Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = CEA gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1549 KiB  
Article
Differentiating Main-Duct IPMN from Chronic Pancreatitis Using Next-Generation Sequencing of Main Pancreatic Duct Fluid: A Pilot Study
by Daniel Schmitz, Stefan Prax, Martin Kliment, Felix Gocke, Daniel Kazdal, Michael Allgäuer, Roland Penzel, Martina Kirchner, Olaf Neumann, Holger Sültmann, Jan Budczies, Peter Schirmacher, Frank Bergmann, Jörg-Peter Ritz, Raoul Hinze, Felix Grassmann, Jochen Rudi, Albrecht Stenzinger and Anna-Lena Volckmar
Diagnostics 2025, 15(15), 1964; https://doi.org/10.3390/diagnostics15151964 - 5 Aug 2025
Abstract
Background: A dilated main pancreatic duct (MPD) ≥ 5 mm can be observed in main-duct IPMNs (MD-IPMN) and chronic pancreatitis (CP); however, distinguishing between the two differently treated diseases can be difficult. Cell-free (cf) DNA in MPD fluid obtained by EUS-guided FNA [...] Read more.
Background: A dilated main pancreatic duct (MPD) ≥ 5 mm can be observed in main-duct IPMNs (MD-IPMN) and chronic pancreatitis (CP); however, distinguishing between the two differently treated diseases can be difficult. Cell-free (cf) DNA in MPD fluid obtained by EUS-guided FNA might help to distinguish MD-IPMN from CP. Methods: All patients with a dilated MPD ≥ 5 mm on EUS during the period of 1 June 2017 to 30 April 2024 were prospectively analysed in this single-centre study, with EUS-guided MPD fluid aspiration performed for suspected MD-IPMN or CP in patients who were suitable for surgery. Twenty-two known gastrointestinal cancer genes, including GNAS and KRAS, were analysed by deep targeted (dt) NGS. The results were correlated with resected tissue, biopsy, and long-term follow-up. Results: A total of 164 patients with a dilated MPD were identified, of which 30 (18.3%) underwent EUS-guided FNA, with 1 patient having a minor complication (3.3%). Twenty-two patients (mean MPD diameter of 12.4 (7–31) mm) with a definitive, mostly surgically confirmed diagnosis were included in the analysis. Only a fish-mouth papilla, which was present in 3 of 12 (25%) MD-IPMNs, could reliably differentiate between the two diseases, with history, symptoms, diffuse or segmental MPD dilation, presence of calcifications on imaging, cytology, and CEA in the ductal fluid failing to achieve differentiation. However, GNAS mutations were found exclusively in 11 of the 12 (91.6%) patients with MD-IPMN (p < 0.01), whereas KRAS mutations were identified in both diseases. Conclusions: GNAS testing by dtNGS in aspirated fluid from dilated MPD obtained by EUS-guided FNA may help differentiate MD-IPMN from CP for surgical resection. Full article
(This article belongs to the Special Issue Advances in Endoscopy)
Show Figures

