Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = CMOS-compatible temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2484 KiB  
Article
Processing and Characterization of High-Density Fe-Silicide/Si Core–Shell Quantum Dots for Light Emission
by Katsunori Makihara, Yuji Yamamoto, Markus Andreas Schubert, Andreas Mai and Seiichi Miyazaki
Nanomaterials 2025, 15(10), 733; https://doi.org/10.3390/nano15100733 - 14 May 2025
Viewed by 398
Abstract
Si-based photonics has garnered considerable attention as a future device for complementary metal–oxide–semiconductor (CMOS) computing. However, few studies have investigated Si-based light sources highly compatible with Si ultra large-scale integration processing. In this study, we observed stable light emission at room temperature from [...] Read more.
Si-based photonics has garnered considerable attention as a future device for complementary metal–oxide–semiconductor (CMOS) computing. However, few studies have investigated Si-based light sources highly compatible with Si ultra large-scale integration processing. In this study, we observed stable light emission at room temperature from superatom-like β–FeSi2–core/Si–shell quantum dots (QDs). The β–FeSi2–core/Si–shell QDs, with an areal density as high as ~1011 cm−2 were fabricated by self-aligned silicide process of Fe–silicide capped Si–QDs on ~3.0 nm SiO2/n–Si (100) substrates, followed by SiH4 exposure at 400 °C. From the room temperature photoluminescence characteristics, β–FeSi2 core/Si–shell QDs can be regarded as active elements in optical applications because they offer the advantages of photonic signal processing capabilities and can be combined with electronic logic control and data storage. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

15 pages, 3397 KiB  
Article
A Compact Model with Self-Heating Effect Applying to the SCR Device for ESD Protection
by Hongkun Wang, Hailian Liang and Junliang Liu
Electronics 2025, 14(5), 843; https://doi.org/10.3390/electronics14050843 - 21 Feb 2025
Viewed by 490
Abstract
This work develops a novel compact Silicon-Controlled Rectifier (SCR) model incorporating self-heating effects, extending the conventional Ebers–Moll (E–M) framework for Bipolar Junction Transistors (BJTs) by comprehensively integrating parasitic effects. The temperature dependence of critical device parameters, including junction capacitances, emitter resistances, and saturation [...] Read more.
This work develops a novel compact Silicon-Controlled Rectifier (SCR) model incorporating self-heating effects, extending the conventional Ebers–Moll (E–M) framework for Bipolar Junction Transistors (BJTs) by comprehensively integrating parasitic effects. The temperature dependence of critical device parameters, including junction capacitances, emitter resistances, and saturation currents, is systematically characterized to accurately predict the device’s electrical behavior under Electrostatic Discharge (ESD) stress. Furthermore, a self-heating modeling approach is introduced based on the SCR layout characteristics. The impact of self-heating on SCR transient response was verified by comparing simulation results with measurements from SCR devices fabricated in a 0.18 µm Bipolar-CMOS-DMOS (BCD) process. Comparative analysis demonstrates superior accuracy over existing models. The proposed SCR model includes a complete definition of parameters and electrical relationships, ensuring compatibility with various Electronic Design Automation (EDA) platforms. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

9 pages, 4802 KiB  
Communication
Measuring the Effective Electro-Optic Coefficient of Low-Temperature-Prepared Lead Zirconate Titanate Thin Films
by Bin Li, Hongyan Yu, Chen Yang, Jungan Wang, Yu Han and Feng Qiu
Materials 2025, 18(4), 837; https://doi.org/10.3390/ma18040837 - 14 Feb 2025
Cited by 2 | Viewed by 568
Abstract
Developing lead zirconate titanate (PZT)-based electro-optic (EO) modulators is vital for integrated photonics. The high annealing temperature required for the processing of PZT thin films restricts their compatibility with modern complementary metal–oxide–semiconductor (CMOS) technology. In this work, high-quality PZT films were fabricated on [...] Read more.
Developing lead zirconate titanate (PZT)-based electro-optic (EO) modulators is vital for integrated photonics. The high annealing temperature required for the processing of PZT thin films restricts their compatibility with modern complementary metal–oxide–semiconductor (CMOS) technology. In this work, high-quality PZT films were fabricated on SiO2/Si substrates at a low annealing temperature of 450 °C. The PZT films demonstrated a preferential (100) orientation and were uniform and crack-free. Based on the low-temperature PZT films, we subsequently designed and fabricated a Mach–Zehnder Interferometer (MZI) waveguide modulator. The measured half-wave voltage (Vπ) was 4.8 V at a wavelength of 1550 nm, corresponding to an in-device EO coefficient as high as 66 pm/V, which shows potential use in optical devices. The results reported in this work show great promise for the integration of PZT thin films with other complex systems. Full article
Show Figures

