Emergent Magnonic Materials: Challenges and Opportunities
Abstract
:1. Introduction
2. Magnetization Dynamics and the Gilbert Damping Constant
3. Ferromagnetic Co1−xFex Alloy Thin Films
4. Role of Interfaces on the Damping Constant in Co25Fe75 Thin Films
5. Role of Interlayer Thickness on the Damping Constant in Co25Fe75 Thin Films
6. MgAl2−xFexO4 Spinel Ferrites
7. The Role of Lattice Matching on Damping in MAFO
8. The Role of Film Thickness on Damping in MAFO
9. The Role of Fe Content in MAFO on Magnetic Damping Constant
10. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Finocchio, G.; Bandyopadhyay, S.; Lin, P.; Pan, G.; Yang, J.J.; Tomasello, R.; Panagopoulos, C.; Carpentieri, M.; Puliafito, V.; Åkerman, J.; et al. Roadmap for Unconventional Computing with Nanotechnology; Department of Electrical and Computer Engineering, Virginia Commonwealth University: Richmond, VA, USA, 2023; under peer review; Available online: https://arxiv.org/ftp/arxiv/papers/2301/2301.06727.pdf (accessed on 29 July 2023).
- Chumak, A.V.; Kabos, P.; Wu, M.; Abert, C.; Adelmann, C.; Adeyeye, A.O.; Akerman, J.; Aliev, F.G.; Anane, A.; Awad, A.; et al. Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Trans. Magn. 2022, 58, 1–72. [Google Scholar] [CrossRef]
- Yuan, H.Y.; Cao, Y.; Kamra, A.; Duine, R.A.; Yan, P. Quantum Magnonics: When Magnon Spintronics Meets Quantum Information Science. Phys. Rep. 2022, 965, 1–74. [Google Scholar] [CrossRef]
- Mahmoud, A.; Ciubotaru, F.; Vanderveken, F.; Chumak, A.V.; Hamdioui, S.; Adelmann, C.; Cotofana, S. Introduction to Spin Wave Computing. J. Appl. Phys. 2020, 128, 161101. [Google Scholar] [CrossRef]
- Bertaut, F.; Forrat, F. Structure des femtes ferrimagnetiques des terres rares. Acad. Sci. 1956, 242, 382–383. [Google Scholar]
- Chang, H.; Liu, T.; Reifsnyder Hickey, D.; Janantha, P.A.P.; Mkhoyan, K.A.; Wu, M. Sputtering Growth of Y3Fe5O12/Pt Bilayers and Spin Transfer at Y3Fe5O12/Pt Interfaces. APL Mater. 2017, 5, 126104. [Google Scholar] [CrossRef]
- Capku, Z.; Yildiz, F. Spin Wave Modes Observation in YIG Thin Films with Perpendicular Magnetic Anisotropy. J. Magn. Magn. Mater. 2021, 538, 168290. [Google Scholar] [CrossRef]
- Cherepanov, V.; Kolokolov, I.; L’vov, V. The Saga of YIG: Spectra, Thermodynamics, Interaction and Relaxation of Magnons in a Complex Magnet. Phys. Rep. 1993, 229, 81–144. [Google Scholar] [CrossRef]
- Levinstein, H.J.; Licht, S.; Landorf, R.W.; Blank, S.L. Growth of High-Quality Garnet Thin Films from Supercooled Melts. Appl. Phys. Lett. 1971, 19, 486–488. [Google Scholar] [CrossRef]