Graphical abstract

24 pages, 1253 KiB  
Review
Harnessing Transient Expression Systems with Plant Viral Vectors for the Production of Biopharmaceuticals in Nicotiana benthamiana
by Sayed Abdul Akher, Kevin Yueju Wang, Kylie Hall, Oluwaseyi Setonji Hunpatin, Muhammad Shan, Zenglin Zhang and Yongfeng Guo
Int. J. Mol. Sci. 2025, 26(12), 5510; https://doi.org/10.3390/ijms26125510 - 9 Jun 2025
Cited by 1 | Viewed by 1180
Abstract
Plant Molecular Farming (PMF) capitalizes on the unique properties of plants as bioreactors to efficiently produce valuable proteins, pharmaceuticals, and enzymes. This review emphasizes the critical role of transient expression systems, particularly in Nicotiana benthamiana, due to its susceptibility to various pathogens. [...] Read more.
Plant Molecular Farming (PMF) capitalizes on the unique properties of plants as bioreactors to efficiently produce valuable proteins, pharmaceuticals, and enzymes. This review emphasizes the critical role of transient expression systems, particularly in Nicotiana benthamiana, due to its susceptibility to various pathogens. Viral vector-based transient expression has proven essential during health emergencies like COVID-19, enabling rapid recombinant protein production. The review also evaluates different transient expression platforms and highlights their applications in biopharmaceutical production, education, synthetic biology, and gene editing. Advances in viral vector modification, hydroponics, and Controlled Environment Agriculture (CEA) are presented as transformative innovations enhancing scalability and regulatory compliance. Furthermore, glycoengineering advancements broaden the range of producible biopharmaceuticals, improving global medication access. By exploring these advancements, this review underscores the vast potential of transient expression systems to meet dynamic scientific and market demands, positioning PMF as a vital component in modern biotechnology. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 3374 KiB  
Article
Kiperin Double-Hydrolyzed Collagen as a Potential Anti-Tumor Agent: Effects on HCT116 Colon Carcinoma Cells and Oxidative Stress Modulation
by Lutfiye Karcioglu Batur, Cuneyd Yavas and Nezih Hekim
Curr. Issues Mol. Biol. 2025, 47(5), 364; https://doi.org/10.3390/cimb47050364 - 15 May 2025
Viewed by 1372
Abstract
Double-hydrolyzed collagen, a key structural protein, has gained increasing attention for its role in cancer progression and its potential therapeutic applications. This study aims to investigate the effects of double-hydrolyzed collagen (Type I and III peptides) on HCT116 colon carcinoma cells and CCD-18Co [...] Read more.
Double-hydrolyzed collagen, a key structural protein, has gained increasing attention for its role in cancer progression and its potential therapeutic applications. This study aims to investigate the effects of double-hydrolyzed collagen (Type I and III peptides) on HCT116 colon carcinoma cells and CCD-18Co fibroblasts as a normal control. Cells were treated with 0.5 µg/mL, 1 µg/mL, and 1.5 µg/mL of collagen peptide solution. HCT116 and CCD-18Co cells were cultured under standard conditions and treated with 1 µg/mL collagen. Cell viability (MTT assay), migration (scratch assay), oxidative stress (TAS/TOS kits), TNF-α expression (qRT-PCR), and tumor marker levels (CA19-9, CEA, CA72-4, and CYFRA 21-1; CLIA) were evaluated. Cell viability, proliferation, migration, oxidative stress, and tumor marker levels were assessed. Statistical analyses were performed to determine significance. Double-hydrolyzed collagen treatment significantly increased CCD-18Co fibroblast proliferation (p = 0.0143), while HCT116 cancer cell numbers significantly decreased (p = 0.0045). Migration of HCT116 cells was markedly reduced (p < 0.0001), whereas no significant effect was observed in CCD-18Co fibroblasts (p = 0.559). Oxidative stress analysis showed decreased total oxidative status (TOS) and increased total antioxidant status (TAS) in HCT116 cells (p = 0.0075 and p = 0.0095, respectively), with no significant changes in normal fibroblasts. Among tumor markers, CA19-9 levels were significantly reduced in HCT116 cells (p = 0.013), while CEA, CA72-4, and CYFRA 21-1 remained unchanged. TNF-α gene expression analysis confirmed the absence of inflammatory or adverse effects in normal fibroblasts. These findings suggest that double-hydrolyzed collagen selectively inhibits colon cancer cell proliferation and migration, modulates oxidative stress, and reduces CA19-9 levels while promoting fibroblast growth. The differential effects between cancerous and normal cells highlight collagen’s potential as a complementary therapeutic approach for colorectal cancer. Further research is needed to elucidate the underlying mechanisms and assess its clinical applicability. Double-hydrolyzed collagen appears to be a safe and beneficial dietary component with promising biological effects and therapeutic potential. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

13 pages, 1289 KiB  
Article
Analysis of Selected Eye Disorders in a Group of Predisposed Breeds of Dogs: Molecular Diagnostics of Collie Eye Anomaly and Progressive Retinal Atrophy
by Jaroslav Bučan, Beáta Holečková, Martina Galdíková, Jana Halušková and Viera Schwarzbacherová
Genes 2025, 16(5), 474; https://doi.org/10.3390/genes16050474 - 23 Apr 2025
Viewed by 661
Abstract
Background: Two hereditary eye disorders that are frequently observed in Collies and related breeds are Collie Eye Anomaly (CEA) and Progressive Retinal Atrophy (PRA). The main symptom of CEA is choroidal hypoplasia. It is associated with a 7.8 kb deletion in intron 4 [...] Read more.
Background: Two hereditary eye disorders that are frequently observed in Collies and related breeds are Collie Eye Anomaly (CEA) and Progressive Retinal Atrophy (PRA). The main symptom of CEA is choroidal hypoplasia. It is associated with a 7.8 kb deletion in intron 4 of the NHEJ1 gene located on chromosome CFA7. Rod–cone dysplasia 3 (RCD3), an early-onset form of PRA, is associated with mutations in the PDE6A gene. Methods: Molecular diagnostic techniques were used in this study to identify genetic mutations linked to CEA and RCD3-type PRA in a subset of dog breeds. Australian Shepherds (n = 29), Border Collies (n = 9), Longhaired Collies (n = 27), and Shetland Sheepdogs (n = 10) provided a total of 75 DNA samples. Samples were collected by buccal swab or blood draw, and PCR and real-time PCR methods were used for processing. Results: Of the dogs in the studied breeds, 31 had the NHEJ1 gene mutation linked to CEA. Among these, 15 were homozygous recessive (affected), while 16 were heterozygous (carriers). None of the samples had any mutations in the PDE6A gene associated with RCD3-type PRA. Conclusions: Effective identification of carriers and affected individuals for CEA was made possible by PCR-based genetic testing, confirming its value in early diagnosis and breed control. Although the RCD3 form of PRA has not been previously reported in Collies or Australian Shepherds, it was included in our analysis due to the genetic relatedness among herding breeds and the potential presence of undetected carriers resulting from historical crossbreeding. Full article
(This article belongs to the Special Issue Genetics in Retinal Diseases—2nd Edition)
Show Figures