Figure 1

9 pages, 2943 KiB  
Article
Low-Temperature Fabrication of BiFeO3 Films on Aluminum Foils under a N2-Rich Atmosphere
by Jing Yan
Nanomaterials 2024, 14(16), 1343; https://doi.org/10.3390/nano14161343 - 14 Aug 2024
Viewed by 1209
Abstract
To be CMOS-compatible, a low preparation temperature (<500 °C) for ferroelectric films is required. In this study, BiFeO3 films were successfully fabricated at a low annealing temperature (<450 °C) on aluminum foils by a metal–organic decomposition process. The effect of the annealing [...] Read more.
To be CMOS-compatible, a low preparation temperature (<500 °C) for ferroelectric films is required. In this study, BiFeO3 films were successfully fabricated at a low annealing temperature (<450 °C) on aluminum foils by a metal–organic decomposition process. The effect of the annealing atmosphere on the performance of BiFeO3 films was assessed at 440 ± 5 °C. By using a N2-rich atmosphere, a large remnant polarization (Pr~78.1 μC/cm2 @ 1165.2 kV/cm), and a high rectangularity (~91.3% @ 1165.2 kV/cm) of the P-E loop, excellent charge-retaining ability of up to 1.0 × 103 s and outstanding fatigue resistance after 1.0 × 109 switching cycles could be observed. By adopting a N2-rich atmosphere and aluminum foil substrates, acceptable electrical properties (Pr~70 μC/cm2 @ 1118.1 kV/cm) of the BiFeO3 films were achieved at the very low annealing temperature of 365 ± 5 °C. These results offer a new approach for lowering the annealing temperature for integrated ferroelectrics in high-density FeRAM applications. Full article
Show Figures

Figure 1

3 pages, 336 KiB  
Abstract
Indoor Air Quality CO2 Thermally Modulated SMR Sensor
by Siavash Esfahani, Thomas Dawson, Barbara Urasinska Wojcik, Marina Cole and Julian W. Gardner
Proceedings 2024, 97(1), 143; https://doi.org/10.3390/proceedings2024097143 - 2 Apr 2024
Viewed by 3397
Abstract
This paper reports on a CO2 solidly mounted resonator (SMR)-based sensor with an integrated heater. The SMR device is CMOS compatible and operates at a resonant frequency of 2 GHz. To increase the sensitivity and selectivity, the SMR devices were functionalized with [...] Read more.
This paper reports on a CO2 solidly mounted resonator (SMR)-based sensor with an integrated heater. The SMR device is CMOS compatible and operates at a resonant frequency of 2 GHz. To increase the sensitivity and selectivity, the SMR devices were functionalized with a 20 μm CO2 sensitive layer. Two SMR sensors were employed in a differential configuration; one sensor was uncoated and used as a reference and the other was coated and used as a sensing device. The frequency shift of ~8 kHz/% CO2 in dry air was observed after temperature and humidity compensation; demonstrating its potential application in indoor air quality (IAQ) monitoring. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

