying elements and local residual stresses of the γ-dendrites. For the first time, a method of analyzing the local bending of the dendrites was proposed by studying the behavior of the α(Z). The presented results concern the first stage of the research covering areas relatively close to the selector, considering the top view of the blades. The second stage will include the analysis of the areas of the blade localized at a longer distance from the selector. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

7 pages, 1686 KiB  
Communication
Prediction of Creep Curves Based on Back Propagation Neural Networks for Superalloys
by Bohao Ma, Xitao Wang, Gang Xu, Jinwu Xu and Jinshan He
Materials 2022, 15(19), 6523; https://doi.org/10.3390/ma15196523 - 20 Sep 2022
Cited by 8 | Viewed by 2135
Abstract
Creep deformation is one of the main failure forms for superalloys during service and predicting their creep life and curves is important to evaluate their safety. In this paper, we proposed a back propagation neural networks (BPNN) model to predict the creep curves [...] Read more.
Creep deformation is one of the main failure forms for superalloys during service and predicting their creep life and curves is important to evaluate their safety. In this paper, we proposed a back propagation neural networks (BPNN) model to predict the creep curves of MarM247LC superalloy under different conditions. It was found that the prediction errors for the creep curves were within ±20% after using six creep curves for training. Compared with the θ projection model, the maximum error was reduced by 30%. In addition, it is validated that this method is applicable to the prediction of creep curves for other superalloys such as DZ125 and CMSX-4, indicating that the model has a wide range of applicability. Full article
Show Figures

Figure 1

Back to TopTop