- Serga, A.A.; Chumak, A.V.; Hillebrands, B. YIG Magnonics. J. Phys. D. Appl. Phys. 2010, 43, 264002. [Google Scholar] [CrossRef]
- Emori, S.; Li, P. Ferrimagnetic Insulators for Spintronics: Beyond Garnets. J. Appl. Phys. 2021, 129, 020901. [Google Scholar] [CrossRef]
- Cooper, J.F.K.; Kinane, C.J.; Langridge, S.; Ali, M.; Hickey, B.J.; Niizeki, T.; Uchida, K.; Saitoh, E.; Ambaye, H.; Glavic, A. Unexpected Structural and Magnetic Depth Dependence of YIG Thin Films. Phys. Rev. B 2017, 96, 104404. [Google Scholar] [CrossRef]
- Mitra, A.; Cespedes, O.; Ramasse, Q.; Ali, M.; Marmion, S.; Ward, M.; Brydson, R.M.D.; Kinane, C.J.; Cooper, J.F.K.; Langridge, S.; et al. Interfacial Origin of the Magnetisation Suppression of Thin Film Yttrium Iron Garnet. Sci. Rep. 2017, 7, 11774. [Google Scholar] [CrossRef]
- Rezende, S.M. Fundamentals of Magnonics; Springer Nature: Cham, Switzerland, 2020; pp. 13–14. [Google Scholar]
- Gilbert, T.L. A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE Trans. Magn. 2004, 40, 3443–3449. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; p. 435. [Google Scholar]
- Barman, A.; Haldar, A. Time-Domain Study of Magnetization Dynamics in Magnetic Thin Films and Micro- and Nanostructures, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 65. [Google Scholar] [CrossRef]
- Flacke, L.; Liensberger, L.; Althammer, M.; Huebl, H.; Geprägs, S.; Schultheiss, K.; Buzdakov, A.; Hula, T.; Schultheiss, H.; Edwards, E.R.J.; et al. High Spin-Wave Propagation Length Consistent with Low Damping in a Metallic Ferromagnet. Appl. Phys. Lett. 2019, 115, 122402. [Google Scholar] [CrossRef]
- Li, R.; Li, P.; Yi, D.; Riddiford, L.J.; Chai, Y.; Suzuki, Y.; Ralph, D.C.; Nan, T. Anisotropic Magnon Spin Transport in Ultrathin Spinel Ferrite Thin Films-Evidence for Anisotropy in Exchange Stiffness. Nano Lett. 2022, 22, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Schoen, M.A.W.; Thonig, D.; Schneider, M.L.; Silva, T.J.; Nembach, H.T.; Eriksson, O.; Karis, O.; Shaw, J.M. Ultra-Low Magnetic Damping of a Metallic Ferromagnet. Nat. Phys. 2016, 12, 839–842. [Google Scholar] [CrossRef]
- Emori, S.; Yi, D.; Crossley, S.; Wisser, J.J.; Balakrishnan, P.P.; Khodadadi, B.; Shafer, P.; Klewe, C.; N’Diaye, A.T.; Urwin, B.T.; et al. Ultralow Damping in Nanometer-Thick Epitaxial Spinel Ferrite Thin Films. Nano Lett. 2018, 18, 4273–4278. [Google Scholar] [CrossRef] [PubMed]
- 2023 Quantum Design Inc. Introduction to: Broadband FMR Spectroscopy Magnetization Dynamics: Landau-Lifshitz-Gilbert Equation Introduction to: Broadband FMR Spectroscopy. 2017, pp. 1087–1201. Available online: https://qdusa.com/siteDocs/appNotes/1087-201.pdf (accessed on 4 July 2023).