12 pages, 2694 KiB  
Article
Mode Shift of a Thin-Film F-P Cavity Grown with ICPCVD
by Yuheng Zhang, Zhuo Gao, Jian Duan, Wenbing Li, Bo Liu and Chang Chen
Photonics 2024, 11(4), 329; https://doi.org/10.3390/photonics11040329 - 1 Apr 2024
Viewed by 3652
Abstract
Industrial-grade optical semiconductor films have attracted considerable research interest because of their potential for wafer-scale mass deposition and direct integration with other optoelectronic wafers. The development of optical thin-film processes that are compatible with complementary metal-oxide-semiconductor (CMOS) processes will be beneficial for the [...] Read more.
Industrial-grade optical semiconductor films have attracted considerable research interest because of their potential for wafer-scale mass deposition and direct integration with other optoelectronic wafers. The development of optical thin-film processes that are compatible with complementary metal-oxide-semiconductor (CMOS) processes will be beneficial for the improvement of chip integration. In this study, a multilayer periodically structured optical film containing Fabry–Perot cavity was designed, utilizing nine pairs of SiN/SiO2 dielectrics. Subsequently, the multilayer films were deposited on Si substrates through the inductively coupled plasma chemical vapor deposition (ICPCVD) technique, maintaining a low temperature of 80 °C. The prepared films exhibit narrow bandpass characteristics with a maximum peak transmittance of 76% at 690 nm. Scanning electron microscopy (SEM) shows that the film structure has good periodicity. In addition, when the optical films are exposed to p/s polarized light at different angles of incidence, the cavity mode of the film undergoes a blueshift, which greatly affects the color appearance of the film. As the temperature rises, the cavity mode undergoes a gradual redshift, while the full width at half maximum (FWHM) and quality factor remain relatively constant. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

14 pages, 6733 KiB  
Article
Analyzing Various Structural and Temperature Characteristics of Floating Gate Field Effect Transistors Applicable to Fine-Grain Logic-in-Memory Devices
by Sangki Cho, Sueyeon Kim, Myounggon Kang, Seungjae Baik and Jongwook Jeon
Micromachines 2024, 15(4), 450; https://doi.org/10.3390/mi15040450 - 27 Mar 2024
Cited by 2 | Viewed by 1622
Abstract
Although the von Neumann architecture-based computing system has been used for a long time, its limitations in data processing, energy consumption, etc. have led to research on various devices and circuit systems suitable for logic-in-memory (LiM) computing applications. In this paper, we analyze [...] Read more.
Although the von Neumann architecture-based computing system has been used for a long time, its limitations in data processing, energy consumption, etc. have led to research on various devices and circuit systems suitable for logic-in-memory (LiM) computing applications. In this paper, we analyze the temperature-dependent device and circuit characteristics of the floating gate field effect transistor (FGFET) source drain barrier (SDB) and FGFET central shallow barrier (CSB) identified in previous papers, and their applicability to LiM applications is specifically confirmed. These FGFETs have the advantage of being much more compatible with existing silicon-based complementary metal oxide semiconductor (CMOS) processes compared to devices using new materials such as ferroelectrics for LiM computing. Utilizing the 32 nm technology node, the leading-edge node where the planar metal oxide semiconductor field effect transistor structure is applied, FGFET devices were analyzed in TCAD, and an environment for analyzing circuits in HSPICE was established. To seamlessly connect FGFET-based devices and circuit analyses, compact models of FGFET-SDB and -CSBs were developed and applied to the design of ternary content-addressable memory (TCAM) and full adder (FA) circuits for LiM. In addition, depression and potential for application of FGFET devices to neural networks were analyzed. The temperature-dependent characteristics of the TCAM and FA circuits with FGFETs were analyzed as an indicator of energy and delay time, and the appropriate number of CSBs should be applied. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

