Prediction of Creep Curves Based on Back Propagation Neural Networks for Superalloys
Abstract
:1. Introduction
2. Data and Model Construction
2.1. Creep Data
2.2. Back Propagation Neural Network
3. Results and Discussion
4. Conclusions
- By using the BPNN model, the creep curves under different conditions were predicted. The maximum error of creep curves in the dataset is ±20%, which has been reduced by 30% compared with the θ projection model.
- This method is applicable to the prediction of creep curves for other superalloys such as DZ125 and CMSX-4, and thus has a wide range of applications.
- The accuracy of creep rupture life prediction plays an important role in the prediction accuracy of creep curves. Seeking the accurate prediction method for creep rupture life is of great significance for improving the predicted accuracy of creep curves.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogiriki, E.; Li, Y.; Nikolaidis, T. Prediction and analysis of impact of thermal barrier coating oxidation on gas turbine creep life. J. Eng. Gas Turbines Power 2016, 138, 121501. [Google Scholar] [CrossRef]
- Rao, P.S.; Patnaik, B.; Sekhar, U.C. Creep Life Consumption Monitoring of a Turbine Rotor Blade. Trans. Indian Inst. Met. 2015, 69, 603–607. [Google Scholar]
- Evans, R.W.; Wilshire, B. Creep of Metals and Alloys; The Institute of Metals: London, UK, 1985. [Google Scholar]
- Kulkarni, S.S.; Tabarraei, A. An ordinary state based peridynamic correspondence model for metal creep. Eng. Fract. Mech. 2020, 233, 107042. [Google Scholar] [CrossRef]
- Li, K.-S.; Wang, R.-Z.; Yuan, G.-J.; Zhu, S.-P.; Zhang, X.-C.; Tu, S.-T.; Miura, H. A crystal plasticity-based approach for creep-fatigue life prediction and damage evaluation in a nickel-based superalloy. Int. J. Fatigue 2021, 143, 106031. [Google Scholar] [CrossRef]
- Brown, S.; Evans, R.; Wilshire, B. Creep strain and creep life prediction for the cast nickel-based superalloy IN-100. Mater. Sci. Eng. 1986, 84, 147–156. [Google Scholar] [CrossRef]
- He, P.; Liu, Q.; Kruzic, J.J.; Li, X. Machine-learning assisted additive manufacturing of a TiCN reinforced AlSi10Mg composite with tailorable mechanical properties. Mater. Lett. 2022, 307, 131018. [Google Scholar] [CrossRef]
- Jaafreh, R.; Kang, Y.S.; Kim, J.-G.; Hamad, K. Machine learning guided discovery of super-hard high entropy ceramics. Mater. Lett. 2022, 306, 130899. [Google Scholar] [CrossRef]
- Wu, J.; Liu, X.; Zhao, J. Online detection method of laser shock peening based on shock wave signal energy in air. Surf. Technol. 2019, 48, 100–106. [Google Scholar]
- Wu, J.; Li, Y.; Zhao, J.; Qiao, H.; Lu, Y.; Sun, B.; Hu, X.; Yang, Y. Prediction of residual stress induced by laser shock processing based on artificial neural networks for FGH4095 superalloy. Mater. Lett. 2021, 286, 129269. [Google Scholar] [CrossRef]
- Ozerdem, M.S.; Kolukisa, S. Artificial Neural Network approach to predict mechanical properties of hot rolled, nonresulfurized, AISI 10xx series carbon steel bars. J. Mater. Process. Technol. 2008, 199, 437–439. [Google Scholar] [CrossRef]
- Ma, A.; Dye, D.; Reed, R. A model for the creep deformation behaviour of single-crystal superalloy CMSX-4. Acta Mater. 2008, 56, 1657–1670. [Google Scholar] [CrossRef]