Figure 1

13 pages, 550 KiB  
Review
Prognostic Impact of Phenotypic and Genetic Features of Pancreatic Malignancies
by Mikhail B. Potievskiy, Lidia A. Nekrasova, Ivan V. Korobov, Ekaterina A. Bykova, Ruslan I. Moshurov, Pavel V. Sokolov, Peter A. Shatalov, Natalia A. Falaleeva, Leonid O. Petrov, Vladimir S. Trifanov, Sergey A. Ivanov, Peter V. Shegai and Andrei D. Kaprin
Life 2025, 15(4), 635; https://doi.org/10.3390/life15040635 - 11 Apr 2025
Cited by 1 | Viewed by 835
Abstract
Pancreatic cancer is a tumor with a poor prognosis, and improving its survival outcomes remains a formidable challenge, requiring a multidisciplinary approach that integrates innovative surgical and pharmacological strategies, guided by molecular and genetic insights. The pathomorphological and genetic characteristics of pancreatic cancer, [...] Read more.
Pancreatic cancer is a tumor with a poor prognosis, and improving its survival outcomes remains a formidable challenge, requiring a multidisciplinary approach that integrates innovative surgical and pharmacological strategies, guided by molecular and genetic insights. The pathomorphological and genetic characteristics of pancreatic cancer, reflected in morphological, immunohistochemical, and serological marker expression, reveal key patterns of tumor genotypic changes during carcinogenesis, aiding in prognostic evaluation and clinical strategy development. The mutational profile of pancreatic tumors is quite heterogeneous and diverse in terms of mutated genes, including in relation to morphological subtypes, but certain patterns have been identified as a result of studies. Pancreatic adenocarcinoma, for instance, is frequently driven by mutations regulating cell division (KRAS). The disease prognosis often depends on the morphological subtype and tumor microenvironment. Neuroendocrine tumors of the pancreas are characterized by a number of pathogenetic features that distinguish them from adenocarcinomas. Thus, neuroendocrine tumors are characterized by mutations of the MENIN protein, which prevents cells from entering the mitosis phase by stimulating the expression of cell cycle regulators. Thus, epithelial and neuroendocrine malignancies of the pancreas differ in immunohistochemical and genetic features, but there are similar mechanisms of pathogenesis, such as BRCA1 and BRCA2 gene mutations, impaired expression of p53 antioncogene, and HIF-2α and mTOR receptor mutations. The predictive impact of serological markers, such as CA 19-9 and CEA, offers insights into tumor metastasis and long-term outcomes, emphasizing the need for personalized therapeutic strategies. Tailoring treatments based on individual molecular profiles holds promise for improving prognosis, as the genetic landscape of pancreatic tumors varies significantly between patients. This underscores the importance of a systematic, patient-specific approach that addresses tumor heterogeneity, resistance mechanisms, and the molecular underpinnings of carcinogenesis. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1280 KiB  
Review
New World Primates and Their Human Counterparts Share Diseases That Abound with CEACAM and Other Effector Molecules
by Martin Tobi, Daniel Ezekwudo, Benita McVicker, Harvinder Talwar, Laura Kresty, Elizabeth Curran, Ronald Veazey, Peter J. Didier, James Hatfield, Mike Lawson and Sonia M. Najjar
Life 2025, 15(3), 481; https://doi.org/10.3390/life15030481 - 17 Mar 2025
Viewed by 837
Abstract
Background: Herein, we review the Cotton Top Tamarin (CTT), Saguinus oedipus, a unique spontaneous model for colorectal cancer (CRC). Despite its predisposition to inflammatory bowel disease (IBD) and frequent development of CRC, the CTT is adept at avoiding colorectal metastasis in the [...] Read more.
Background: Herein, we review the Cotton Top Tamarin (CTT), Saguinus oedipus, a unique spontaneous model for colorectal cancer (CRC). Despite its predisposition to inflammatory bowel disease (IBD) and frequent development of CRC, the CTT is adept at avoiding colorectal metastasis in the liver. In contrast, the common marmoset (CM), Callithrix jacchus, is a natural negative control, in that it also contracts IBD, but usually not CRC. We review our findings in these New World monkeys in terms of the expression of CEACAM adhesion models and their related molecules to contrast them with human disease. Methods: Specimens were collected from aforementioned monkey colorectal and other tissues, colonic washings, serum for analysis of tissue extraction, and colonic washings via ELISA, using a battery of antibodies. Fixed tissues were analyzed using immunohistochemistry and CEACAMs were extracted via Western blotting. Serum CEA levels were analyzed using ELISA, and DNA was extracted via a Bigblast genomics sequencing kit. Results: Serum CEA was significantly elevated in CTTs, and one-third of them die from CRC. Unlike others, we were unable to stain for CEA in tissues. The sialylated carbohydrate antigen recognized by monoclonal antibody (MAb) SPAN-1 does stain in 16.7% of CTT tissues, but the anti-aminoproteoglycan MAb, CaCo.3/61, stained 93.3% (OR70·00[CI6.5–754.5] p < 0.0001). The common CEA kits from Abbott and Roche were non-conclusive for CEA. We later adopted a CEA AIA-PACK from Tosoh Medics, which identified a 50 Kda band via Western blotting in humans and CTTs. The CEA levels were higher using the CEA AIA-PACK than the Pharmatrope kit (932 ± 690 versus 432 ± 407 ng/mL (p < 0.05)) in human patient colonic effluent, not statistically significant (NSS) for CTT extracts or effluent (733 ± 325 and 739 ± 401 ng/mL, respectively). It was suggested that the smaller CTT CEA moiety might lack components that facilitate the spread of liver metastasis. Later, using more specific CEA assays and increased numbers of specimens, we were able to show higher CEA serum expression in CTTs than in CMs (632.1 ± 306.1 vs. 81.6 ± 183.6, p < 0.005), with similar differences in the serum samples. Western blotting with the anti-CEA T84.66 MAb showed bands above 100 KDa in CTTs. The profiles in CTTs were similar to human patients with inflammatory bowel disease. We established that the CEA anchorage to the cell was a GPI-linkage, advantageous for the inhibition of differentiation and anoikis. With further CEA DNA analysis, we were able to determine at least five different mechanisms that may inhibit liver metastasis, mostly related to CEA, but later expanded this to seven, and increased the relationships to CEACAM1 and other related molecules. Recently, we obtained CTT liver mRNA transcriptomes that implicated several pathways of interest. Conclusions: With efforts spanning over three decades, we were able to characterize CEA and other changes that allow us to better understand the CTT phenomenon of liver metastasis inhibition. We are in the process of characterizing the CTT liver mRNA transcriptome to compare it with that of the common marmoset. Currently, liver CTT gene expression patterns suggest that ribosomes, lipoproteins, and antioxidant defense are related to differences between CTTs and CMs. Full article
(This article belongs to the Special Issue Veterinary Pathology and Veterinary Anatomy: 3rd Edition)
Show Figures