12 pages, 4013 KiB  
Article
Organic–Inorganic Hybrid Synaptic Transistors: Methyl-Silsesquioxanes-Based Electric Double Layer for Enhanced Synaptic Functionality and CMOS Compatibility
by Tae-Gyu Hwang, Hamin Park and Won-Ju Cho
Biomimetics 2024, 9(3), 157; https://doi.org/10.3390/biomimetics9030157 - 3 Mar 2024
Cited by 3 | Viewed by 2164
Abstract
Electrical double-layer (EDL) synaptic transistors based on organic materials exhibit low thermal and chemical stability and are thus incompatible with complementary metal oxide semiconductor (CMOS) processes involving high-temperature operations. This paper proposes organic–inorganic hybrid synaptic transistors using methyl silsesquioxane (MSQ) as the electrolyte. [...] Read more.
Electrical double-layer (EDL) synaptic transistors based on organic materials exhibit low thermal and chemical stability and are thus incompatible with complementary metal oxide semiconductor (CMOS) processes involving high-temperature operations. This paper proposes organic–inorganic hybrid synaptic transistors using methyl silsesquioxane (MSQ) as the electrolyte. MSQ, derived from the combination of inorganic silsesquioxanes and the organic methyl (−CH3) group, exhibits exceptional thermal and chemical stability, thus ensuring compatibility with CMOS processes. We fabricated Al/MSQ electrolyte/Pt capacitors, exhibiting a substantial capacitance of 1.89 µF/cm2 at 10 Hz. MSQ-based EDL synaptic transistors demonstrated various synaptic behaviors, such as excitatory post-synaptic current, paired-pulse facilitation, signal pass filtering, and spike-number-dependent plasticity. Additionally, we validated synaptic functions such as information storage and synapse weight adjustment, simulating brain synaptic operations through potentiation and depression. Notably, these synaptic operations demonstrated stability over five continuous operation cycles. Lastly, we trained a multi-layer artificial deep neural network (DNN) using a handwritten Modified National Institute of Standards and Technology image dataset. The DNN achieved an impressive recognition rate of 92.28%. The prepared MSQ-based EDL synaptic transistors, with excellent thermal/chemical stability, synaptic functionality, and compatibility with CMOS processes, harbor tremendous potential as materials for next-generation artificial synapse components. Full article
(This article belongs to the Special Issue Bionic Engineering for Boosting Multidisciplinary Integration)
Show Figures

Figure 1

13 pages, 31318 KiB  
Article
Influence of Different Carrier Gases, Temperature, and Partial Pressure on Growth Dynamics of Ge and Si Nanowires
by Nicolas Forrer, Arianna Nigro, Gerard Gadea and Ilaria Zardo
Nanomaterials 2023, 13(21), 2879; https://doi.org/10.3390/nano13212879 - 30 Oct 2023
Cited by 4 | Viewed by 1836
Abstract
The broad and fascinating properties of nanowires and their synthesis have attracted great attention as building blocks for functional devices at the nanoscale. Silicon and germanium are highly interesting materials due to their compatibility with standard CMOS technology. Their combination provides optimal templates [...] Read more.
The broad and fascinating properties of nanowires and their synthesis have attracted great attention as building blocks for functional devices at the nanoscale. Silicon and germanium are highly interesting materials due to their compatibility with standard CMOS technology. Their combination provides optimal templates for quantum applications, for which nanowires need to be of high quality, with carefully designed dimensions, crystal phase, and orientation. In this work, we present a detailed study on the growth kinetics of silicon (length 0.1–1 μm, diameter 10–60 nm) and germanium (length 0.06–1 μm, diameter 10–500 nm) nanowires grown by chemical vapor deposition applying the vapour–liquid–solid growth method catalysed by gold. The effects of temperature, partial pressure of the precursor gas, and different carrier gases are analysed via scanning electron microscopy. Argon as carrier gas enhances the growth rate at higher temperatures (120 nm/min for Ar and 48 nm/min H2), while hydrogen enhances it at lower temperatures (35 nm/min for H2 and 22 nm/min for Ar) due to lower heat capacity. Both materials exhibit two growth regimes as a function of the temperature. The tapering rate is about ten times lower for silicon nanowires than for germanium ones. Finally, we identify the optimal conditions for nucleation in the nanowire growth process. Full article
(This article belongs to the Special Issue Preparation and Application of Nanowires: 2nd Edition)
Show Figures