- Mankovsky, S.; Ködderitzsch, D.; Woltersdorf, G.; Ebert, H. First-Principles Calculation of the Gilbert Damping Parameter via the Linear Response Formalism with Application to Magnetic Transition Metals and Alloys. Phys. Rev. B-Condens. Matter Mater. Phys. 2013, 87, 014430. [Google Scholar] [CrossRef]
- Schwienbacher, D.; Pernpeintner, M.; Liensberger, L.; Edwards, E.R.J.; Nembach, H.T.; Shaw, J.M.; Weiler, M.; Gross, R.; Huebl, H. Magnetoelasticity of Co25Fe75 Thin Films. J. Appl. Phys. 2019, 126, 103902. [Google Scholar] [CrossRef]
- Cheng, Y.; Lee, A.J.; Brangham, J.T.; White, S.P.; Ruane, W.T.; Hammel, P.C.; Yang, F. Thickness and Angular Dependent Ferromagnetic Resonance of Ultra-Low Damping Co25Fe75 Epitaxial Films. Appl. Phys. Lett. 2018, 113, 262403. [Google Scholar] [CrossRef]
- Edwards, E.R.J.; Nembach, H.T.; Shaw, J.M. Co25Fe75 Thin Films with Ultralow Total Damping of Ferromagnetic Resonance. Phys. Rev. Appl. 2019, 11, 054036. [Google Scholar] [CrossRef]
- Lee, A.J.; Brangham, J.T.; Cheng, Y.; White, S.P.; Ruane, W.T.; Esser, B.D.; McComb, D.W.; Hammel, P.C.; Yang, F. Metallic Ferromagnetic Films with Magnetic Damping under 1.4 × 10−3. Nat. Commun. 2017, 8, 234. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.M.; Nembach, H.T.; Silva, T.J. Roughness Induced Magnetic Inhomogeneity in Co/Ni Multilayers: Ferromagnetic Resonance and Switching Properties in Nanostructures. J. Appl. Phys. 2010, 108, 093922. [Google Scholar] [CrossRef]
- Arora, M.; Hübner, R.; Suess, D.; Heinrich, B.; Girt, E. Origin of Perpendicular Magnetic Anisotropy in Co/Ni Multilayers. Phys. Rev. B 2017, 96, 024401. [Google Scholar] [CrossRef]
- Suzuki, Y. Epitaxial spinel ferrite thin films. Annu. Rev. Mater. Res. 2001, 31, 265–289. [Google Scholar] [CrossRef]
- Datta, R.; Kanuri, S.; Karthik, S.V.; Mazumdar, D.; Ma, J.X.; Gupta, A. Formation of Antiphase Domains in NiFe2O4 Thin Films Deposited on Different Substrates. Appl. Phys. Lett. 2010, 97, 2010–2013. [Google Scholar] [CrossRef]
- Singh, A.V.; Khodadadi, B.; Mohammadi, J.B.; Keshavarz, S.; Mewes, T.; Negi, D.S.; Datta, R.; Galazka, Z.; Uecker, R.; Gupta, A. Bulk Single Crystal-Like Structural and Magnetic Characteristics of Epitaxial Spinel Ferrite Thin Films with Elimination of Antiphase Boundaries. Adv. Mater. 2017, 29, 1701222. [Google Scholar] [CrossRef]
- Roy, D.; Sakshath, S.; Singh, G.; Joshi, R.; Bhat, S.V.; Anil Kumar, P.S. Investigation on Two Magnon Scattering Processes in Pulsed Laser Deposited Epitaxial Nickel Zinc Ferrite Thin Film. J. Phys. D. Appl. Phys. 2015, 48, 125004. [Google Scholar] [CrossRef]
- Riddiford, L.J.; Wisser, J.J.; Emori, S.; Li, P.; Roy, D.; Cogulu, E.; Van ’T Erve, O.; Deng, Y.; Wang, S.X.; Jonker, B.T.; et al. Efficient Spin Current Generation in Low-Damping Mg(Al, Fe)2O4 Thin Films. Appl. Phys. Lett. 2019, 115, 122401. [Google Scholar] [CrossRef]
- Wisser, J.J.; Grutter, A.J.; Gilbert, D.A.; N’Diaye, A.T.; Klewe, C.; Shafer, P.; Arenholz, E.; Suzuki, Y.; Emori, S. Damping Enhancement in Coherent Ferrite-Insulating-Paramagnet Bilayers. Phys. Rev. Appl. 2019, 12, 1. [Google Scholar] [CrossRef]
- Wisser, J.J.; Riddiford, L.J.; Altman, A.; Li, P.; Emori, S.; Shafer, P.; Klewe, C.; N’Diaye, A.T.; Arenholz, E.; Suzuki, Y. The Role of Iron in Magnetic Damping of Mg(Al,Fe)2O4 Spinel Ferrite Thin Films. Appl. Phys. Lett. 2020, 116, 142406. [Google Scholar] [CrossRef]