Figure 1

27 pages, 3559 KiB  
Article
Dysfunction of Small-Conductance Ca2+-Activated Potassium (SK) Channels Drives Amygdala Hyperexcitability and Neuropathic Pain Behaviors: Involvement of Epigenetic Mechanisms
by Vadim Yakhnitsa, Jeremy Thompson, Olga Ponomareva, Guangchen Ji, Takaki Kiritoshi, Lenin Mahimainathan, Deborah Molehin, Kevin Pruitt and Volker Neugebauer
Cells 2024, 13(12), 1055; https://doi.org/10.3390/cells13121055 - 18 Jun 2024
Cited by 3 | Viewed by 2110
Abstract
Neuroplasticity in the amygdala and its central nucleus (CeA) is linked to pain modulation and pain behaviors, but cellular mechanisms are not well understood. Here, we addressed the role of small-conductance Ca2+-activated potassium (SK) channels in pain-related amygdala plasticity. The facilitatory [...] Read more.
Neuroplasticity in the amygdala and its central nucleus (CeA) is linked to pain modulation and pain behaviors, but cellular mechanisms are not well understood. Here, we addressed the role of small-conductance Ca2+-activated potassium (SK) channels in pain-related amygdala plasticity. The facilitatory effects of the intra-CeA application of an SK channel blocker (apamin) on the pain behaviors of control rats were lost in a neuropathic pain model, whereas an SK channel activator (NS309) inhibited pain behaviors in neuropathic rats but not in sham controls, suggesting the loss of the inhibitory behavioral effects of amygdala SK channels. Brain slice electrophysiology found hyperexcitability of CeA neurons in the neuropathic pain condition due to the loss of SK channel-mediated medium afterhyperpolarization (mAHP), which was accompanied by decreased SK2 channel protein and mRNA expression, consistent with a pretranscriptional mechanisms. The underlying mechanisms involved the epigenetic silencing of the SK2 gene due to the increased DNA methylation of the CpG island of the SK2 promoter region and the change in methylated CpG sites in the CeA in neuropathic pain. This study identified the epigenetic dysregulation of SK channels in the amygdala (CeA) as a novel mechanism of neuropathic pain-related plasticity and behavior that could be targeted to control abnormally enhanced amygdala activity and chronic neuropathic pain. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Chronic Pain)
Show Figures