Figure 1

15 pages, 6446 KiB  
Review
Emergent Magnonic Materials: Challenges and Opportunities
by Samanvaya S. Gaur and Ernesto E. Marinero
Materials 2023, 16(18), 6299; https://doi.org/10.3390/ma16186299 - 20 Sep 2023
Cited by 1 | Viewed by 1533
Abstract
Advances in information technology are hindered by energy dissipation from Joule losses associated with charge transport. In contrast, the process of information based on spin waves propagation (magnons) in magnetic materials is dissipationless. Low damping of spin wave excitations is essential to control [...] Read more.
Advances in information technology are hindered by energy dissipation from Joule losses associated with charge transport. In contrast, the process of information based on spin waves propagation (magnons) in magnetic materials is dissipationless. Low damping of spin wave excitations is essential to control the propagation length of magnons. Ferrimagnetic Y3Fe5O12 garnets (YIG) exhibit the lowest magnetic damping constants. However, to attain the lowest damping constant, epitaxial growth of YIG on single crystal substrates of Gd3Ga5O12 at elevated temperatures is required, which hinders their CMOS integration in electronic devices. Furthermore, their low saturation magnetization and magnetocrystalline anisotropy are challenging for nanoscale device applications. In the search for alternative material systems, polycrystalline ferromagnetic Co25Fe75 alloy films and ferrimagnetic spinel ferrites, such as MgAl0.5Fe1.5O4 (MAFO), have emerged as potential candidates. Their damping constants are comparable, although they are at least one order of magnitude higher than YIG’s. However, Co25Fe75 alloy thin film growth is CMOS compatible, and its magnon diffusion length is 20× longer than in MAFO. In addition, MAFO requires epitaxial growth on lattice-matched MgAl2O4 substrates. We discuss the material properties that control the Gilbert damping constant in CoxFe1−x alloys and MAFO and conclude that CoxFe1−x alloy thin films bring us closer to the realization of the exploitation of spin waves for magnonics. Full article
Show Figures

Figure 1

15 pages, 4586 KiB  
Article
Development of Temperature Sensor Based on AlN/ScAlN SAW Resonators
by Min Wei, Yan Liu, Yuanhang Qu, Xiyu Gu, Yilin Wang, Wenjuan Liu, Yao Cai, Shishang Guo and Chengliang Sun
Electronics 2023, 12(18), 3863; https://doi.org/10.3390/electronics12183863 - 12 Sep 2023
Cited by 10 | Viewed by 2307
Abstract
Temperature monitoring in extreme environments presents new challenges for MEMS sensors. Since aluminum nitride (AlN)/scandium aluminum nitride (ScAlN)-based surface acoustic wave (SAW) devices have a high Q-value, good temperature drift characteristics, and the ability to be compatible with CMOS, they have become some [...] Read more.
Temperature monitoring in extreme environments presents new challenges for MEMS sensors. Since aluminum nitride (AlN)/scandium aluminum nitride (ScAlN)-based surface acoustic wave (SAW) devices have a high Q-value, good temperature drift characteristics, and the ability to be compatible with CMOS, they have become some of the preferred devices for wireless passive temperature measurement. This paper presents the development of AlN/ScAlN SAW-based temperature sensors. Three methods were used to characterize the temperature characteristics of a thin-film SAW resonator, including direct measurement by GSG probe station, and indirect measurement by oscillation circuit and antenna. The temperature characteristics of the three methods in the range of 30–100 °C were studied. The experimental results show that the sensitivities obtained with the three schemes were −28.9 ppm/K, −33.6 ppm/K, and −29.3 ppm/K. The temperature sensor using the direct measurement method had the best linearity, with a value of 0.0019%, and highest accuracy at ±0.70 °C. Although there were differences in performance, the characteristics of the three SAW temperature sensors make them suitable for sensing in various complex environments. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors: Advances, Trends and Challenges)
Show Figures