- Komar, P.; Jakob, G. CADEM: Calculate X-Ray Diffraction of Epitaxial Multilayers. J. Appl. Crystallogr. 2017, 50, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Wisser, J.J.; Emori, S.; Riddiford, L.; Altman, A.; Li, P.; Mahalingam, K.; Urwin, B.T.; Howe, B.M.; Page, M.R.; Grutter, A.J.; et al. Ultrathin Interfacial Layer with Suppressed Room Temperature Magnetization in Magnesium Aluminum Ferrite Thin Films. Appl. Phys. Lett. 2019, 115, 132404. [Google Scholar] [CrossRef]
- Kajiwara, Y.; Harii, K.; Takahashi, S.; Ohe, J.; Uchida, K.; Mizuguchi, M.; Umezawa, H.; Kawai, H.; Ando, K.; Takanashi, K.; et al. Transmission of Electrical Signals by Spin-Wave Interconversion in a Magnetic Insulator. Nature 2010, 464, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Serga, A.A.; Leven, B.; Hillebrands, B.; Stamps, R.L.; Kostylev, M.P. Realization of Spin-Wave Logic Gates. Appl. Phys. Lett. 2008, 92, 022505. [Google Scholar] [CrossRef]
- Klingler, S.; Chumak, A.; Mewes, T.; Khodadadi, B.; Mewes, C.; Dubs, C.; Surzhenko, O.; Hillebrands, B.; Conca, A. Measurements of the Exchange Stiffness of YIG Films Using Broadband Ferromagnetic Resonance Techniques. J. Phys. D. Appl. Phys. 2015, 48, 015001. [Google Scholar] [CrossRef]
- Körner, H.S.; Schoen, M.A.W.; Mayer, T.; Decker, M.M.; Stigloher, J.; Weindler, T.; Meier, T.N.G.; Kronseder, M.; Back, C.H. Magnetic Damping in Poly-Crystalline Co25Fe75: Ferromagnetic Resonance vs. Spin Wave Propagation Experiments. Appl. Phys. Lett. 2017, 111, 132406. [Google Scholar] [CrossRef]
- Abo, G.S.; Hong, Y.K.; Park, J.; Lee, J.; Lee, W.; Choi, B.C. Definition of Magnetic Exchange Length. IEEE Trans. Magn. 2013, 49, 4937–4939. [Google Scholar] [CrossRef]
- Chumak, A.V.; Vasyuchka, V.I.; Serga, A.A.; Hillebrands, B. Magnon Spintronics. Nat. Phys. 2015, 11, 453–461. [Google Scholar] [CrossRef]
Thin Film/Substrate | (YIG)Y3Fe5O12/ Gd3Ga5O12 (GGG) | Co25Fe75/ Si/SiO2 | MgAl0.5Fe1.5O4/ MgAl2O4 | |
---|---|---|---|---|
Parameters | ||||
Gilbert damping constant | α ≈ 6.7 × 10−5 | α ≈ 2.1 × 10−3 | α ≈ 1.5 × 10−3 | |
Magnon propagation length | Several cm | (21 ± 1) µm | (0.6–0.9) µm | |
Magnetostatic exchange length | ~17.6 nm | ~3.4 nm | ~20.5 nm | |
Thin film fabrication | Liquid phase epitaxy on single crystal (111) Gd3Ga5O12 with PbO-B2O3 flux 927 °C. | Sputter deposited on Si/SiO2 substrates at ambient temperature. Polycrystalline films, no post-deposition processing required. | Pulsed laser deposition at 450 °C on MAO substrates. Epitaxial growth required. | |
Challenges for magnonic applications | Growth is not CMOS compatible. Expensive substrates. | Reduce extrinsic factors that increment the intrinsic damping parameter. | PLD fabrication is challenging to scale up. Alternative substrates. Low Ms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaur, S.S.; Marinero, E.E. Emergent Magnonic Materials: Challenges and Opportunities. Materials 2023, 16, 6299. https://doi.org/10.3390/ma16186299
Gaur SS, Marinero EE. Emergent Magnonic Materials: Challenges and Opportunities. Materials. 2023; 16(18):6299. https://doi.org/10.3390/ma16186299
Chicago/Turabian StyleGaur, Samanvaya S., and Ernesto E. Marinero. 2023. "Emergent Magnonic Materials: Challenges and Opportunities" Materials 16, no. 18: 6299. https://doi.org/10.3390/ma16186299
APA StyleGaur, S. S., & Marinero, E. E. (2023). Emergent Magnonic Materials: Challenges and Opportunities. Materials, 16(18), 6299. https://doi.org/10.3390/ma16186299