Graphical abstract

18 pages, 2113 KiB  
Article
Evaluation of Safety and Probiotic Traits from a Comprehensive Genome-Based In Silico Analysis of Ligilactobacillus salivarius P1CEA3, Isolated from Pigs and Producer of Nisin S
by Ester Sevillano, Irene Lafuente, Nuria Peña, Luis M. Cintas, Estefanía Muñoz-Atienza, Pablo E. Hernández and Juan Borrero
Foods 2024, 13(1), 107; https://doi.org/10.3390/foods13010107 - 28 Dec 2023
Cited by 5 | Viewed by 2324
Abstract
Ligilactobacillus salivarius is an important member of the porcine gastrointestinal tract (GIT). Some L. salivarius strains are considered to have a beneficial effect on the host by exerting different probiotic properties, including the production of antimicrobial peptides which help maintain a healthy gut [...] Read more.
Ligilactobacillus salivarius is an important member of the porcine gastrointestinal tract (GIT). Some L. salivarius strains are considered to have a beneficial effect on the host by exerting different probiotic properties, including the production of antimicrobial peptides which help maintain a healthy gut microbiota. L. salivarius P1CEA3, a porcine isolated strain, was first selected and identified by its antimicrobial activity against a broad range of pathogenic bacteria due to the production of the novel bacteriocin nisin S. The assembled L. salivarius P1CEA3 genome includes a circular chromosome, a megaplasmid (pMP1CEA3) encoding the nisin S gene cluster, and two small plasmids. A comprehensive genome-based in silico analysis of the L. salivarius P1CEA3 genome reveals the presence of genes related to probiotic features such as bacteriocin synthesis, regulation and production, adhesion and aggregation, the production of lactic acid, amino acids metabolism, vitamin biosynthesis, and tolerance to temperature, acid, bile salts and osmotic and oxidative stress. Furthermore, the strain is absent of risk-related genes for acquired antibiotic resistance traits, virulence factors, toxic metabolites and detrimental metabolic or enzymatic activities. Resistance to common antibiotics and gelatinase and hemolytic activities have been discarded by in vitro experiments. This study identifies several probiotic and safety traits of L. salivarius P1CEA3 and suggests its potential as a promising probiotic in swine production. Full article
Show Figures

Figure 1

17 pages, 2915 KiB  
Article
Correlation of the Pro-Inflammatory Cytokines IL-1β, IL-6, and TNF-α, Inflammatory Markers, and Tumor Markers with the Diagnosis and Prognosis of Colorectal Cancer
by Dan Nicolae Florescu, Mihail-Virgil Boldeanu, Robert-Emmanuel Șerban, Lucian Mihai Florescu, Mircea-Sebastian Serbanescu, Mihaela Ionescu, Liliana Streba, Cristian Constantin and Cristin Constantin Vere
Life 2023, 13(12), 2261; https://doi.org/10.3390/life13122261 - 27 Nov 2023
Cited by 28 | Viewed by 6649
Abstract
Colorectal cancer (CRC) remains one of the most important global health problems, being in the top 3 neoplasms in terms of the number of cases worldwide. Although CRC develops predominantly from the adenoma–adenocarcinoma sequence through APC gene mutations, in recent years, studies have [...] Read more.
Colorectal cancer (CRC) remains one of the most important global health problems, being in the top 3 neoplasms in terms of the number of cases worldwide. Although CRC develops predominantly from the adenoma–adenocarcinoma sequence through APC gene mutations, in recent years, studies have demonstrated the role of chronic inflammation in this neoplasia pathogenesis. Cytokines are important components of chronic inflammation, being some of the host regulators in response to inflammation. The pro-inflammatory cytokines IL-1β, IL-6, and TNF-α are involved in tumor cell proliferation, angiogenesis, and metastasis and seem to strengthen each other’s mode of action, these being stimulated by the same mediators. In our study, we collected data on 68 patients with CRC and 20 healthy patients from the Gastroenterology Department of Craiova County Emergency Clinical Hospital, who were assessed between January 2022 and February 2023. The main purpose of this study was to investigate the correlation between increased plasma levels of the cytokines and the extent of the tumor, lymph nodes, and metastasis—(TNM stage), as well as the patients’ prognoses. We also compared the plasma levels of cytokines and acute inflammatory markers, namely, the erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), and fibrinogen, along with the tumor markers, carcinoembryonic antigen (CEA) and carbohydrate antigen 19.9 (CA 19.9), in CRC patients. We showed that all the pro-inflammatory cytokines studied had higher levels in patients with CRC in comparison with the control group. We also showed that the acute inflammatory markers of erythrocyte sedimentation rate, C-reactive protein, and fibrinogen, and the tumor markers of CEA and CA 19.9 can be useful in diagnosis and prognosis in patients with CRC. Considering the association between pro-inflammatory cytokines and CRC, the development of new targeted therapies against IL-1β, IL-6, and TNF-α can improve patient care and the CRC survival rate. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