Figure 1

15 pages, 5733 KiB  
Article
Photonic Integrated Circuit Based Temperature Sensor for Out-of-Autoclave Composite Parts Production Monitoring
by Georgios Syriopoulos, Ioannis Poulopoulos, Charalampos Zervos, Evrydiki Kyriazi, Aggelos Poulimenos, Michal Szaj, Jeroen Missinne, Geert van Steenberge and Hercules Avramopoulos
Sensors 2023, 23(18), 7765; https://doi.org/10.3390/s23187765 - 8 Sep 2023
Cited by 10 | Viewed by 1818
Abstract
The use of composite materials has seen widespread adoption in modern aerospace industry. This has been facilitated due to their favourable mechanical characteristics, namely, low weight and high stiffness and strength. For broader implementation of those materials though, the out-of-autoclave production processes have [...] Read more.
The use of composite materials has seen widespread adoption in modern aerospace industry. This has been facilitated due to their favourable mechanical characteristics, namely, low weight and high stiffness and strength. For broader implementation of those materials though, the out-of-autoclave production processes have to be optimized, to allow for higher reliability of the parts produced as well as cost reduction and improved production speed. This optimization can be achieved by monitoring and controlling resin filling and curing cycles. Photonic Integrated Circuits (PICs), and, in particular, Silicon Photonics, owing to their fast response, small size, ability to operate at higher temperatures, immunity to electromagnetic interference, and compatibility with CMOS fabrication techniques, can offer sensing solutions fulfilling the requirements for composite material production using carbon fibres. In this paper, we demonstrate a passive optical temperature sensor, based on a 220 nm height Silicon-on-Insulator platform, embedded in a composite tool used for producing RTM-6 composite parts of high quality (for use in the aerospace industry). The design methodology of the photonic circuit as well as the experimental results and comparison with the industry standard thermocouples during a thermal cycling of the tool are presented. The optical sensor exhibits high sensitivity (85 pm/°C), high linearity (R2 = 0.944), and is compatible with the RTM-6 production process, operating up to 180 °C. Full article
(This article belongs to the Topic Advances in Optical Sensors)
Show Figures

Figure 1

15 pages, 3290 KiB  
Article
“GeSn Rule-23”—The Performance Limit of GeSn Infrared Photodiodes
by Guo-En Chang, Shui-Qing Yu and Greg Sun
Sensors 2023, 23(17), 7386; https://doi.org/10.3390/s23177386 - 24 Aug 2023
Cited by 12 | Viewed by 3243
Abstract
Group-IV GeSn photodetectors (PDs) compatible with standard complementary metal–oxide-semiconductor (CMOS) processing have emerged as a new and non-toxic infrared detection technology to enable a wide range of infrared applications. The performance of GeSn PDs is highly dependent on the Sn composition and operation [...] Read more.
Group-IV GeSn photodetectors (PDs) compatible with standard complementary metal–oxide-semiconductor (CMOS) processing have emerged as a new and non-toxic infrared detection technology to enable a wide range of infrared applications. The performance of GeSn PDs is highly dependent on the Sn composition and operation temperature. Here, we develop theoretical models to establish a simple rule of thumb, namely “GeSn−rule 23”, to describe GeSn PDs’ dark current density in terms of operation temperature, cutoff wavelength, and Sn composition. In addition, analysis of GeSn PDs’ performance shows that the responsivity, detectivity, and bandwidth are highly dependent on operation temperature. This rule provides a simple and convenient indicator for device developers to estimate the device performance at various conditions for practical applications. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2023)
Show Figures