- Fu, C.; Chen, Y.; Yuan, X.; Tin, S.; Antonov, S.; Yagi, K.; Feng, Q. A modified θ projection model for constant load creep curves-II. Application of creep life prediction. J. Mater. Sci. Technol. 2019, 35, 687–694. [Google Scholar] [CrossRef]
- Quan, G.-z.; Lv, W.-q.; Mao, Y.-p.; Zhang, Y.-w.; Zhou, J. Prediction of flow stress in a wide temperature range involving phase transformation for as-cast Ti–6Al–2Zr–1Mo–1V alloy by artificial neural network. Mater. Des. 2013, 50, 51–61. [Google Scholar] [CrossRef]
- Quan, G.-z.; Pan, J.; Wang, X. Prediction of the hot compressive deformation behavior for superalloy nimonic 80A by BP-ANN model. Appl. Sci. 2016, 6, 66. [Google Scholar] [CrossRef]
- Liang, T.; Liu, X.; Fan, P.; Zhu, L.; Bi, Y.; Zhang, Y. Prediction of long-term creep life of 9Cr–1Mo–V–Nb steel using artificial neural network. Int. J. Press. Vessel. Pip. 2020, 179, 104014. [Google Scholar] [CrossRef]
- Omprakash, C.; Kumar, A.; Srivathsa, B.; Satyanarayana, D. Prediction of creep curves of high temperature alloys using θ-projection concept. Procedia Eng. 2013, 55, 756–759. [Google Scholar] [CrossRef]
- Wilshire, B.; Scharning, P.; Hurst, R. A new approach to creep data assessment. Mater. Sci. Eng. A 2009, 510, 3–6. [Google Scholar] [CrossRef]
Hidden Layer | MSE | Hidden Layer | MSE | Hidden Layer | MSE | Hidden Layer | MSE |
---|---|---|---|---|---|---|---|
2-1 | 5.30 × 10−3 | 5-2 | 8.83 × 10−4 | 32-2 | 6.25 × 10−4 | 16-8-4 | 1.09 × 10−4 |
5-1 | 5.63 × 10−3 | 8-2 | 7.86 × 10−4 | 8-8 | 2.68 × 10−4 | 16-8-2 | 6.20 × 10−5 |
16-1 | 5.64 × 10−3 | 16-2 | 5.79 × 10−4 | 16-8 | 3.83 × 10−4 | 16-8-8 | 5.68 × 10−5 |
20-1 | 6.37 × 10−3 | 20-2 | 8.32 × 10−4 | 16-6 | 2.40 × 10−4 | 16-8-10 | 5.93 × 10−4 |
Type | Network |
---|---|
Hidden layers | 3 |
Number of neurons | Input: 4(T, σ, t, tf) |
Hidden: 16-8-8 | |
Output: 1(ε) | |
Transfer function and training algorithm | Tanh(Xavier initialization) and Adam |
Learning rate | 0.001 |
Number of epochs | 4000 |
900 °C/230 MPa | 900 °C/300 MPa | 900 °C/400 MPa | 950 °C/150 MPa | 950 °C/250 MPa | 1000 °C/150 MPa | |
---|---|---|---|---|---|---|
θ1 | 41,460 | 52,695 | 882,198 | 114,478 | 93,183 | 206,160 |
θ2 | 2.85 × 10−8 | 5.22 × 10−8 | 2.59 × 10−8 | 6.49 × 10−9 | 8.66 × 10−8 | 2.90 × 10−8 |
θ3 | 0.016 | 0.045 | 0.286 | 0.003 | 0.093 | 0.005 |
θ4 | 0.005 | 0.013 | 0.066 | 0.004 | 0.033 | 0.024 |
θ Parameter | ai | bi | ci | di | R2 |
---|---|---|---|---|---|
θ1 | −18.32 | 0.057 | 0.023 | −5.37 × 10−5 | 0.97 |
θ2 | 6.30 | −0.087 | −0.015 | 9.75 × 10−5 | 0.77 |
θ3 | 10.58 | −0.099 | −0.016 | 1.19 × 10−4 | 0.99 |
θ4 | −13.58 | −0.010 | 0.011 | 1.90 × 10−5 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, B.; Wang, X.; Xu, G.; Xu, J.; He, J. Prediction of Creep Curves Based on Back Propagation Neural Networks for Superalloys. Materials 2022, 15, 6523. https://doi.org/10.3390/ma15196523
Ma B, Wang X, Xu G, Xu J, He J. Prediction of Creep Curves Based on Back Propagation Neural Networks for Superalloys. Materials. 2022; 15(19):6523. https://doi.org/10.3390/ma15196523
Chicago/Turabian StyleMa, Bohao, Xitao Wang, Gang Xu, Jinwu Xu, and Jinshan He. 2022. "Prediction of Creep Curves Based on Back Propagation Neural Networks for Superalloys" Materials 15, no. 19: 6523. https://doi.org/10.3390/ma15196523
APA StyleMa, B., Wang, X., Xu, G., Xu, J., & He, J. (2022). Prediction of Creep Curves Based on Back Propagation Neural Networks for Superalloys. Materials, 15(19), 6523. https://doi.org/10.3390/ma15196523