27 pages, 705 KiB  
Review
A Review of Biomarkers and Their Clinical Impact in Resected Early-Stage Non-Small-Cell Lung Cancer
by Weibo Cao, Quanying Tang, Jingtong Zeng, Xin Jin, Lingling Zu and Song Xu
Cancers 2023, 15(18), 4561; https://doi.org/10.3390/cancers15184561 - 14 Sep 2023
Cited by 19 | Viewed by 3753
Abstract
The postoperative survival of early-stage non-small-cell lung cancer (NSCLC) patients remains unsatisfactory. In this review, we examined the relevant literature to ascertain the prognostic effect of related indicators on early-stage NSCLC. The prognostic effects of the epidermal growth factor receptor (EGFR), anaplastic lymphoma [...] Read more.
The postoperative survival of early-stage non-small-cell lung cancer (NSCLC) patients remains unsatisfactory. In this review, we examined the relevant literature to ascertain the prognostic effect of related indicators on early-stage NSCLC. The prognostic effects of the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), mesenchymal–epithelial transition (MET), C-ros oncogene 1 (ROS1), or tumour protein p53 (TP53) alterations in resected NSCLC remains debatable. Kirsten rat sarcoma viral oncogene homologue (KRAS) alterations indicate unfavourable outcomes in early-stage NSCLC. Meanwhile, adjuvant or neoadjuvant EGFR-targeted agents can substantially improve prognosis in early-stage NSCLC with EGFR alterations. Based on the summary of current studies, resected NSCLC patients with overexpression of programmed death-ligand 1 (PD-L1) had worsening survival. Conversely, PD-L1 or PD-1 inhibitors can substantially improve patient survival. Considering blood biomarkers, perioperative peripheral venous circulating tumour cells (CTCs) and pulmonary venous CTCs predicted unfavourable prognoses and led to distant metastases. Similarly, patients with detectable perioperative circulating tumour DNA (ctDNA) also had reduced survival. Moreover, patients with perioperatively elevated carcinoembryonic antigen (CEA) in the circulation predicted significantly worse survival outcomes. In the future, we will incorporate mutated genes, immune checkpoints, and blood-based biomarkers by applying artificial intelligence (AI) to construct prognostic models that predict patient survival accurately and guide individualised treatment. Full article
Show Figures

Figure 1

17 pages, 8110 KiB  
Article
Sodium Leak Channel in Glutamatergic Neurons of the Lateral Parabrachial Nucleus Modulates Inflammatory Pain in Mice
by Lin Wu, Yujie Wu, Jin Liu, Jingyao Jiang, Cheng Zhou and Donghang Zhang
Int. J. Mol. Sci. 2023, 24(15), 11907; https://doi.org/10.3390/ijms241511907 - 25 Jul 2023
Cited by 9 | Viewed by 2267
Abstract
Elevated excitability of glutamatergic neurons in the lateral parabrachial nucleus (PBL) is associated with the pathogenesis of inflammatory pain, but the underlying molecular mechanisms are not fully understood. Sodium leak channel (NALCN) is widely expressed in the central nervous system and regulates neuronal [...] Read more.
Elevated excitability of glutamatergic neurons in the lateral parabrachial nucleus (PBL) is associated with the pathogenesis of inflammatory pain, but the underlying molecular mechanisms are not fully understood. Sodium leak channel (NALCN) is widely expressed in the central nervous system and regulates neuronal excitability. In this study, chemogenetic manipulation was used to explore the association between the activity of PBL glutamatergic neurons and pain thresholds. Complete Freund’s adjuvant (CFA) was used to construct an inflammatory pain model in mice. Pain behaviour was tested using von Frey filaments and Hargreaves tests. Local field potential (LFP) was used to record the activity of PBL glutamatergic neurons. Gene knockdown techniques were used to investigate the role of NALCN in inflammatory pain. We further explored the downstream projections of PBL using cis-trans-synaptic tracer virus. The results showed that chemogenetic inhibition of PBL glutamatergic neurons increased pain thresholds in mice, whereas chemogenetic activation produced the opposite results. CFA plantar modelling increased the number of C-Fos protein and NALCN expression in PBL glutamatergic neurons. Knockdown of NALCN in PBL glutamatergic neurons alleviated CFA-induced pain. CFA injection induced C-Fos protein expression in central nucleus amygdala (CeA) neurons, which was suppressed by NALCN knockdown in PBL glutamatergic neurons. Therefore, elevated expression of NALCN in PBL glutamatergic neurons contributes to the development of inflammatory pain via PBL-CeA projections. Full article
(This article belongs to the Special Issue Mechanisms of Neurotoxicity)
Show Figures