Figure 1

13 pages, 5150 KiB  
Article
Electrical Characteristics of CMOS-Compatible SiOx-Based Resistive-Switching Devices
by Maria N. Koryazhkina, Dmitry O. Filatov, Stanislav V. Tikhov, Alexey I. Belov, Dmitry A. Serov, Ruslan N. Kryukov, Sergey Yu. Zubkov, Vladislav A. Vorontsov, Dmitry A. Pavlov, Evgeny G. Gryaznov, Elena S. Orlova, Sergey A. Shchanikov, Alexey N. Mikhaylov and Sungjun Kim
Nanomaterials 2023, 13(14), 2082; https://doi.org/10.3390/nano13142082 - 16 Jul 2023
Cited by 4 | Viewed by 1435
Abstract
The electrical characteristics and resistive switching properties of memristive devices have been studied in a wide temperature range. The insulator and electrode materials of these devices (silicon oxide and titanium nitride, respectively) are fully compatible with conventional complementary metal-oxide-semiconductor (CMOS) fabrication processes. Silicon [...] Read more.
The electrical characteristics and resistive switching properties of memristive devices have been studied in a wide temperature range. The insulator and electrode materials of these devices (silicon oxide and titanium nitride, respectively) are fully compatible with conventional complementary metal-oxide-semiconductor (CMOS) fabrication processes. Silicon oxide is also obtained through the low-temperature chemical vapor deposition method. It is revealed that the as-fabricated devices do not require electroforming but their resistance state cannot be stored before thermal treatment. After the thermal treatment, the devices exhibit bipolar-type resistive switching with synaptic behavior. The conduction mechanisms in the device stack are associated with the effect of traps in the insulator, which form filaments in the places where the electric field is concentrated. The filaments shortcut the capacitance of the stack to different degrees in the high-resistance state (HRS) and in the low-resistance state (LRS). As a result, the electron transport possesses an activation nature with relatively low values of activation energy in an HRS. On the contrary, Ohm’s law and tunneling are observed in an LRS. CMOS-compatible materials and low-temperature fabrication techniques enable the easy integration of the studied resistive-switching devices with traditional analog–digital circuits to implement new-generation hardware neuromorphic systems. Full article
(This article belongs to the Special Issue Advances in Memristive Nanomaterials)
Show Figures

Figure 1

10 pages, 2159 KiB  
Article
Fully Integrated Silicon Photonic Erbium-Doped Nanodiode for Few Photon Emission at Telecom Wavelengths
by Giulio Tavani, Chiara Barri, Erfan Mafakheri, Giorgia Franzò, Michele Celebrano, Michele Castriotta, Matteo Di Giancamillo, Giorgio Ferrari, Francesco Picciariello, Giulio Foletto, Costantino Agnesi, Giuseppe Vallone, Paolo Villoresi, Vito Sorianello, Davide Rotta, Marco Finazzi, Monica Bollani and Enrico Prati
Materials 2023, 16(6), 2344; https://doi.org/10.3390/ma16062344 - 15 Mar 2023
Viewed by 2380
Abstract
Recent advancements in quantum key distribution (QKD) protocols opened the chance to exploit nonlaser sources for their implementation. A possible solution might consist in erbium-doped light emitting diodes (LEDs), which are able to produce photons in the third communication window, with a wavelength [...] Read more.
Recent advancements in quantum key distribution (QKD) protocols opened the chance to exploit nonlaser sources for their implementation. A possible solution might consist in erbium-doped light emitting diodes (LEDs), which are able to produce photons in the third communication window, with a wavelength around 1550 nm. Here, we present silicon LEDs based on the electroluminescence of Er:O complexes in Si. Such sources are fabricated with a fully-compatible CMOS process on a 220 nm-thick silicon-on-insulator (SOI) wafer, the common standard in silicon photonics. The implantation depth is tuned to match the center of the silicon layer. The erbium and oxygen co-doping ratio is tuned to optimize the electroluminescence signal. We fabricate a batch of Er:O diodes with surface areas ranging from 1 µm × 1 µm to 50 µm × 50 µm emitting 1550 nm photons at room temperature. We demonstrate emission rates around 5 × 106 photons/s for a 1 µm × 1 µm device at room temperature using superconducting nanowire detectors cooled at 0.8 K. The demonstration of Er:O diodes integrated in the 220 nm SOI platform paves the way towards the creation of integrated silicon photon sources suitable for arbitrary-statistic-tolerant QKD protocols. Full article
Show Figures

Figure 1

Back to TopTop