Figure 1

7 pages, 439 KiB  
Article
The Impact of Amortization of Gene Therapies Funding on the Results and Conclusions of CEMs and BIMs
by Hubert Polek, Justyna Janik, Ewelina Paterak, Monique Dabbous, Michał Pochopień and Mondher Toumi
J. Mark. Access Health Policy 2023, 11(1), 2232648; https://doi.org/10.1080/20016689.2023.2232648 - 10 Jul 2023
Viewed by 1119
Abstract
ABSTRACT Background: Gene replacement therapy (GRT) is a treatment method used to combat or prevent various diseases. Its high one-off cost constitutes a major obstacle for successful market access. This paper aims to assess and discuss the applicability of amortization in models, [...] Read more.
ABSTRACT Background: Gene replacement therapy (GRT) is a treatment method used to combat or prevent various diseases. Its high one-off cost constitutes a major obstacle for successful market access. This paper aims to assess and discuss the applicability of amortization in models, such as cost-effectiveness models (CEMs) and budget impact models (BIMs) informing HTA recommendations and reimbursement decisions. Methods and findings: A hypothetical CEA and BIA were considered. The objective was to compare the GRT with and without amortization. A straight-line amortization model was used. The CEM and BIM were considered and assessed based on two set of scenarios: considering different amortization duration or different discounting rate. The impact of amortization against the total cost of gene therapy was assessed for all the scenarios. The cost difference between GRT with and without amortization in relation to its total cost was -$58,855, thus amortization does not have a significant impact on the results and conclusions of the cost-effectiveness analysis. For BIM in the base case, amortization had no impact on the results. Conclusion: Amortization has negligible impact on the results of CEM and total BIM and no impact on the conclusions from the model. One exception is the budget impact in case of an amortization period longer than the time horizon of BIM, where a half of the GRT price is moved beyond the model time horizon. Amortization has a distinguishing effect from an accounting perspective, but it does not have any implication for payers. Full article
20 pages, 3161 KiB  
Article
Nisin S, a Novel Nisin Variant Produced by Ligilactobacillus salivarius P1CEA3
by Ester Sevillano, Nuria Peña, Irene Lafuente, Luis M. Cintas, Estefanía Muñoz-Atienza, Pablo E. Hernández and Juan Borrero
Int. J. Mol. Sci. 2023, 24(7), 6813; https://doi.org/10.3390/ijms24076813 - 6 Apr 2023
Cited by 18 | Viewed by 4384
Abstract
Recently, the food industry and the animal farming field have been working on different strategies to reduce the use of antibiotics in animal production. The use of probiotic producers of antimicrobial peptides (bacteriocins) is considered to be a potential solution to control bacterial [...] Read more.
Recently, the food industry and the animal farming field have been working on different strategies to reduce the use of antibiotics in animal production. The use of probiotic producers of antimicrobial peptides (bacteriocins) is considered to be a potential solution to control bacterial infections and to reduce the use of antibiotics in animal production. In this study, Ligilactobacillus salivarius P1CEA3, isolated from the gastrointestinal tract (GIT) of pigs, was selected for its antagonistic activity against Gram-positive pathogens of relevance in swine production. Whole genome sequencing (WGS) of L. salivarius P1ACE3 revealed the existence of two gene clusters involved in bacteriocin production, one with genes encoding the class II bacteriocins salivaricin B (SalB) and Abp118, and a second cluster encoding a putative nisin variant. Colony MALDI-TOF MS determinations and a targeted proteomics combined with massive peptide analysis (LC-MS/MS) of the antimicrobial peptides encoded by L. salivarius P1CEA3 confirmed the production of a 3347 Da novel nisin variant, termed nisin S, but not the production of the bacteriocins SalB and Abp118, in the supernatants of the producer strain. This is the first report of a nisin variant encoded and produced by L. salivarius, a bacterial species specially recognized for its safety and probiotic potential. Full article
Show Figures

Figure 1

12 pages, 1052 KiB  
Article
KRAS Mutational Profiles among Colorectal Cancer Patients in the East Coast of Peninsular Malaysia
by Hidayati Husainy Hasbullah, Sarina Sulong, Nur Asyilla Che Jalil, Ahmad Aizat Abdul Aziz, Nurfadhlina Musa and Marahaini Musa
Diagnostics 2023, 13(5), 822; https://doi.org/10.3390/diagnostics13050822 - 21 Feb 2023
Cited by 9 | Viewed by 2337
Abstract
Background: KRAS is a key driver gene in colorectal carcinogenesis. Despite this, there are still limited data on the mutational status of KRAS amongst colorectal cancer (CRC) patients in Malaysia. In the present study, we aimed to analyze the KRAS mutational profiles on [...] Read more.
Background: KRAS is a key driver gene in colorectal carcinogenesis. Despite this, there are still limited data on the mutational status of KRAS amongst colorectal cancer (CRC) patients in Malaysia. In the present study, we aimed to analyze the KRAS mutational profiles on codons 12 and 13 amongst CRC patients in Hospital Universiti Sains Malaysia, Kelantan, located on the East Coast of Peninsular Malaysia. Methods: DNA were extracted from formalin-fixed, paraffin-embedded tissues obtained from 33 CRC patients diagnosed between 2018 and 2019. Amplifications of codons 12 and 13 of KRAS were conducted using conventional polymerase chain reaction (PCR) followed by Sanger sequencing. Results: Mutations were identified in 36.4% (12/33) of patients, with G12D (50%) being the most frequent single-point mutation observed, followed by G12V (25%), G13D (16.7%), and G12S (8.3%). No correlation was found between mutant KRAS and location of the tumor, staging, and initial carcinoembryonic antigen (CEA) level. Conclusion: Current analyses revealed that a significant proportion of CRC patients in the East Coast of Peninsular Malaysia have KRAS mutations, where this frequency is higher compared to those in the West Coast. The findings of this study would serve as a precursor for further research that explores KRAS mutational status and the profiling of other candidate genes among Malaysian CRC patients. Full article
Show Figures

Figure 1

21 pages, 6283 KiB  
Article
Anti-Tumor Activity of Orally Administered Gefitinib-Loaded Nanosized Cubosomes against Colon Cancer
by Ahmed A. El-Shenawy, Mahmoud M. A. Elsayed, Gamal M. K. Atwa, Mohammed A. S. Abourehab, Mohamed S. Mohamed, Mohammed M. Ghoneim, Reda A. Mahmoud, Shereen A. Sabry, Walid Anwar, Mohamed El-Sherbiny, Yasser A. Hassan, Amany Belal and Abd El hakim Ramadan
Pharmaceutics 2023, 15(2), 680; https://doi.org/10.3390/pharmaceutics15020680 - 17 Feb 2023
Cited by 22 | Viewed by 3863
Abstract
Gefitinib (GFT) is a tyrosine kinase inhibitor drug used as a first-line treatment for patients with advanced or metastatic non-small cell lung, colon, and breast cancer. GFT exhibits low solubility and hence low oral bioavailability, which restricts its clinical application. One of the [...] Read more.
Gefitinib (GFT) is a tyrosine kinase inhibitor drug used as a first-line treatment for patients with advanced or metastatic non-small cell lung, colon, and breast cancer. GFT exhibits low solubility and hence low oral bioavailability, which restricts its clinical application. One of the most important trends in overcoming such problems is the use of a vesicular system. Cubosomes are considered one of the most important vesicular systems used to improve solubility and oral bioavailability. In this study, GFT cubosomal nanoparticles (GFT-CNPs) were prepared by the emulsification method. The selected formulation variables were analyzed and optimized by full factorial design and response surface methodology. Drug entrapment efficiency (EE%), transmission electron microscopy, particle size, polydispersity index, in vitro release and its kinetics, and the effect of storage studies were estimated. The chosen GFT-CNPs were subjected to further investigations as gene expression levels of tissue inhibitors of metalloproteinases-1 (TIMP-1) and matrix metalloproteinases-7 (MMP-7), colon biomarkers, and histopathological examination of colon tissues. The prepared GFT-CNPs were semi-cubic in shape, with high EE%, smaller vesicle size, and higher zeta potential values. The in vivo data showed a significant decrease in the serum level of embryonic antigen (CEA), carbohydrate antigen 19-9 (CA 19-9), and gene expression level of TIMP-1 and MMP-7. Histopathological examination showed enhancement in cancer tissue and highly decreased focal infiltration in the lamina propria after treatment with GFT-CNPs. Full article
(This article belongs to the Special Issue Cancer Therapy Resistance: Choosing Kinase Inhibitors)
Show Figures

Figure 1

Back to TopTop